Linear Control
system is linear in state (control)

m_{1}, m_{2} - masses
$k_{1} k_{2}$ - spring constant
v_{1}, v_{2} - controls (forces)
q_{1}, q_{2} - mass displacements

$$
\begin{aligned}
& T=0.5 m_{1} \dot{q}_{1}^{2}+0.5 m_{2}^{1} q_{2}^{2} \\
& V=0.5 k_{1} q_{1}^{2}+0.5 k_{2}\left(q_{1}-q_{2}\right)^{2} \\
& \mathcal{L}=T-V \\
& \mathcal{L}=0.5 m_{1} \dot{q}_{1}^{2}+0.5 m_{2} \dot{q}_{2}^{2}+0.5 k_{1} q_{1}^{2}+0.5 k_{2}\left(q_{1}-q_{2}\right)^{2}
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{L}=0.5 \underline{m_{1} \dot{q}_{1}^{2}}+0.5 m_{2} \dot{q}_{2}^{2}+0.5 k_{1} q_{1}^{2}+0.5 k_{2}\left(q_{1}-q_{2}\right)^{2} \\
= \\
\frac{d}{d t}\left(\frac{\partial \mathscr{L}}{\partial \dot{q}_{j}}\right)-\frac{\partial \mathscr{L}}{\partial q_{j}}=Q_{j} \quad j=1,2 \\
=
\end{gathered}
$$

(1)

$$
\begin{align*}
& q_{1}: \frac{d}{d t}\left(0.5\left(2 m_{1} \dot{q}_{1}\right)\right)+0.5\left(2 k_{1} q_{1}\right)+0.5\left(2 k_{2}\right)\left(q_{1}-q_{2}\right) \\
&=-v_{1} \\
& m_{1} \ddot{q}_{1}+k_{1} q_{1}+k_{2}\left(q_{1}-q_{2}\right)=-u_{1} \\
& \ddot{q}_{1}=-\left(\frac{k_{1}}{m_{1}}+\frac{k_{2}}{m_{1}}\right) q_{1}+\frac{k_{2}}{m_{1}} q_{2}-\frac{v_{1}}{m_{1}}-(1) \tag{1}
\end{align*}
$$

(2) $q_{2}: \frac{d}{d t}\left(0.5\left(2 m_{2} \dot{q}_{2}\right)\right)+0.5\left(2 k_{1}\right)\left(q_{1}-q_{2}\right)(-1)$

$$
=u_{1}+u_{2}
$$

$$
m_{2} \ddot{q}_{2}+k_{1}\left(q_{2}-q_{1}\right)=v_{1}+v_{2}
$$

$$
\begin{equation*}
\ddot{q}_{2}=\frac{k_{2}}{m_{2}} q_{1}-\frac{k_{2}}{m_{2}} q_{2}+\frac{v_{1}}{m_{2}}+\frac{v_{2}}{m_{2}} \tag{2}
\end{equation*}
$$

State space representation

$$
\begin{aligned}
x_{1} & =q_{1} \\
x_{2} & =q_{2} \\
x_{3} & =\dot{q}_{1} \\
x_{4} & =\dot{q}_{2} \\
\rightarrow \dot{x}_{1} & =\dot{q}_{1}=x_{3} \\
\dot{x}_{2} & =\dot{q}_{2}=x_{4} \\
\dot{x}_{3} & =\ddot{q}_{1}=-\left(\frac{k_{1}}{m_{1}}+\frac{k_{2}}{m_{1}}\right) x_{1}+\left(\frac{k_{2}}{m_{1}}\right) x_{2}-\frac{u_{1}}{m_{1}} \\
\dot{x}_{1} & =\ddot{q}_{2}=\frac{k_{2}}{m_{2}}-\frac{k_{2}}{m_{2}} x_{2}+\frac{v_{1}}{m_{1}}+\frac{u_{2}}{m_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right] \\
& \dot{x}=A x+B u \\
& 4 \times 1 \\
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x_{2}} \\
\dot{x_{3}} \\
\dot{x_{4}}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\left(\frac{k_{1}}{m_{1}}+\frac{k_{2}}{m_{2}}\right. & \frac{k_{2}}{m_{2}} & 0 & 0 \\
\frac{k_{2}}{m_{2}} & \frac{k_{2}}{m_{2}} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
\dot{x}_{4} \\
\frac{1}{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
\frac{-1}{m_{1}} & 0 \\
\frac{1}{m_{2}} & \frac{1}{m_{2}}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v_{2}
\end{array}\right]}
\end{aligned}
$$

state-space equation
Check stability of uncontrolled system

$$
\dot{x}=A x \text { - uncontrolled system }
$$

Compute eigenvalues and check it all the real parts are negative. If they are negative then the system is stable

