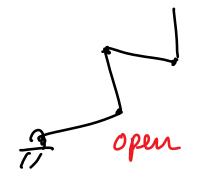
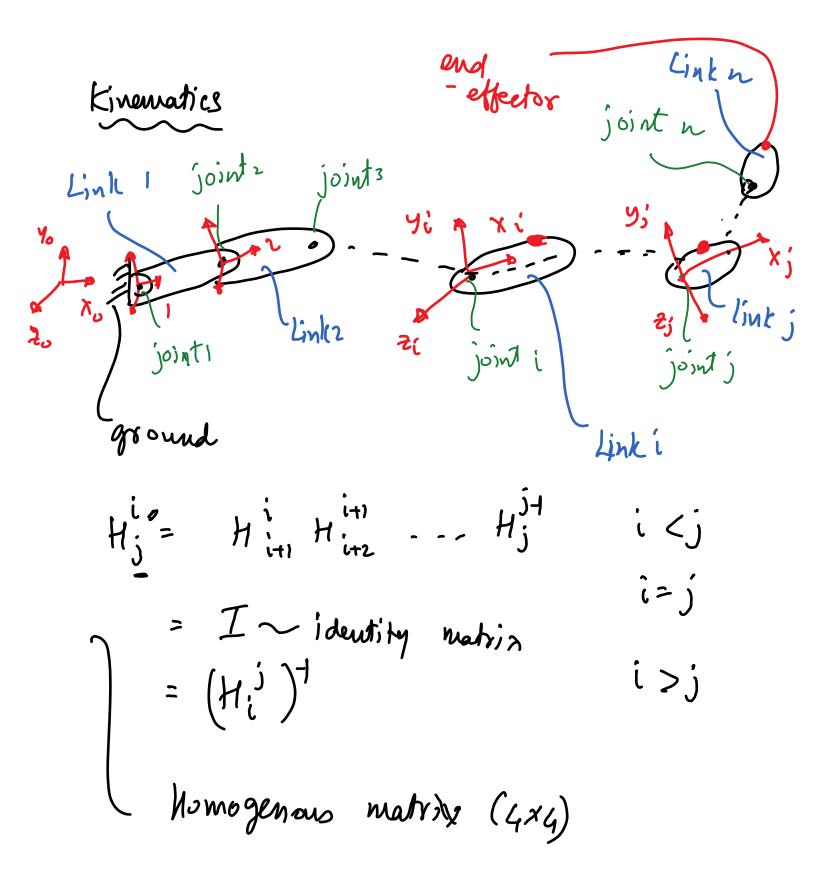
$$H_{i}^{i-1} = \int_{0}^{1} R_{i}^{i+1} = \int_{0}^{1} R_{i$$

$$H_{i}^{i-1} = \begin{bmatrix} R_{i}^{i-1} & 0_{i-1}^{i-1} \\ 0 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 0 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 1 & 0_{i-1}^{i-1} \\ 1 & 0_{i-1}^{i-1} \end{bmatrix} \begin{bmatrix} 0_{i-1}^{i$$





$$H_{x}(\phi) = \begin{cases} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \\ 0 & 0 & 0 \end{cases}$$
 $H_{y}(\phi) = \begin{cases} \cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{cases}$
 $H_{z}(\phi) = \begin{cases} \cos \phi & -\sin \phi & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \phi & \cos \phi & 0 & 0 \\ 0 & 0 & 0 & 1 \end{cases}$
 $H_{z}(\phi) = \begin{cases} \cos \phi & -\sin \phi & 0 & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{cases}$
 $H_{z}(\phi) = \begin{cases} \cos \phi & -\sin \phi & 0 & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{cases}$
 $H_{z}(\phi) = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{cases}$
 $H_{z}(\phi) = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{cases}$
 $H_{z}(\phi) = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{cases}$
 $H_{z}(\phi) = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{cases}$
 $H_{z}(\phi) = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{cases}$
 $H_{z}(\phi) = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{cases}$
 $H_{z}(\phi) = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{cases}$
 $H_{z}(\phi) = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{cases}$
 $H_{z}(\phi) = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{cases}$

1010	0	I \ '
1	95	\ w
001	1	

Denavit-Hartenberg convention (DH)

