
Example 1: Find a time based parameterization for a revolute joint of a manipulator. The joint should move from 0 to 0.5 rad from time t=0 to t=1 sec followed by movement from 0.5 rad to 1 rad in from t=1 to t=3 secs. Also, the velocity of the joint at the start of motion (t=0) and end of motion (t=3) should be 0 and the velocity of the joint at the intermediate point (t=1) should be 0.2 rad/s. Assume two minimal order polynomials of time, one for each movement.

		L V= 0.2		
<u>0 - 0.5</u> 0.5 - 1	rad	$t \equiv [\underline{0}, \underline{1}]$ $t \equiv [\underline{0}, 3]$ q_2 q_2 q_2		
		1 0 7,		
t=0	9, = 0	$7 / 9_1 = 9_{10} + 9_{11} t + 9_{12} t^2 + 9_{13} t^3$		
t=1	9 = 0.5	$\dot{q}_1 = q_{11} + 2q_{12}t + 3q_{13}t^2$		
t= 0	q1=0	4 conditions		
2-1	9= 0.2) on 91		
モニー	92 = 0.5	792= aro+921 t +92t +923t 3		
t=3	92 = 1	$\dot{q}_2 = q_1 + 2q_2 t + 3q_2 t^2$		
£=3	$9_2 = 0$ $9_2 = 0.2$	4 conditions on 92		
t=1	92=0.2	J on 92		

9,(0)=0	0 = 910	J
9,(1)=0.5	0.5 = 910	$+ q_{11} + q_{12} + q_{13}$
q,(0) = 0	0 =	9 ₁₁ 844-
$\dot{q}_{1}(1) = 0.2$	0.2 =	$9_{11} + 29_{12} + 39_{13}$
92(1):0.5	0.5 = 920°	$79_{21} 79_{22} 79_{23}$
92(3)=1	1 = 920	1 3 92, +9922 + 27 923
$9_{\nu}(3) = 0$	07	·921 +6922 +27923
9 ₂ (1) = 0.2	0.2 =	94+ 2912 + 3923
	0 0 0 1 1 0 0 0 0 2 3 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 6 & 27 & 0.5 \\ 0 & 0 & 0 & 0 & 1 & 6 & 27 & 0.2 \\ 0 & 0 & 0 & 0 & 1 & 6 & 27 & 0.2 \\ 0 & 0 & 0 & 0 & 1 & 6 & 27 & 0.2 \\ 0 & 0 & 0 & 0 & 1 & 6 & 27 & 0.2 \\ A & X & = b & & & \\ X &= A^{T} & b & & \\ X &= A^{T} & b & & \\ Using python & & \\ X &= [0 & 0 & 1 \cdot 3 & -0.8 & 0.55 & -0.375 & -0.4 & -0.075] \\ [a] & [a]_{0} & a_{12} & a_{13} & a_{20} & a_{14} & a_{12} & a_{13} \end{bmatrix}$$

Example 2: Find a time based parameterization for a revolute joint of a manipulator. The joint should move from 0 to 0.5 rad from time t= 0 to t=1 sec followed by movement from 0.5 rad to 1 rad in from t=1 to t=3 secs. Also, the velocity of the joint at the start of motion (t=0) and end of motion (t=3) should be 0 and the acceleration of the joint at the intermediate point (t=1) should be continuous. Assume two minimal order polynomials of time, one for each movement.

