
ME 410 Robotics
Project #1, Single player pong, due via online meeting with the instructor

from 9/21 to 9/25

1 Goal

The overall goal is to create a single player pong game. The project has two stages (see Sec. 5
Grading before you start the project):

Stage 1: You will complete the provided code get a basic version of the pong to work. This involves
programming the ball to bounce of the walls and paddle. This is needed for the second stage.

Stage 2: You will add more features into the game to make an advanced version of the pong game.
This is mostly an open-ended exercise where you are required to add at least three innovations
that make the game more interesting to play.

2 Understanding the game provided to you

Please download the game basic pong.m from blackboard. Open the file in MATLAB and run the
game without pressing any key on the keyboard. This will produce an animation that looks like
the one shown in Fig. 1. You will notice that the red ball penetrates the paddle and the game stops
when the red ball reaches the bottom left corner of the screen. Now run the code again but use the
left/right arrow keys to move the paddle. Again, you will see that the ball is not detected by the
paddle and the game ends.

Figure 1: After running basic pong.m in MATLAB you will see a figure that looks like this.

1

3 Stage 1: Programming the basic pong game

The main part of the code is shown in Fig. 2. It consists of 5 functions from lines 9 to 14. Your
task is to program the functions moveBall and movePaddle, rest of the functions have been already
programmed. More details are in the MATLAB script file inside the functions.

Figure 2: The basic structure of the basic pong.m. In order to complete stage 1, you only have to
program the functions moveBall and movePaddle using the instructions inside those functions (also
see Fig. 3)

To make it easy for you, I have marked the two places in the code. Program them
sequentially as follows

1. Write code in the block that says ”Basic pong edit #1”. Write code here to enable the ball
to detect the wall and/or paddle and to reverse its speed. After you program this part, you
should check if the ball bounces of the paddle and the wall.

2. Write code in the block that says ”Basic pong edit #2”. Write code here to stop the paddle
from leaving the screen on the left or right wall. After you program this block the paddle will
not be prevented from moving too far on the left or too far on the right so as to disappear
from the screen.

Hints to help you get started: There are a series of constants that are defined using
capitalized letters (e.g., WALL X MIN, PADDLE WIDTH, DT). These should be self-explanatory
from their names. If not, you will have to understand their meaning by skimming through the code
and/or varying the constants and running the code. These constant variables as well as some other
variables that are not constant (e.g., game over, paddle x left, ball x) but are needed in multiple
functions are defined as “global” variables (search MATLAB global if you want to know more).
These global variables are available for use anywhere in the code, so we do not have to pass them as
arguments inside functions. Generally using global variables is a bad practise but here it actually
quite useful as it makes the coding efficient.

• Figure 3 gives some hints on the pong board including the origin, axis, boundaries for the
walls, and paddle location.

• In function moveBall you will have to detect if the ball has hit the obstacle, the left wall or
the right wall or the top wall or the paddle. After detection, you need to impose conditions on
the velocity of the ball after it hits the particular wall/paddle. More specifically, The velocity
of the ball before it hits the wall/paddle is known. Let us call this: ~v− = v−x ı̂ + v−y ̂ (known)

2

where ı̂ and ̂ are unit vectors in the x- and y-direction respectively. The velocity after the
ball leaves the wall/paddle is unknown. Let us call this: ~v+ = v+x ı̂ + v+y ̂ (unknown). Using
physics, the unknown velocity may be found from the known velocity as follows.

1. If the ball hits the left or right wall, the velocities after collision are: v+y = v−y and
v+x = −exv

−
x .

2. If the ball hits the top wall or the paddle, the velocities after collision are: v+x = v−x and
v+y = −eyv

−
y .

where ex and ey are numbers that you can choose to make the game interesting. Initially, it
is suggested that you put ex = ey = 1 to get the game to work. Other suggestions are: you
could keep ex = 1 and change ey = 1 + 0.1× rand (where rand is a random number generator
function) so that the ball accelerates if it hits the paddle or top wall, you could also reverse
the logic to ey = 1 and ex = 1 + 0.1 × rand. Feel free to choose other variants.

• In function movePaddle you need to ensure that the paddle stops when it touches the left or
right wall.

(0,0)

(0,10)

PADDLE_WIDTH

 WALL_X_MIN=0 WALL_X_MAX=100

 WALL_Y_MIN=0

 WALL_Y_MAX=100

X-axis

Y-axis

Figure 3: The pong figure with some key variables in the code.

4 Stage 2: Programming the advanced pong game

The advanced version of the game may be programmed once you are done with the basic version
above. You will add at least three innovations to the game. One of them has to be adding a new
visual element that interacts with the paddle/ball in some way (see point 1 below) and other two
totally up to you. Here are some ideas but you are free to come up with your own.

3

1. It is mandatory to add at least ONE visual element that interacts with the ball or the paddle.
For example, (1) you could add random stationary balls on the board, which garner extra
points when hit; (2) you could add a stationary/moving horizontal bar on the board that
would garner extra point if the ball hits the board; (3) you could create a two-ball pong game
but note that it is difficult to play such a game unless you clearly think on how to play such
a game to make it interesting (perhaps one slows down one the other is hit).

2. You could add have a scoring criteria and show it explicitly as the person plays the game.
You could keep a track of the highest score and display it. For the latter, you will have to
write the score to a file on your drive (search for the command “save” and “load”).

3. You could add up/down movement to the paddle in addition to the left/right movement.

NOTE: I do not recommend making the innovations too complex (e.g., creating a two-player pong)
so that you are able to finish the project on time. Also, please put your name on the x-axis using
xlabel(“name”). Don’t forget to increase the initial speed of the ball else it will be too slow to be
interesting.

5 Grading (100 points as given below)

1. Stage 1: 15×2 = 30 points. Demonstrating Stage 1 requirements are met: paddle stops from
going off screen and ball bounces from paddle and from the wall.

2. Stage 2: 20 × 3 = 60 points. Demonstrating Stage 2 innovations (atleast 3).

3. Stage 1 and Stage 2 will be graded by the instructor in the week from 9/21 to 9/25 via a
5 − 10 min zoom call. Student/Student group of 2 should be ready to share their screen.
Alternately, they may send their code to the instructor and talk to the instructor via zoom.
Instructions will be provided later on how to set up meeting with the instructor.

4. Email submission: 10 points. The finalized code should be submitted no later than 9/25 via
email to pranav@uic.edu.

4

mailto:pranav@uic.edu

	Goal
	Understanding the game provided to you
	Stage 1: Programming the basic pong game
	Stage 2: Programming the advanced pong game
	Grading (100 points as given below)

