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Abstract

In this paper, we present a theoretical study on the control of a compass gait walker using energy

regulation between steps. We use a return map to relate the mid-stance robot kinetic energy between

steps with the two control inputs, namely, foot placement and ankle push-off. We show that by regulating

the robot kinetic energy between steps using the two control inputs, we are able to: 1) generate a wide

range of walking speeds and stride lengths, including average human walking; 2) cancel the effect of

external disturbance fully in a single step (dead-beat control); and, 3) switch from one periodic gait to

another in a single step. We hope that insights from this control methodology can help develop robust

controllers for practical bipedal robots.

1 Introduction

Current research on bipedal robots has focussed on planning and control of a singe steady state (periodic)

walking gait. We characterize a walking gait by a given combination of step length and step velocity.



However, for bipedal robots to be able to be able to walk in man-made environments, they need to be able

to walk at a wide range of steady state periodic gaits and be able to switch from one periodic gait to another

quickly.

In this paper, we show theoretical calculations on how to use energy regulation between steps to plan and

control walking of a compass gait model. We first review past work on compass gait models and common

control approaches, followed by a discussion on our model.

2 Related Work

2.1 Compass gait model

McGeer [1] was the first to demonstrate that a compass gait model, with properly tuned mechanics, can

descend down gentle slopes without any control input or energy input. This passive compass gait model

has demonstrated a limited range of walking motions (usually slow speeds when compared to humans) and

limited stability [2, 3]. However, the biggest limitation of the passive compass gait model is that it cannot

sustain steady walking on level ground because there is no means of supplying the energy lost during foot

collision.

There have been attempts made to mimic passive compass gait motion on level ground by adding actua-

tion. Asano et al. [4] simulated a virtual gravity field using robot actuators, which mimics the gravity field

observed in slope walkers. Goswami et al. [5] and Spong [6] observed that the total energy of the passive

compass gait model descending a slope is constant. Based on this observation, they developed a control

scheme that uses the robot actuators to track a virtual energy field. Both, the virtual gravity and energy

based control approaches, assume that the hip as well as the ankles are actuated (also called full actuation).

However, assuming ankle actuation might be an unrealistic assumption because using too much ankle actu-

ation during single stance can lead to overturning of the robot foot, violating the condition that the foot is

firmly grounded. In this paper, our model has under-actuation for most of the stance phase, except during

support transfer, where the trailing ankle applies an impulsive push-off [7]. Since ankle actuation in our

model occurs at the end of single stance phase, that is, when the stance leg is about to become the new

swing leg, foot overturning is not an issue.



2.2 Foot placement control

Use of foot placement for control is an old idea. Pratt et al. [8] used a “Capture point” analysis to investigate

balance using foot placement. “Capture point” is the point where the robot should step to come to a complete

stop when pushed. In their analysis, the capture point is computed using the zero of the orbital energy of

the linear inverted pendulum model with collision-free support transfer [9]. Wight et al. [10] developed the

“foot placement estimator”, which is identical to the capture point concept. However, they used the compass

gait model similar to the one we use.

2.3 Push-off control

Use of push-off for control is a relatively new idea; although, biomechanists have used it to explain mechanics

of human walking. Kuo used the compass gait model with impulsive ankle push-off to explain the energetics

of human walking [11] and the preferred speed-step length relationship in human walking [12]. The timing

of the push-off is critical for energy-efficiency; push-off before heel-strike is four times more energy-efficient

than push-off after heel strike [12, 13]. This is because a push-off before heel-strike tends to soften the

collisional losses associated with the velocity re-direction during support transfer [14]. In this paper, we will

use an ankle push-off before heel-strike. However, note that the equations of motion for support transfer

(see Eqn. 5) for our model remain the same irrespective of whether the push-off is before or after heel-strike;

although, the energetics differ.

2.4 Compass gait model used in this paper

Our compass gait model has massless legs and a point mass at the hip. We use a hip actuator to do

foot placement, and an ankle actuator to do an impulsive push-off just before heel-strike. For practical

robots, impulsive push-off is not possible because actuators cannot generate infinite forces. However, one

can approximate the impulsive push-off with finite force over finite interval of time. For robots with knees,

one can use the knee actuator to generate the push-off.