Efficient
Method to represent kinematics of a

wanipulator

$$H_{1}^{i-1} = H_{2}(a_{i}) H_{2}(d_{i}) H_{x}(a_{i}) H_{x}(a_{i}) H_{x}(a_{i})$$

$$= \int_{0}^{0} Sa_{i} ca_{i} c_{0} c_{0}$$

 $CQ_{i} = cosQ_{i}$ $CQ_{i} = cosQ_{i}$ $SQ_{i} = sinQ_{i}$ $SZ_{i} = sinQ_{i}$

Qi, di, qi, di - Penavit Harten berg (DH)
parrameters

Although 6 numbers (x, y, z, o, y, p) one needed to describe a link position) orientation DH does this with only 4 because DH uses a special way to define the axis of the links

axis of the links.

(1) axis of xi is perpendicular to zin 2) axis of xi is intersecting with zin These constraints help get rid of 2 parameters.

Algorithm for using DH for forward kinematics There are three steps.

Assign coordinate frames:

- (a) Assign z_i along the axis of actuation for each link, where i = 0, 1, 2, ...(n-1).
- Assign the base frame $o_0 x_0 y_0 z_0$. The z_0 has already been assigned. Assign x_0 arbitrarily. Assign y_0 based on x_0 and z_0 using right hand rule.
- Now assign coordinate frames $o_i x_i y_i z_i$ for i = 1, 2, ..., n 1. z_i is already attached in first step. Next we assign x_i using these rules.
 - √ i. z_{i-1} and z_i are not coplanar: In this case, there is a unique shorted distance segment that is perpendicular to z_{i-1} and z_i. Choose this as x_i axis. The origin o_i is where x_i intersects z_i. The y_i is found from right hand rules.
 - ii. z_{i-1} and z_i parallel: In this case, there infinitely many perpendiculars. Choose any of these perpendiculars for x_i. Furthermore, where x_i intersects z_i we draw the origin x_i. Finally, y_i is found from the right hand rule. To make equations simpler, choose x_i such that is passes through o_{i-1}. This will make d_i = 0. Also, since z_{i-1} is parallel to z_i, α_i = 0.
 - j iii. z_{i-1} and z_i intersect: In this case, x_i is chosen to be normal to the plane formed by z_{i-1} and z_i. There will be two possible directions for x_i, one of them is chosen arbitrarily and o_i is obtained by the intersection of z i and x_i. Finally y_i is obtained from right hand rule. Also, since z_{i-1} intersects z_i, a_i = 0.
- (d) Finally we need to attach an end effector frame, o_n x_n y_n z_n. Attach z_n to be the same direction as z_{n-1}. Now depending on the relation between z_n and z_{n-1}, attach frame x_n. Finally, attach y_n using the right hand rule.

n=2 : 7, & 2

Generate a table for DH parameter: Now generate the DH table as follows.

	Link	a_i	α_i	d_i	θ_i
4	1				
	2				
	n				

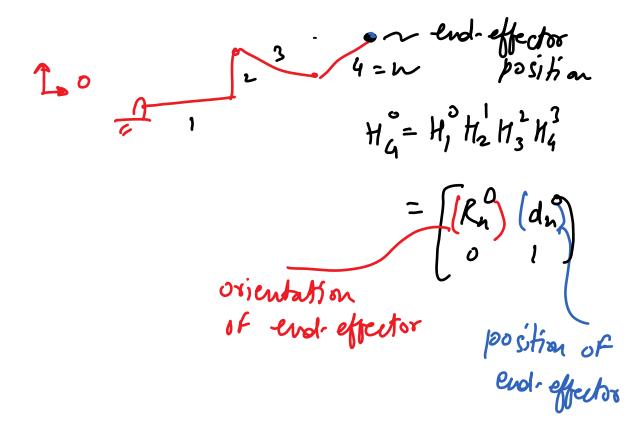
 Apply DH transformation to evaluate forward kinematics: Finally, use the DH formulate to link two adjacent frames

$$\mathbf{H}_{i}^{i-1} = \begin{bmatrix} c\theta_{i} & -s\theta_{i}c\alpha_{i} & s\theta_{i}s\alpha_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -c\theta_{i}s\alpha_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

