Robotics and mechatronics workshop **3 days workshop for NFU students at UTSA**

Pranav A. Bhounsule website: <u>https://pab47.github.io/</u> email: pranav@uic.edu

Robotics Overview course outcomes

- Learn MATLAB (as a tool to simulation and animation)
- Modeling a manipulator
- Modeling a differential drive car
- Final project (create a video game)

Final robotics project

Robotics course material content (I emailed you a folder)

- robotics_workshop.pdf
 - main document with overall plan;
 - 4 parts: each part has an exercise to be done after workshop ends
- MATLAB-basics.pdf, MATLAB-scripts.pdf, MATLAB-animations.pdf
 - pdf files of MATLAB reference material (Part 1)
- robotics_notes.pdf
 - some theory for manipulators and car modeling
- Folder "matlab" that contains all programs needed
- This presentation (will be provided at the end)

Rough schedule Monday

- 9:30 10:30 Part 1: MATLAB intro and basics
- 10:45 12:00 Part 1: MATLAB matlab scripts
- 12 1 Lunch break
- 1 2:15 Part 1: MATLAB animation
- 2:30 3:30 Part 2: Manipulator
- 3:45 5:00 Part 3: Differential drive car

Rough schedule Tuesday

- 9:30 10:30 Part 4: Video game
- 10:45 12:00 Part 1: Arduino basics
- 12 1 Lunch break
- 1 2:15 Part 1: Arduino basics (contd)
- 2:30 3:30 Part 2: Servo and sensor
- 3:45 5:00 Part 3: Motor

Rough schedule Wednesday

- 9: 30 10:30 Part 3: Motors (contd.)
- 10:45 12:00 Part 4: Car consruction
- 12 1 Lunch break
- 1 2:15 Part 4: Car construction
- 2:30 3:30 Part 4: Car programming
- 3:45 5:00 Part 4: Car programming

) on

g

Part 1: MATLAB

Lets work together

- 1. Basic usage of MATLAB
- 2. Scripts in MATLAB
- 3. Making animation (this is fun)

Part 1 Exercise: Animate a face

Part 2: Manipulator **Coordinate frames**

$\begin{bmatrix} x_c^0 \\ y_c^0 \end{bmatrix}$ $= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_c^1 \\ y_c^1 \end{bmatrix}$

Location of elbow O_2

$$\begin{bmatrix} x_{O_2}^0 \\ y_{O_2}^0 \end{bmatrix} = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix} \begin{bmatrix} \ell_1 \\ 0 \end{bmatrix} = \begin{bmatrix} \ell_1 \cos \theta_1 \\ \ell_1 \sin \theta_1 \end{bmatrix}$$

Location of tip P

$$\begin{bmatrix} x_P^0 \\ y_P^0 \end{bmatrix} = \begin{bmatrix} x_{O_2}^0 \\ y_{O_2}^0 \end{bmatrix} + \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{bmatrix} \begin{bmatrix} \ell_2 \\ 0 \end{bmatrix} = \begin{bmatrix} \ell_1 \cos \theta_1 + \ell_2 \\ \ell_1 \sin \theta_1 + \ell_2 \end{bmatrix}$$

Forward kinematics

Given theta_1 and theta_2 find: x_p and y_p

$$\begin{bmatrix} x_P^0 \\ y_P^0 \end{bmatrix} = \begin{bmatrix} \ell_1 \cos \theta_1 + \ell_2 \cos \theta_2 \\ \ell_1 \sin \theta_1 + \ell_2 \sin \theta_2 \end{bmatrix}$$

see manipulator_forward.m

Inverse kinematics

Given x_p and y_p find: theta_1 and theta_2

$$\begin{bmatrix} x_P^0 \\ y_P^0 \end{bmatrix} = \begin{bmatrix} \ell_1 \cos \theta_1 + \ell_2 \cos \theta_2 \\ \ell_1 \sin \theta_1 + \ell_2 \sin \theta_2 \end{bmatrix}$$