We have used ideas from this model to develop an event-based feedback controller to regulate steady

state walking for Cornell Ranger robot [15], leading to a long distance walking record and energy-efficiency

record [16, 17]. However, that study was limited to planning and control of one steady state gait. Here, we

extend that study further. Using theoretical and numerical calculations, we demonstrate that it is possible

for the compass gait model to generate wide range of speeds and step lengths, using a combination of foot



placement and ankle push-off. We also show that by using the same two controls to do once-per-step energy

regulation, we can stabilize a periodic gait and switch from one periodic gait to another in a single step.

3 The compass gait model

Fig. 1 shows our 2-dimensional model of walking. The model has mass-less legs, each of length (`) and a

point-mass (M) at the hips. Gravity (g) points downwards as shown. The model has the two actuators:

a rotational hip actuator and a linear stance leg actuator on each leg. We assume that the hip actuator

can place the swing leg at the desired position instantaneously, and the stance leg linear actuator generates

an impulsive push-off along the stance leg. We assume perfect state estimation, no saturation limits on

actuators, ignore swing leg dynamics (since the legs are mass-less), and assume that the grounded leg does

not slip.

Fig. 2 shows a typical step for this model. The point-mass model starts in the mid-stance position as

shown in (I) with stance leg velocity θ̇mi . The model then moves passively to the state just before heel-strike

in (b), where the stance leg velocity is θ̇−i . Next, the linear actuator on the stance leg applies an impulsive

push-off (Pi) just before heel-strike (we assume that the point-mass does not takeoff during the impulsive

push-off and this assumption is somewhat justified because the push-off is immediately followed by heel-strike

in (III)) and the hip actuator positions the swing leg at the angle 2θi. Next, in (III) the swing leg collides

with the ground and becomes the new stance leg. The stance leg velocity after collision is θ̇+
i . Finally, the

new stance leg moves passively to the state (IV) where the model ends up in the mid-stance position with a

stance velocity of θ̇mi+1.

4 Equations of motion

We present equations of motion for a typical step shown in Fig. 2. Later, we will use these equations for gait

planning and control.

4.1 Mid-stance position at step i (Fig. 2, I) to instant before heel-strike at step

i (Fig. 2, II)

The non-dimensional mid-stance velocity at step i is θ̇mi . Time is non-dimensionalized with
√
`/g in all

variables that have a time dependency. The inter leg angle at heel-strike is 2θi and the stance leg velocity



just before heel-strike is θ̇−i . Using conservation of energy we get

(θ̇mi )2

2
+ 1 =

(θ̇−i )2

2
+ cos θi. (1)

We use force balance along the stance leg to derive an expression for the net ground reaction force, F

(non-dimensionalized with Mg). Further, to prevent tensional leg forces, the net reaction force should always

be positive by our sign convention, and thus

F = cos θ − θ̇2 > 0. (2)

The angular speed θ̇i increases monotonically with the angle θi. Thus, we check for the condition given by

Eqn. 2 only during heel-strike (i.e. when the vertical angle is at its maximum). Furthermore, we can express

this in terms of mid-stance velocity θ̇mi using Eqn. 1 to get

cos θi > (θ̇−i )2

> (θ̇mi )2 + 2(1− cos θi). (3)

Finally, we compute the time it takes to move from mid-stance position to the instant just before heel-

strike. This is useful for computing the step time later. The time needed to move the first half step is

Tfirst−half =

∫ θi

0

dθ

θ̇
=

∫ θi

0

dθ√
(θ̇mi )2 + 2(1− cos θ)

, (4)

which we solve using numerical quadrature.