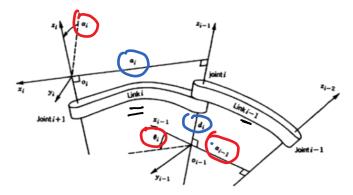
The position and orientation of the end-effector is found using the formula

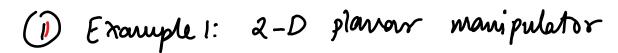
$$\mathbf{H}_{n}^{0} = \mathbf{H}_{1}^{0}\mathbf{H}_{2}^{1}\mathbf{H}_{3}^{2}...\mathbf{H}_{n}^{n-1} = \begin{bmatrix} \mathbf{R}_{n}^{0} & \mathbf{d}_{n}^{0} \\ \mathbf{0} & 1 \end{bmatrix}$$

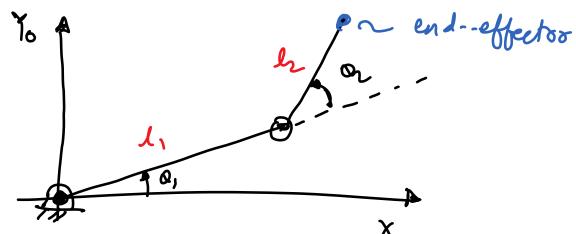
The position of the end-effector is d_n^0 and the orientation is \mathbf{R}_n^0 . From \mathbf{R}_n^0 , we can recover the Euler angles for the end-effector frame.



- 1. a_i is the distance between z_i and z_{i-1} along x_i .
- 2. α_i is the angle between z_i and z_{i-1} along x_i .
- 3. d_i is the distance between x_{i-1} and x_i along z_{i-1} .
- 4. θ_i is the angle between x_{i-1} and x_i along z_{i-1} .





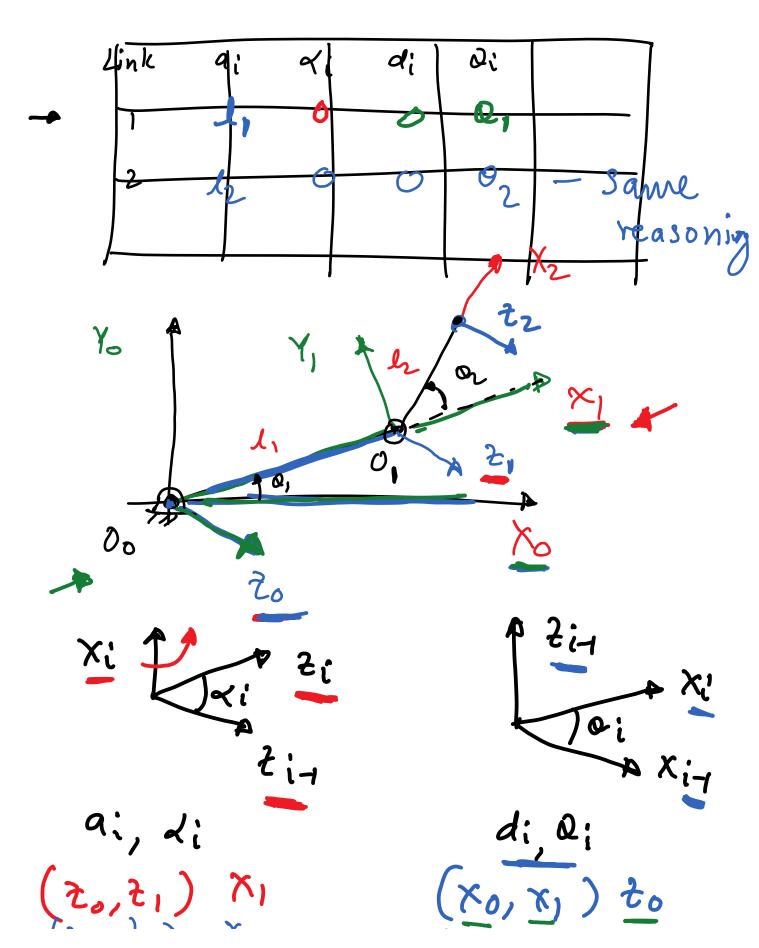


Compute the position and orientation of the end-effector.

