Denavit-Hartenberg (DH) Convention Handout

Pranav A. Bhounsule

The DH convention is a popular convention to represent the kinematics of robot manipulators. It is given by

$$
\begin{align*}
\mathbf{H}_{i}^{i-1} & =\mathbf{H}_{z}\left(\theta_{i}\right) \mathbf{H}_{z}\left(d_{i}\right) \mathbf{H}_{x}\left(a_{i}\right) \mathbf{H}_{x}\left(\alpha_{i}\right) \\
& =\left[\begin{array}{cccc}
c \theta_{i} & -s \theta_{i} & 0 & 0 \\
s \theta_{i} & c \theta_{i} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c \alpha_{i} & -s \alpha_{i} & 0 \\
0 & s \alpha_{i} & c \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
c \theta_{i} & -s \theta_{i} c \alpha_{i} & s \theta_{i} s \alpha_{i} & a_{i} c \theta_{i} \\
s \theta_{i} & c \theta_{i} c \alpha_{i} & -c \theta_{i} s \alpha_{i} & a_{i} s \theta_{i} \\
0 & s \alpha_{i} & c \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \tag{1}
\end{align*}
$$

where $s \theta_{i}=\sin \theta_{i}, c \theta_{i}=\cos \theta_{i}, s \alpha_{i}=\sin \alpha_{i}, c \theta_{i}=\cos \alpha_{i}$. These parameters are known as link length a_{i}, link twist α_{i}, link offset d_{i}, and joint angle θ_{i}. Normally, it take 3 positions and 3 orientations, a total of 6 numbers to describe a link, however, the DH uses only 4 numbers.

Figure 1 shows a pictorial view of the DH parameters. We can see that

1. a_{i} is the distance between z_{i} and z_{i-1} along x_{i}.
2. α_{i} is the angle between z_{i} and z_{i-1} along x_{i}.
3. d_{i} is the distance between x_{i-1} and x_{i} along z_{i-1}.
4. θ_{i} is the angle between x_{i-1} and x_{i} along z_{i-1}.

Algorithm for using DH for forward kinematics There are three steps.

1. Assign coordinate frames:
(a) Assign z_{i} along the axis of actuation for each link, where $i=0,1,2, \ldots(n-1)$.
(b) Assign the base frame $o_{0}-x_{0}-y_{0}-z_{0}$. The z_{0} has already been assigned. Assign x_{0} arbitrarily. Assign y_{0} based on x_{0} and z_{0} using right hand rule.

Figure 1: Demonstration of the parameters $a_{i} \alpha_{i} d_{i}$, and θ_{i}.
(c) Now assign coordinate frames $o_{i}-x_{i}-y_{i}-z_{i}$ for $i=1,2, \ldots, n-1 . z_{i}$ is already attached in first step. Next we assign x_{i} using these rules.
i. z_{i-1} and z_{i} are not coplanar: In this case, there is a unique shorted distance segment that is perpendicular to z_{i-1} and z_{i}. Choose this as x_{i} axis. The origin o_{i} is where x_{i} intersects z_{i}. The y_{i} is found from right hand rules.
ii. z_{i-1} and z_{i} parallel: In this case, there infinitely many perpendiculars. Choose any of these perpendiculars for x_{i}. Furthermore, where x_{i} intersects z_{i} we draw the origin x_{i}. Finally, y_{i} is found from the right hand rule. To make equations simpler, choose x_{i} such that is passes through o_{i-1}. This will make $d_{i}=0$. Also, since z_{i-1} is parallel to $z_{i}, \alpha_{i}=0$.
iii. z_{i-1} and z_{i} intersect: In this case, x_{i} is chosen to be normal to the plane formed by z_{i-1} and z_{i}. There will be two possible directions for x_{i}, one of them is chosen arbitrarily and o_{i} is obtained by the intersection of $z-i$ and x_{i}. Finally y_{i} is obtained from right hand rule. Also, since z_{i-1} intersects z_{i}, $a_{i}=0$.
(d) Finally we need to attach an end effector frame, $o_{n}-x_{n}-y_{n}-z_{n}$. Attach z_{n} to be the same direction as z_{n-1}. Now depending on the relation between z_{n} and z_{n-1}, attach frame x_{n}. Finally, attach y_{n} using the right hand rule.
2. Generate a table for DH parameter: Now generate the DH table as follows.

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1				
2				
\cdot				
\cdot				
\cdot				
n				

Here is a cheat sheet to help populate the table

3. Apply DH transformation to evaluate forward kinematics: Finally, use the DH formulate to link two adjacent frames

$$
\mathbf{H}_{i}^{i-1}=\left[\begin{array}{cccc}
c \theta_{i} & -s \theta_{i} c \alpha_{i} & s \theta_{i} s \alpha_{i} & a_{i} c \theta_{i} \\
s \theta_{i} & c \theta_{i} c \alpha_{i} & -c \theta_{i} s \alpha_{i} & a_{i} s \theta_{i} \\
0 & s \alpha_{i} & c \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The position and orientation of the end-effector is found using the formula

$$
\mathbf{H}_{n}^{0}=\mathbf{H}_{1}^{0} \mathbf{H}_{2}^{1} \mathbf{H}_{3}^{2} \ldots \mathbf{H}_{n}^{n-1}=\left[\begin{array}{cc}
\mathbf{R}_{n}^{0} & \mathbf{d}_{n}^{0} \\
\mathbf{0} & 1
\end{array}\right]
$$

The position of the end-effector is \mathbf{d}_{n}^{0} and the orientation is \mathbf{R}_{n}^{0}. From \mathbf{R}_{n}^{0}, we can recover the Euler angles for the end-effector frame.