Use control (u) to cither stabilize the system or make it more stable

However, me needs to check if the system is controllable

Controllability: A linear system is controllable if and only if it can be transferred from any initial state $x(0)$ to any terminal state $x(t)$ within a finite time

$$
\begin{gathered}
\Rightarrow C_{0}=\left[A^{n-1} B, A^{n-2} B, A^{n-3} B, \ldots A B, B\right] \\
n=\text { system dot e.g. spring -mas } n=4
\end{gathered}
$$

$\Rightarrow \operatorname{rank}\left(C_{0}\right)=n \quad$ system is controllable rank (Co) can syptan is not controllable pip install control
import control

$$
C_{0}=\text { control. } \operatorname{ctrb}(A, B)
$$

np. linalg. matrix - rank (C_{0})

Methods of control
(1) Pole place mont

Assume $u=-k x \quad k=$ gain matrix

$$
\begin{aligned}
\dot{x} & =A x+B u \\
& =A x-B K x \\
\dot{x} & =(A-B K) x
\end{aligned}
$$

place eigenvalues at a certain place poles at " P "at location \uparrow user choice

$$
K=\text { control. place }(A, B, P)
$$ choice

(2) Linear quadratic controller
(2) Linear quadratic controller

$$
\Rightarrow \dot{x}=A x+B u
$$

Compute u sues that it minimizes

$$
\begin{aligned}
J= & x^{\top}\left(t_{f}\right) F x\left(t_{f}\right)+\ldots . \\
& \int_{0}^{t_{f}}\left(x^{\top} Q x+\underline{u}^{\top} \underline{R} u+2 x^{\top} N u\right) d t
\end{aligned}
$$

F, Q, R, N-user chosen matrices
relative $Q \gg$ aggressive control $Q C C R$ les aggressive control
$Q>$ positive definite - eignval >0
$R \geqslant$ semi-positive definite -eignval $\geqslant 0$

$$
u=-k x
$$

A gain k
$?$

$$
\begin{aligned}
& \dot{k}=R^{-1}\left(B^{\top} P+N^{\top}\right) \quad\{U=-k x\} \\
& -\dot{P}=A^{\top} P+P A-(P B+N) R^{-1}\left(B^{\top} P+N^{\top}\right)+Q=0
\end{aligned}
$$

Ricatti differential equation

$$
P\left(t_{f}\right)=F\left(t_{f}\right)
$$

Special case

$$
J=\int_{0}^{\infty}\left(x^{\top} Q x+u^{\top} R u+2 x^{\top} N u\right) d t
$$

infinite norion problem

$$
\begin{aligned}
& u=-k x \quad \& \quad k=-R^{-1}\left(B^{\top} P+N^{\top}\right) \\
& A P+P A-(P B+N) R^{-1}\left(B^{T} P+N^{\top}\right)+Q=0
\end{aligned}
$$

Steady state Ricatti equation

$$
K, P, E=\text { control. } 19 r(A, B, Q, R, N)
$$

gain Solution to Ricalti equation
eigenvalues of closed loop: eig ($A-B K$)

Linear control for a non-linear system

$$
\begin{equation*}
\dot{x}=f(x, u) \tag{1}
\end{equation*}
$$

we will linearize this system about an operating point $\left(x_{0}, u_{0}\right)$ and use the Linearized system for control,

$$
x \rightarrow x_{0}+\delta x ; u \rightarrow u_{0}+\delta u
$$

Putting this in (1)

$$
\dot{x}_{0}+\delta \dot{x}=F\left(x_{0}+\delta x, u_{0}+\delta u\right)
$$

$$
\dot{x}_{0}+\delta \dot{x}=f\left(x_{0}, u_{0}\right)+\frac{\partial f}{\partial x}\left(x-x_{0}\right)+\frac{\partial f}{\partial u}\left(u-v_{0}\right)
$$

$$
\begin{aligned}
& \dot{x}_{0}=f\left(x_{0}, y_{0}\right)+h i g \\
& \delta \dot{x}=\frac{\partial f}{\partial x} \delta x+\frac{\partial f}{\partial u} \delta u
\end{aligned}
$$