Dessign co-ordinate frames

Your and the service of the service of

3 Generate the DH table



(x0, x1) to (x1, x2) to 3 Use DH trans for mation

$$H_{1}^{0} = \begin{bmatrix} C_{1} & -S_{1} & 0 & l_{1} & c_{1} \\ S_{1} & l_{2} & 0 & l_{1} & S_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$G_{1}, d_{1}, Q_{1}, Q_{1}, Q_{1}'$$

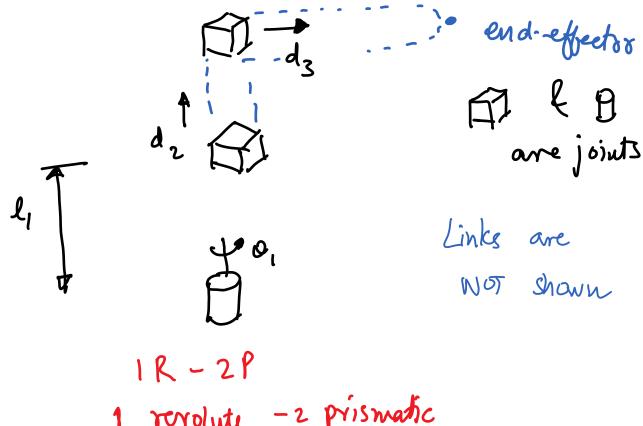
$$H_{2}^{1} = \begin{bmatrix} C_{2} & -S_{2} & 0 & l_{1} & S_{1} \\ S_{2} & c_{2} & 0 & l_{1} & S_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$G_{2} = cosQ_{2}$$

$$G_{2} = simQ_{2}$$

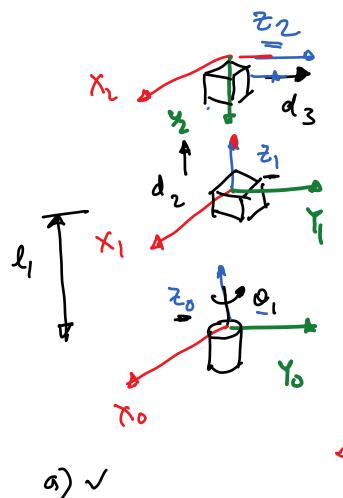
$$G_{1} = f_{1}^{0} H_{2}^{1} = \begin{bmatrix} G_{2} & -S_{3} & 0 & l_{1} & l_{1} & l_{2} & l_{2} \\ S_{12} & c_{12} & 0 & l_{1} & l_{2} & l_{2} \\ S_{12} = sim(Q_{1} + Q_{2}) & sim(Q_{1} + Q_{2}) & sim(Q_{2} + Q_{2}) & sim(Q_{2} + Q_{2}) \\ G_{1} = G_{2} = G_{2} & G_{2} + G_{2}) & G_{2} = G_{2} & G_{2} + G_{2} & sim(Q_{1} + Q_{2}) & sim(Q_{2} + Q_{2}) & sim(Q_{2}$$