- much harder
- many/no solutions

see manipulator_inverse.m

Get the manipulator to draw a circle

Again Inverse kinematics

Given x_p(i) and y_p(i) points circumference, find theta_1(i) and theta_2(i)

$$\begin{bmatrix} x_P^0 \\ y_P^0 \end{bmatrix} = \begin{bmatrix} \ell_1 \cos \theta_1 + \ell_2 \cos \theta_2 \\ \ell_1 \sin \theta_1 + \ell_2 \sin \theta_2 \end{bmatrix}$$

see manipulator_inverse_circle.m

Part 2: Inverse kinematics example

Part 2: Inverse kinematics example

Part 2: Manipulator Exercise: Draw the cardoid (see eqn in notes)

(a) position at start (b) position at start

(b) position at some point of time

(a) position at start

(b) position at some point of time

kinematics of x_c and y_c $\dot{x}_c^1 = 0.5r(\dot{\phi}_r + \dot{\phi}_l)$ $\dot{y}_c^1 = 0$

$$\begin{aligned} \dot{x}_{c}^{0} \\ \dot{y}_{c}^{0} \end{aligned} &= \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \dot{x}_{c}^{1} \\ \dot{y}_{c}^{1} \end{bmatrix} \\ &= \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 0.5r(\dot{\phi}_{r} + 0) \\ 0 \end{bmatrix} \end{aligned}$$

$$\dot{x}_c^0 = 0.5r(\dot{\phi}_r + \dot{\phi}_l)\cos(heta)$$

 $\dot{y}_c^0 = 0.5r(\dot{\phi}_r + \dot{\phi}_l)\sin(heta)$

(a) position at start

(b) position at some point of time

kinematics of rotation theta

 $\dot{\theta} = 0.5 \frac{r}{b} (\dot{\phi}_r - \dot{\phi}_l)$

$$\dot{x}_c^0 = 0.5r(\dot{\phi}_r + \dot{\phi}_l)\cos(heta)$$

 $\dot{y}_c^0 = 0.5r(\dot{\phi}_r + \dot{\phi}_l)\sin(heta)$

(a) position at start

(b) position at some point of time

All equations

$$\dot{x}_c^0 = 0.5r(\dot{\phi}_r + \dot{\phi}_l)\cos(\theta)$$

 $\dot{y}_c^0 = 0.5r(\dot{\phi}_r + \dot{\phi}_l)\sin(\theta)$
 $\dot{\theta} = 0.5rac{r}{b}(\dot{\phi}_r - \dot{\phi}_l)$

Simplified

Part 3: Mobile robot Integration

$$egin{aligned} x_c^0(t_{i+1}) &= x_c^0(t_i) + 0.5r\omega(t_i) \ y_c^0(t_{i+1}) &= y_c^0(t_i) + 0.5r\omega(t_i) \ heta(t_{i+1}) &= heta(t_i) + 0.5rac{r}{b}\Omega(t_i) \end{aligned}$$

see diff_drive_main.m
see euler_integration.m

Part 3: Mobile robot Exercise: Can you control the robot to write your initials?

