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What is interesting about this control architecture?

Cornell Ranger walked 14.3 miles (=23 kms.)
using only 3 cents worth of electricity!
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State of the art in walking robots

High Bandwidth Feedback Control

Figure: PETMAN from Boston
Dynamics

• Robust, Versatile.

• Energy Inefficient.

Passive Dynamic Walkers

Figure: Passive Kneed
Walker

• Energy efficient

• Not Robust.

file:/Users/pab47/Documents/DISK/Progress_till_date/WCB2010_Preparation/Presentation/videos/asimo_walks.mov
file:/Users/pab47/Documents/DISK/Progress_till_date/WCB2010_Preparation/Presentation/videos/PETMAN.mp4
file:/Users/pab47/Documents/DISK/Progress_till_date/WCB2010_Preparation/Presentation/videos/3d_passive_walker.mov
file:/Users/pab47/Documents/DISK/Progress_till_date/WCB2010_Preparation/Presentation/videos/passive_walkers.mov


Is there an intermediate approach?

• can be made close to optimal feedback control.

• can be made robust.

• can be made dumb.



The controller architecture

1. Model the system.
I equations of motion
I system identification

2. Find open loop optimal control policy
I Torques as a function of time.
I Few hundred parameters.

3. Find open loop approximate optimal control policy (design
choice)

I Torques as a function of state.
I Maximize simplicity of representation.
I Minimize number of parameters.

4. Stabilize the approximate optimal control policy (details
ahead)
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Stability is easy

Equation of motion

δxn+1 = Aδxn + Bδun

Output equation

δzn+1 = Cδxn + Dδun

• n = step number*

• δxn = differential about nominal value
for state vector.

• δun = differential about nominal value
for control vector.

• δzn = differential about nominal value
for output vector.

• A = Jacobian = ∂(δxn+1)/∂(δxn)

• B = Sensitivity = ∂(δxn+1)/∂(δun)

• C = Jacobian = ∂(δzn+1)/∂(δxn)

• D = Sensitivity = ∂(δzn+1)/∂(δun)
* could be time or state based
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Stability is easy

Output Equation

δzn+1 = Cδxn + Dδun

NOTE:

• δun is intermittent.

• δun can be made smooth.

e.g.

δun =

[
un1f1(t)
un2f2(t)

]
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Stability is easy

How to use the output equation for control?

For linear control,

δun = Kδxn

Thus,

δzn+1 = Cδxn + D Kδxn︸ ︷︷ ︸
δun



Stability is easy

How to use the output equation for control?

For linear control,

δun = Kδxn

Thus,

δzn+1 = Cδxn + D Kδxn︸ ︷︷ ︸
δun

e.g. dead beat control
(δzn+1 = 0)

δun = Kδxn = −D−1Cδxn



Example 1: Inverted Pendulum

Linearization over 1 sec.
i.e. n (seconds) = 1,2,3 ...

Output Equation

state︷ ︸︸ ︷
δxn+1 = Cδxn + D Kδxn︸ ︷︷ ︸

δun

For dead beat control
δxn+1 = 0

δun = Kδxn = −D−1Cδxn

file:/Users/pab47/Documents/DISK/Progress_till_date/WCB2010_Preparation/Presentation/videos/MVI_0738.MOV


Example 2: Walking Robot

Linearization about upright position.
and n (step number) = 1,2,3 ...

Output Equation

Mech. Energy︷ ︸︸ ︷
δEn+1 = F δxn + G

Hip Torque︷ ︸︸ ︷
Kδxn︸ ︷︷ ︸

δun

For dead beat control δEn+1 = 0

δun = Kδxn = −D−1Cδxn

file:/Users/pab47/Documents/DISK/Progress_till_date/WCB2010_Preparation/Presentation/videos/ranger_side.MOV


Walk Statistics

Distance:

14.3 mi (=23 km).
Time:

10 hrs, 40 min, 48 sec
Speed:

1.34 mi/hr (=2.15 km/hr)
No. of Steps:

65,185.
Power:

24.5 watt
Energy:

262 watt hours
COT = Energy/(Distance×Weight):

0.49
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