(2) Example 2: 3-link manipulator



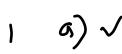
1 revolute -2 prismatic

Find the position and orientation of the end-effector

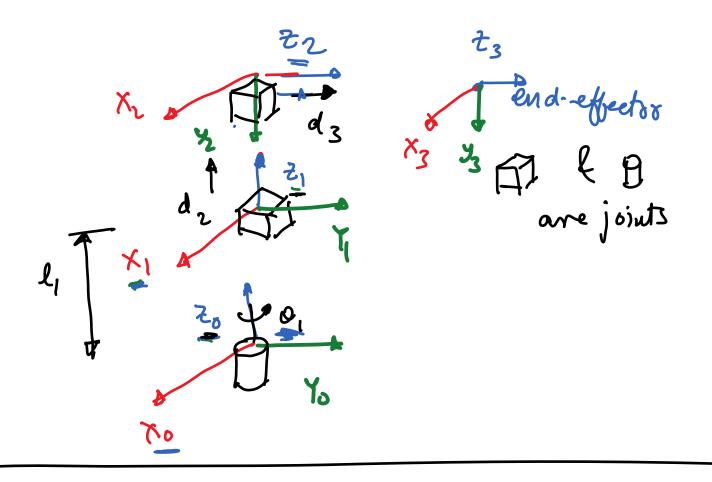


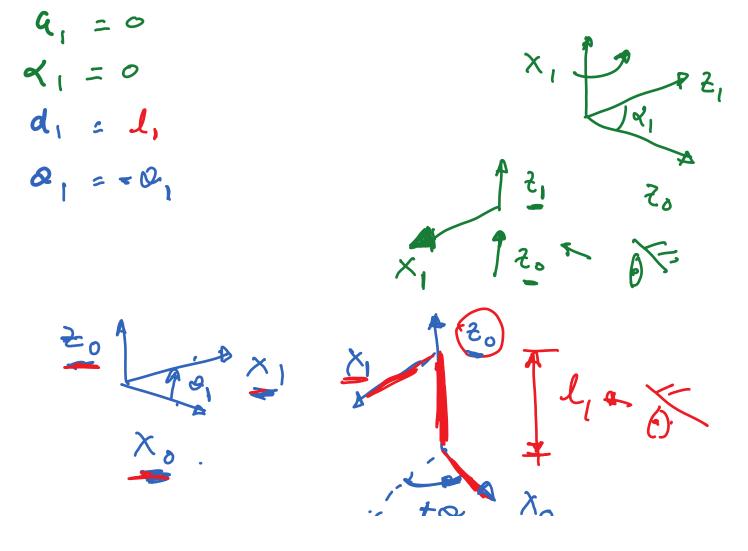
are joints

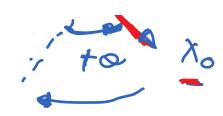
Links are NOT Shown

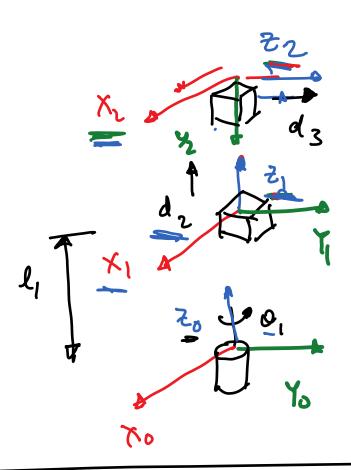