Part 4: Project

see car_game.m

Main loop

<pre>2</pre>	1		<pre>Function car_game</pre>
<pre>3</pre>	2		⊨ %Modified the pong code by David B
<pre>4 5 6 - %%%%% main part of the code %%% global game_over 7 8 - close all 9 - initData %first function, initial initFigure %second function, initial 10 - while ~game_over %runs till game_co 12 - moveCar; %second function, com 13 - refreshPlot; %fourth function, 14 - end</pre>	3		<pre>%https://www.mathworks.com/matlabc</pre>
<pre>5 %%%%% main part of the code %%% 6 - global game_over 7 8 - close all 9 - initData %first function, initial 10 - initFigure %second function, initial 11 - while ~game_over %runs till game_complete 12 - moveCar; %second function, complete 13 - end</pre>	4		
<pre>6 - global game_over 7 8 - close all 9 - initData %first function, initial 10 - initFigure %second function, initi 11 - while ~game_over %runs till game_co 12 - moveCar; %second function, com 13 - refreshPlot; %fourth function, 14 - end</pre>	5		%%%%%% main part of the code %%%
<pre>7 8 - close all 9 - initData %first function, initial 10 - initFigure %second function, initial 11 - while ~game_over %runs till game_co 12 - moveCar; %second function, com 13 - refreshPlot; %fourth function, 14 - end</pre>	6	-	global game_over
<pre>8 - close all 9 - initData %first function, initial 10 - initFigure %second function, initian 11 - while ~game_over %runs till game_co 12 - moveCar; %second function, con 13 - refreshPlot; %fourth function, 14 - end</pre>	7		
<pre>9 - initData %first function, initial 10 - initFigure %second function, initian 11 - while ~game_over %runs till game_cond 12 - moveCar; %second function, cond 13 - refreshPlot; %fourth function, 14 - end</pre>	8	-	close all
<pre>10 - initFigure %second function, initi 11 - while ~game_over %runs till game_c 12 - moveCar; %second function, con 13 - refreshPlot; %fourth function, 14 - end</pre>	9	-	initData %first function, initial
<pre>11 - while ~game_over %runs till game_c 12 -</pre>	10	-	initFigure %second function, initi
<pre>12 - moveCar; %second function, con 13 - refreshPlot; %fourth function, 14 - end</pre>	11	-	<pre> while ~game_over %runs till game_o </pre>
13 - refreshPlot; %fourth function, 14 - end	12	-	<pre>moveCar; %second function, com</pre>
14 – ^L end	13	-	<pre>refreshPlot; %fourth function,</pre>
	14	-	^L end

Buckingham Sentral/fileexchange/31177-dave-s-matlab-pong Lalize the data variables Lalize the figure Over = 1 Supute car movement including collision detection refresh plot based on moveCar

Rough schedule Tuesday

- 9: 30 10:30 Part 4: Video game
- 10:45 12:00 Part 1: Arduino basics
- 12 1 Lunch break
- 1 2:15 Part 1: Arduino basics (contd)
- 2:30 3:30 Part 2: Servo and sensor
- 3:45 5:00 Part 3: Motor

Mechatronics Overview course outcomes

- Learn Arduino (as a tool to create a mechatronics system)
- Basic electronics: resistor, breadboard, push-button, light-emitting diode.
- Basics C programming: variables, functions, loops, conditionals
- Using Analog in/out and digital in/out
- Sensors: Ultrasonic sensor
- Actuators: DC motors and servos
- Final project (create a different drive car)

Final mechatronics project

Mechatronics course material content (I emailed you a folder)

- mechatronics_workshop.pdf
 - main document with overall plan;
 - 4 parts: each part has an exercise to be done after workshop ends
- Arduino basics, servo-sensor, motor, car-project pdf files
- Folder "arduino" that contains all programs needed
- This presentation (will be provided at the end)

Mechatronics system

Sensor

Ultrasonic

DC and servo motor

Part 1: Arduino basics

Check 1. Arduino-basics.pdf

Part 2: Servo and sensor **Ultrasonic sensor**

https://randomnerdtutorials.com/complete-guide-for-ultrasonic-sensor-hc-sr04/

Part 2: Servo and sensor Servo motor: DC motor + potentiometer (position sensor)

https://lastminuteengineers.com/servo-motor-arduino-tutorial/

more details see DC motor notes

Part 2: Servo and sensor

Check 2.Arduino-servo-sensor

Part 3: DC motor

H-bridge or motor controller

Part 3: DC motor **Direction control**

Motor spin direction controller by closing appropriate switches

Part 3: DC motor Speed control

Motor speed controlled by time the switches are closed

Part 3: DC motor

Check 3.Arduino-motor

Rough schedule Wednesday

- 9:30 10:30 Part 3: Motors (contd.)
- 10:45 12:00 Part 4: Car construction
- 12 1 Lunch break
- 1 2:15 Part 4: Car construction
- 2:30 3:30 Part 4: Car programming
- 3:45 5:00 Part 4: Car programming

Part 4: Car construction and programming

Check 4.Arduino-car-project