4.2 Instant before heel-strike at step i (Fig. 2, II) to instant after heel-strike at

step i (Fig. 2, III)

To relate angular velocities before heel-strike θ̇−i to that after heel-strike θ̇+
i , we do an angular momentum

balance about the impending collision point (see [11, 13] for more details on this calculation). Using the

non-dimensional impulsive push-off Pi (non-dimensionalized with M
√
g`) we get

θ̇+
i = Pi sin 2θi + θ̇−i cos 2θi. (5)



4.3 Instant after heel-strike at step i (Fig. 2, III) to mid-stance position at step

i+ 1 (Fig. 2, IV)

Let the mid-stance velocity on step i+ 1 be θ̇mi+1. Using conservation of energy we get

(θ̇+
i )2

2
+ cos θi =

(θ̇mi+1)2

2
+ 1. (6)

We also need to ensure that the ground reaction force is positive. We do this using the same procedure

used to derive Eqn. 3. Thus

cos θi > (θ̇+
i )2

> (θ̇mi+1)2 + 2(1− cos θi). (7)

We compute the time taken for the second half of the step as done earlier in Eqn. 4. Thus

Tsecond−half =

∫ θi

0

dθ

θ̇
=

∫ θi

0

dθ√
(θ̇mi+1)2 + 2(1− cos θ)

. (8)

4.4 Step-to-step map for planning and control

We analyze the system using a Poincaré map from one mid-stance to the next. We relate the stance leg

velocity at mid-stance at step i with that at mid-stance at step i+ 1. Putting Eqn. 1 and Eqn. 6 in Eqn. 5

and solving for θ̇mi+1 gives

θ̇mi+1 = f(θ̇mi , θi, Pi)

=

{(
Pi sin 2θi +

√
(θ̇mi )2 + 2(1− cos θi) cos 2θi

)2

− 2(1− cos θi)

}1/2

. (9)

The above expression relates the mid-stance velocity at step i + 1 as a function of mid-stance velocity

at step i and the two control variables: inter-leg angle at heel-strike (2θi), and impulse (Pi). We use this

equation for gait planning and control. Note that we also have to ensure that inequalities given by Eqns. 3

and 7 are satisfied.



4.5 Step Length, Step Time and Step Velocity

We compute the non-dimensional step length Di (non-dimensionalised by `) from the inter-leg angle at

heel-strike as follows:

Di = 2 sin θi. (10)

We calculate the total non-dimensional step time Ti, by adding Eqns. 4 and 8

Ti = Tfirst−half + Tsecond−half . (11)

Finally, we compute the non-dimensional step velocity Vi, from the non-dimensional step length and non-

dimensional step time

Vi =
Di

Ti
. (12)

5 Results

5.1 Planning a steady state (periodic) walk

In periodic walking, the stance leg velocity at mid-stance at step i+ 1 is the same as the stance leg velocity

at mid-stance at step i. Thus, we set θ̇mi+1 = θ̇mi = θ̇m0 (steady state mid-stance hip velocity), Pi = P0

(steady state impulse), and θi = θ0 (steady state half inter-leg angle at heel-strike) in Eqn. 9. This gives one

equation in three variables (P0, θ0, and θ̇m0 ). We are free to choose 2 of the 3 variables to characterize the

steady state gait.

We choose to quantify a steady state gait by the half inter-leg angle at heel-strike, θ0, and mid-stance

velocity, θ̇m0 . We can now solve for the steady state impulse P0 from Eqn. 9 as a function of θ0 and θ̇m0 to

get

P0 = tan θ0

√
(θ̇m0 )2 + 2(1− cos θ0). (13)

We present results for a typical human gait. The nominal human velocity is, v0 = 1.3 m/s [18]. We

convert this into non-dimensional form, V0 = v0/
√
g` = 1.3/

√
10× 1 = 0.41. To get the step length we use

the empirical fit by Alexander and Maloiy [19]. D0 = 1.25× V 0.6
0 = 1.25× 0.410.6 = 0.73. Using the values

for D0 and V0 in Eqn. 12, the non-dimensional step time is T0 = 1.78. These values will be used later in



section 5.2.

We substitute the value of D0 in Eqn. 10 and compute the inter-leg angle at heel-strike. We get,

2θ0 = 0.7508. Next, using the computed values of θ0 and T0 in Eqn. 11, we compute the mid-stance velocity.

We get θ̇m0 = 0.3702. Finally, putting the values of θ̇m0 and θ0 in Eqn. 13 gives the impulse, P0 = 0.2072.