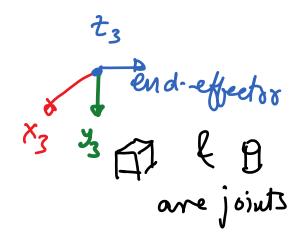
inters ecting intersecting

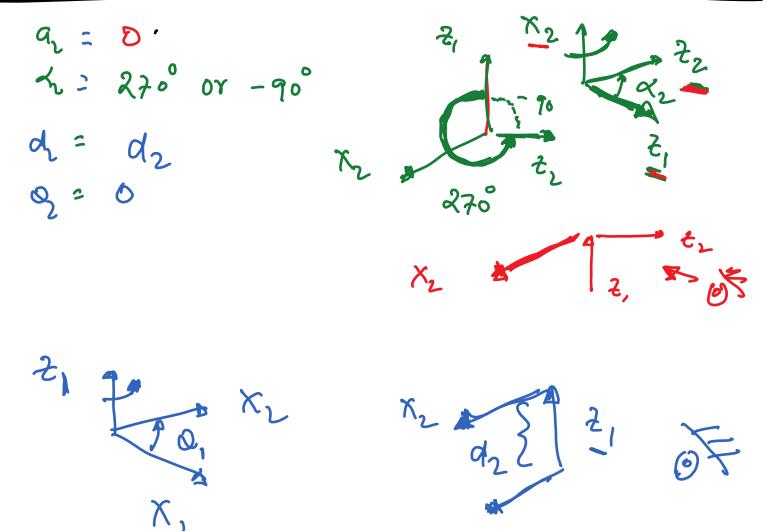


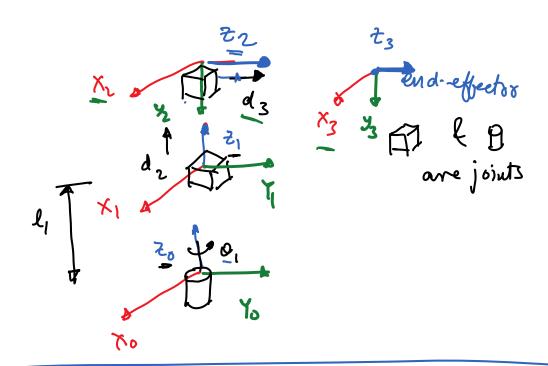


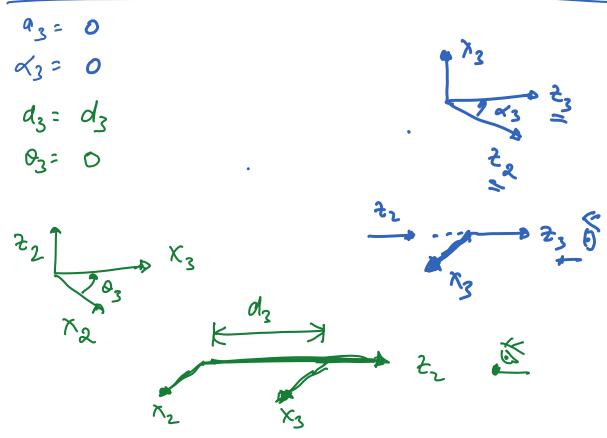












(1	シ
----	---

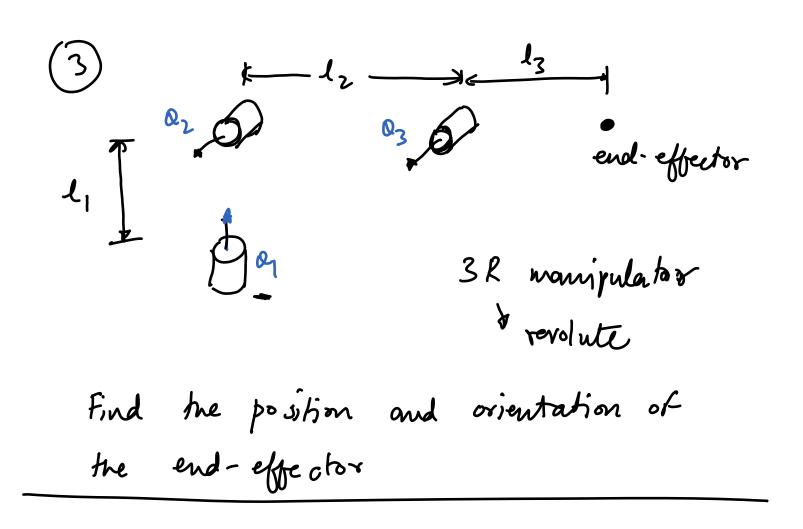
Link	a:	∢ ∶	d;	Q;	
	0	0	L,	~ O,	
2	D	270/-90	dz	O	
ے ک	0	0	d ₃	0	