+ higher order forms

$$
\begin{aligned}
& \delta \dot{x}=\frac{\partial f}{\partial x} \delta x+\frac{\partial f}{\partial u} \delta u \\
& \delta \dot{x}=A \delta x+B \delta u
\end{aligned}
$$

where $A=\frac{\partial f}{\partial x} ; \beta=\frac{\partial f}{\partial u}$
(1) use lar/pole placement to compute

$$
\delta u=-k \delta x
$$

(2) Note the control is

$$
u=u_{0}+\delta u
$$

Example:
Differential drive ar

$$
\begin{aligned}
& \dot{x}=v \cos \theta \\
& \dot{y}=v \sin \theta \\
& \dot{\theta}=\omega \\
& X=[x, y, \theta]^{\top} ; u=[v, w]
\end{aligned}
$$

Assume an operating point X_{0}, U_{0}, \ldots.

Assume an operating point λ_{0}, u_{0}

$$
\left(x_{0}, y_{0}, \theta_{0}\right)^{J}\left(v_{0}, \omega_{0}\right)
$$

$$
\begin{array}{rl}
\delta \dot{x} & =A \delta x+B \delta u \\
f & =\left[\begin{array}{c}
v \cos \theta \\
v \sin \theta \\
\omega
\end{array}\right] \quad \bar{B}(\theta)\left[\begin{array}{l}
v \\
\omega
\end{array}\right] \\
A=\frac{\partial f}{\partial x} & =\left[\begin{array}{l}
x \\
y \\
\theta
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{\partial}{\partial x}(v \cos \alpha) & \frac{\partial(v \cos \theta)}{\partial y} & \frac{\partial(v \cos \theta)}{\partial \theta} \\
\frac{\partial(v \sin \theta)}{\partial x} & \frac{\partial(v \sin \theta)}{\partial y} & \frac{\partial(v \sin \theta)}{\partial \theta} \\
\frac{\partial \omega}{\partial x} & \frac{\partial \omega}{\partial y} & \frac{\partial \omega}{\partial \theta}
\end{array}\right] \\
0 & 0
\end{array}
$$

$$
\begin{gathered}
B=\frac{\partial F}{\partial u}=\left[\begin{array}{cc}
\frac{\partial v \cos \theta}{\partial v} & \frac{\partial v \cos \alpha}{\partial \omega} \\
\vdots \\
\frac{\partial v \sin Q}{\partial v} & \frac{\partial v \sin \theta}{\partial \omega} \\
\frac{\partial \omega}{\partial v} & \frac{\partial \omega}{\partial \omega}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & 0 \\
\sin \theta & 0 \\
0 & 1
\end{array}\right] \\
\delta \dot{x}=\left[\begin{array}{ccc}
0 & 0 & -v_{0} \sin \theta_{0} \\
0 & 0 & v_{0} \cos \alpha_{0} \\
0 & 0 & 0
\end{array}\right] \delta x+\left[\begin{array}{cc}
\cos \theta_{0} & 0 \\
\sin \theta_{0} & 0 \\
0 & 1
\end{array}\right] \delta \omega
\end{gathered}
$$

$u=u_{0}+\delta u_{0} \rightarrow_{\Delta}$ pole placement $\angle Q R$ (feedback) \searrow found using trajectory optimization (open-loop)

error in tracking

This controller is different from what we did previously

$$
\begin{aligned}
& \dot{x}=f(x, u)-\text { car } \\
& \dot{x}=\dot{x}_{\text {ref }}+k_{p}\left(x_{\text {ref }}-x\right)
\end{aligned}
$$

- controller for car
[feedback linearization]

$$
\underbrace{\dot{x}-\dot{x}_{\text {ref }}}_{\dot{\varepsilon}}=k_{-\varepsilon}^{k_{p}(\underbrace{}_{\text {ref }}-x)}
$$

$$
\dot{\varepsilon}+k_{p} \varepsilon=0 \quad \Rightarrow \varepsilon=A e^{-k_{p} t}
$$