5.2 Range of solutions

Next, we will find all the possible steady state gaits possible with this model. A solution is feasible if the

ground reaction force is positive during stance phase. To compute the boundary of feasible solutions we put

θmi = θ0 and θ̇mi = θ̇m0 and use Eqn. 3 or Eqn. 7 to compute a relation between θ0 and θ̇m0 . All the feasible

walking solutions should satisfy the constraint

cos θ0 <
(θ̇m0 )2 + 2

3
(14)

The grey shaded region in Fig. 4 shows the feasible region of walking obtained from Eqn. 14. We have also

plotted the average human walking obtained from section 5.1.

5.3 Controlling steady state (periodic) walk

Next, we consider how to recover from external disturbances to get back to the periodic walking gait. We

model the effect of external disturbance as a change in stance leg velocity at mid-stance. Thus, given a

measured change in mid-stance velocity at step i, we want to find what control strategy will get the model

back to the nominal mid-stance velocity at step i+ 1.

We use a Poincaré map [20] from one mid-stance (instance of time when the stance leg is vertical) to

another for control and is given by Eqn. 9. We use the measured the stance leg velocity at mid-stance to

compute a foot placement and a push-off impulse so as to return to the steady state mid-stance velocity at

the next step. Such a strategy that involves full correction of disturbance in one step is called a one-step

dead-beat control [21]. Instead, we could have designed a strategy that does a full correction of disturbance

in n steps, also called n-step dead-beat control. This is useful when a single step dead-beat is not possible

due to actuator limits. Dead-beat control of running has been studied by Carver et al. [22] and Wu and

Geyer [23].

In summary, our control problem is as follows: Given that the mid-stance velocity is different from the

nominal due to a disturbance, i.e. θ̇mi 6= θ̇m0 ; we need to find a control law, (a value of Pi and θi), that gets



the robot back to the steady state values θ̇m0 at the mid-stance of the next step.

In the discussion that follows, we use the term step length and inter-leg angle at heel-strike interchange-

ably. We present results for the steady state human walking gait that we computed in section 5.1.

5.3.1 Push-off control

One simple approach is to fix the step length to the nominal value, i.e. 2θ0, and adjust the impulse. We call

this approach the push-off control approach. In Eqn. 9, we vary the mid-stance velocity at mid-stance at

step i, θ̇mi , to simulate a disturbance, and try to find the impulse Pi such that θ̇mi+1 = θ̇m0 and with θi = θ0

to generate the dashed blue line in Fig. 3. From the plots, we see that there is an impulse for all velocities

slower than nominal, θ̇mi < θ̇m0 . However, we are not able to find a non-zero impulse solution for certain

range in the faster than nominal velocities regime θ̇mi > θ̇m0 . Note that a negative impulse implies a tensional

leg force, which is not physically possible. From this plot, we conclude that push-off control works best to

speed up the system (or increase the robot’s kinetic energy).

5.3.2 Step-length control

Another simple approach is to fix the impulse to the nominal value, i.e. P0, and adjust the step length. We

call this approach the step-length control approach. In Eqn. 9, we vary the mid-stance velocity at step i, θ̇mi ,

to simulate an external disturbance, and try to find a step length, 2θi, such that with Pi = P0, θ̇mi+1 = θ̇m0 ,

resulting in the solid red line in Fig. 3. We obtain the the boundary of the solid red line in the high speed

region by checking the take-off condition given by Eqn. 3.

From this plot, we see that there is a step length for the velocities faster than nominal, θ̇mi > θ̇m0 except

to the far right where the solid red line ends. In this region, the robot needs a flight phase to do a one step

dead beat control. Also, note we are not able to find a step length for most of the region in the slower than

nominal velocities range, i.e. θ̇mi < θ̇m0 . In this region, the robot falls backward before it can make it to the

top on the next step. Thus, the step length control works best to slow down the system (or decrease the

robot’s kinetic energy). This is because by changing the step length one is effectively changing the energy

losses at heel-strike. For a given impulse, a big step implies a bigger loss and vice versa for a small step [13].