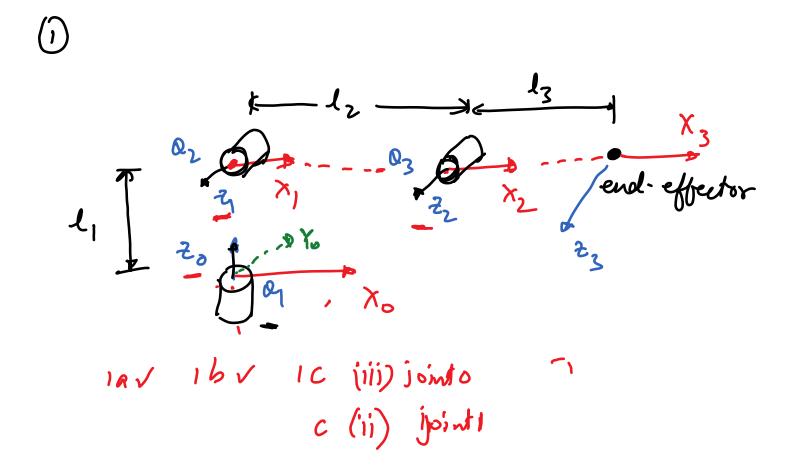
See DU handart

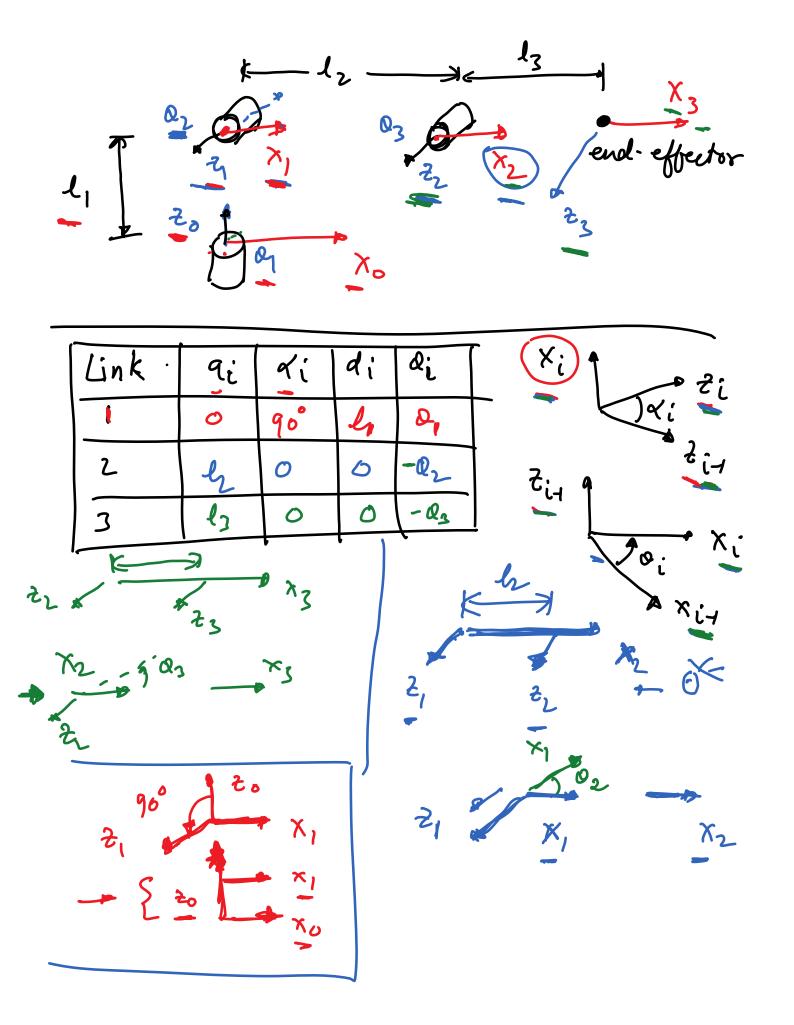
$$=$$
) H_1 , H_2 , H_3
 $=$ $1 = 1, 2, 3$

$$H_3^{\circ} = H_1^{\circ} H_2^{1} H_3^{2} =$$

 $H_3 = H_1^0 H_2^1 H_3^2 = \left(\begin{array}{c} Position \\ otherwise \\ R_3 \end{array} \right) \left(\begin{array}{c} d_3 \\ d_3 \end{array} \right)$ end. effector



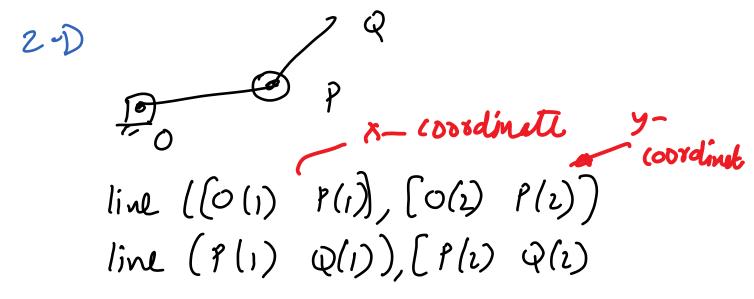




(3)
$$H_1^{i,+} = \int_{4\pi 4}^{i} DH handaut$$
 $H_1^0, H_2^1, H_3^2 = \int_{4\pi 4}^{i} (A_3^0) (A_3^0)$

Orientation

Dry water



line
$$(o(1) P(1))$$
 $(o(1) P(1))$, $(o(3) P(3))$
 $M_1 = J$
 $P(1)$ $P(1)$ $P(1)$ $P(1)$ $P(2)$ $P(2)$ $P(3)$ $P(3)$
 $P(1)$ $P(1)$ $P(1)$ $P(2)$ $P(2)$ $P(2)$ $P(3)$ $P(3)$
 $P(2)$ $P(3)$ P