ε

Manipulator system

$$
\begin{aligned}
& M(q) \underline{q}+C(q, \dot{q}) \dot{q}+G(q)=\overline{B(q)} u_{\underline{m \times 1}} \\
& \dot{x}=F(x, u) \\
& X=\left[\begin{array}{l}
q \\
\dot{q}
\end{array}\right] \text { - augle } \quad \text {-angular relocity. } \\
& \dot{x}=\left[\begin{array}{l}
\dot{q} \\
\dot{q}
\end{array}\right]=\left[\begin{array}{c}
\dot{q} \\
m^{-1}(q)\{-G(q)-((q, \dot{q}) \dot{q}+B / q) u
\end{array}\right] \\
& =f(x, u) \\
& \dot{x}=f(x, u)=\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{A}=\frac{\partial f}{\partial x} ; \tilde{B}=\frac{\partial f}{\partial u} \\
& f=\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right]=\left[\begin{array}{c}
\dot{q} \\
\mu^{-1}(\dot{q}) \\
q
\end{array}-((q, \dot{q}) \dot{g}-G(q)+\delta / q) u\right] \\
& x=(9, \dot{q}) \\
& \tilde{A}=\frac{\partial G}{\partial x}=\left[\begin{array}{cc}
\partial f_{1} / \partial q & \partial h_{1} / \partial \dot{q} \\
\partial f_{2} / \partial q & \partial f_{2} / \partial \dot{q}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\partial \dot{q} / \partial q & \underline{\dot{q} / \partial \dot{q}} \\
\frac{\partial F_{2}}{\partial q} & \frac{\partial F_{2}}{\partial \dot{q}}
\end{array}\right] I
\end{aligned}
$$

$$
\begin{array}{r}
\frac{\partial f_{2}}{\partial q}=\frac{\partial}{\partial q} M^{1}(q)[-C(q, \dot{q}) \dot{q}-G(q)+B(q) u] \\
M \ddot{q} \simeq 0 \text { at the operating }
\end{array}
$$

$$
=\frac{\partial M^{-1}(q)}{\partial q}[-C(q, q) \dot{q}-G(q)+B(q) u]
$$

$$
+m^{-1}(q)\left[-\frac{\partial c(q, \dot{q}) \dot{q}}{\partial q}\|\underset{=}{\underline{\partial}}\| \frac{\hat{\partial} q}{\underline{\partial}}+\frac{\partial}{\partial q} s(q) u\right]
$$

$\dot{q}=0$ at the operatim
point

$$
\begin{aligned}
& \frac{\partial M}{\partial q} M^{-1}+M \frac{\partial M^{-1}}{\partial q}=0 \\
& M \frac{\partial M^{-1}}{\partial q}=-\frac{\partial M}{\partial q} M^{-1}
\end{aligned}
$$

Pre-nulliply witu mT^{\top}

$$
\begin{aligned}
\frac{M^{-1} M}{I} \frac{\partial M^{-1}}{\partial q} & =-M^{-1} \frac{\partial M}{\partial q} M^{-1} \\
\frac{\partial M^{-1}}{\partial q} & =M^{-1}\left(\frac{\partial M}{\partial q}\right) M^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial F_{2}}{\partial q}=-M^{-1}(q) \frac{\partial G}{\partial q}+\sum_{j} M^{-1} \frac{\partial B_{j}}{\partial q} u_{j} \\
& \frac{\partial f_{2}}{\partial \dot{q}}=\frac{\partial}{\partial \dot{q}} M^{-1}(q)[-(\underline{q}(g)-((q, \dot{q}) \dot{q}+8(g) u] \\
& \tilde{A}=\frac{\partial f}{\partial x}=\left[\begin{array}{cc}
0 & I \\
-M^{-1} \frac{\partial G}{\partial q}+\sum_{j} M^{-1} \frac{\partial \xi_{j}}{\partial q} u_{j}^{\prime} & 0
\end{array}\right] \\
& \tilde{B}=\frac{\partial f}{\partial u}= \\
& F=\left[\begin{array}{c}
\dot{q}, \\
m^{-1}(g)(-c(\underline{q}, \dot{q}) ;-G(g)+B(q) u
\end{array}\right] \\
& \tilde{B}=\frac{\partial f}{\partial u}=\left[\begin{array}{c}
0 \\
m^{-1}(q) B(q)
\end{array}\right]
\end{aligned}
$$

Example: Underactuated Double Pendulum
(1)

Pendubot

Acrobat

Degrees of freedom $=2 \quad\left(q_{1}, q_{2}\right)$
Actuators $=1 \quad$ (U_{1} for pendubot
v_{2} for acrobat)

$$
\begin{aligned}
\Rightarrow \quad & v_{i}=-x_{1} q_{1}-k_{2} q_{2}-x_{3} \dot{q}_{1}-k_{4} \dot{q}_{2} \\
& i=1 \text { or } 2
\end{aligned}
$$