5.3.3 Two one-sided controllers — switching between push-off control and step-length control

in different mid-stance velocity regimes

Informed by the results in the two sections above, we note that the push-off control works best to speed

up the system and the step length control works best to slow down the system. Hence, we propose two

one-sided controllers as follows: if the mid-stance velocity of the system is less than the steady state value,

i.e. θ̇mi < θ̇m0 , we use a push-off control; and if the mid-stance velocity of the system is more than the steady

state value, i.e. θ̇mi > θ̇m0 , we use the step length control. The highlighted grey regions in Fig. 3 shows the

switching controller. Saglam and Byl [24] used a switching controller that does approximately the same as

we have done here.

However, there exists a range of non-dimensional mid-stance velocities between 0.78 to 1, where we cannot

cancel the effect of disturbances in a single walking step. In this region, we need a flight phase for one step

correction or need more than one step to get back to the steady state gait.

We have used a similar switching controller to regulate the speed of the walking robot Cornell Ranger

[16], leading to long distance walking record.

5.4 One step transition from one periodic gait to another

We want to find out if it is possible to switch from one periodic gait to another in one step. So we did the

following. For a given combination of mid-stance velocities, θ̇mi and θ̇mi+1, we try to find out if there is at

least one combination of control parameters, θi and Pi. We do this by using a root finding algorithm. The

grey region shown in Fig. 5 represent all the mid-stance velocity transitions possible in one step. This grey

area is also called the one-step basin of attraction.1

The four edges that define the basin of attraction are: i) θ̇mi = 0 (x-axis) corresponds to robot starting

at the mid-stance position and is excluded because it takes infinite time to move from this position; ii)

θ̇mi+1 = 0 (y-axis) corresponds to the robot ending up at the mid-stance position and is excluded because it

takes infinite time to get to this position; iii) for θ̇mi+1 = 1 the normal force on the stance leg will go to zero

at mid-stance by Eqn. 7; and iv) the fourth edge on the right side comes from excluding the solutions that

violate Eqn. 3.

One might wonder why the basin of attraction is not symmetric about the steady state walking solution

(red dashed line with slope of 1). In the region below the steady state walking, the robot is going from a high

1For a dynamical system with a periodic orbit, the basin of attraction is defined as the set of initial conditions from which
the system will return to the periodic orbit.



velocity gait to a low velocity gait. To achieve this, the robot needs to slow down. This is best achieved by

taking a big step, but too big a step violates the condition that the reaction force on the stance leg should be

positive (see Eqn. 3), leading to non-existence of solutions. On the other hand, for the region above steady

state walking, the robot is going from a low velocity gait to a high velocity gait. To achieve this, the robot

needs to speed up. This is best achieved by increasing the push-off. But it is always possible to find a value

of push-off impulse with a suitably sized step length to speed up the system without violating the take-off

condition given by Eqn. 7.

Note that the top and right boundaries of the one step basin of attraction are limitations imposed by our

assumption that running is not permitted.

5.5 Balance control via “Capture Point”

The Capture Point is defined as the point where the robot should step to come to a complete stop when

pushed [8]. If the robot comes to complete stop in one step, it is called as a one step capture point.

We compute the one step capture point as follows. We put Pi = 0 and θ̇mi+1 = 0 in Eqn. 9 and solve for

the step length, 2θi, for the given disturbance characterized by θ̇mi . We show a plot of the one step capture

point in Fig. 6. The is no solution when the reaction force on the stance leg goes to zero and found by

checking Eqn. 3. However, if we allow flight phase, the solution is unbounded.

6 Conclusions and Future Work

In this paper, we present a theoretical study on gait planning and control of bipedal walking using the

compass gait model. In our compass gait model, the legs are massless and there is a point mass at the

hip. The point mass vaults over the stance leg passively throughout the stance phase except during support

transfer in which, the trailing leg applies an impulsive push-off followed by instantaneous collisional heel-

strike during foot placement. We analytically derive return map that relates the stance leg velocity at

mid-stance (instance when the stance leg is parallel to the gravity vector) as a function of stance leg velocity

at the previous mid-stance and the two control inputs, namely, the foot placement and the push-off impulse.

We then show how to use the map to plan and control a periodic walking gait and to transition from one

periodic gait to another. The central idea for control in this approach is to regulate the kinetic energy from

step-to-step using push-off and foot placement. Our key results are: 1) We can generate a wide range of

walking speeds and stride lengths, including average human walking. 2) To stabilize a periodic motion when



perturbed, a strategy which switches between push-off control and foot placement control gives the widest

range of disturbance rejection than a single strategy. 3) It is possible to switch from one steady state gait

to another in one step using a combination of push-off control and foot placement control.

This study raises some issues for future work. We focus on one-step control entirely, but sometimes it

might not be possible to do one-step control because of actuator limits, (e.g. torque saturation, maximum

acceleration). These limits impose bounds on how much push-off is possible and how fast the legs can swing.

In these instances, a multiple step control strategy can be used. It would be interesting to understand

multiple step control strategy in the context of actuator limits.

We have explored range of motions and robustness of walking, but have ignored the cost of control [25].

For example, the choice of push-off control or step length control can be based on energetic or actuator cost.

Also, it would be interesting to understand the tradeoff between control cost and performance cost for a

single-step and multi-step strategy.
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Figure 1: 2-D point-mass walker. The walker consists of two massless legs of length ` with a point-mass
M at the hip joint. The leg on the ground is the stance leg and is shown in black, and the leg in the air is
the swing leg and shown in grey. Throughout the paper we assume that at least one leg is on the ground
(single stance phase) and at no instance are both legs on the ground (no double stance phase). The support
exchange, called heel-strike, is instantaneous.

(III) After heel-strike (step i) (IV) Mid-stance (step i+1) (I) Mid-stance (step i) (II) Before heel-strike (step i)

θ̇ i

Pi

θ̇
i

-
θ̇ i

+
θ̇ i+1

θ i2 θ i2

m m
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push-off

Impulsive heel-strike
(impulse not shown)
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Swing Leg 
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Figure 2: A typical step of our point mass model. The walker starts in the upright or mid-stance
position in (I). Next, just before heel-strike in (II), the stance leg applies an impulsive push-off Pi and the
hip actuator positions the swing leg at an angle 2θi. Next, after heel-strike in (III), the swing leg becomes
the new stance leg. Finally, the walker ends up in the upright position or mid-stance position on the next
step in (IV). Note that model moves passively from (I) to (II) and from (III) to (IV). The push-off impulse
at (II) and the heel-strike impulse at (III) (heel-strike impulse is not shown) serves to re-direct the point
mass from one circular arc to the next one. Note that the angular velocity is always perpendicular to the
stance leg at all instances of time.
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Figure 3: Three strategies to control steady state walking. a) Push-off control with step length
maintained at the nominal value (blue dashed line). Push-off control works best to inject energy and to
speed up the system. b) Step length control with push-off maintained at the nominal value (red solid line).
Step length control works best to extract energy and to slow down the system. c) Switching between push-off
and step length control based on velocity at mid-stance. If the mid-stance velocity is less than the nominal
value then a push-off control is used to inject energy to speed up the system (blue dashed line in the gray
region). If the mid-stance velocity is more than the nominal value then a step length control is used to
extract the excess energy to slow down the system (red solid line in the grey region). Such a controller is
simple to program and works in all mid-stance velocity regimes except for too high velocities (white region
on the right side) where we either need a flight phase to do a one step control or would need multiple walking
steps to get back to the nominal speed.
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Figure 4: Range of steady state solutions possible with the compass gait model. The grey region
shows the feasible region of walking. The boundary of the feasible regions is given by the equality in Eqn. 14
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Figure 5: One-step basin of attraction The grey area is the region where we can find at least one
combination of θi and Pi to transition from two given mid-stance velocities, θ̇mi to θ̇mi+1. Steady (periodic)
walking is shown as a red dashed line. The slope of this line is 1.
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Figure 6: One step capture point The external disturbance is modeled as a non-zero mid-stance velocity
(x-axis). The plot shows the step length (y-axis) needed for the robot to come to a complete stop (zero mid-
stance velocity of the stance leg) at the next mid-stance. For high enough velocities there are no solutions
because the reaction force on the stance leg goes to zero. If we allow for a flight phase, the solution is
unbounded.
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