Denavit-Hartenberg (DH) Convention Handout

Pranav A. Bhounsule

The DH convention is a popular convention to represent the kinematics of robot manipulators. It is given by

where $s\theta_i = \sin \theta_i$, $c\theta_i = \cos \theta_i$, $s\alpha_i = \sin \alpha_i$, $c\theta_i = \cos \alpha_i$. These parameters are known as link length a_i , link twist α_i , link offset d_i , and joint angle θ_i . Normally, it take 3 positions and 3 orientations, a total of 6 numbers to describe a link, however, the DH uses only 4 numbers.

Figure 1 shows a pictorial view of the DH parameters. We can see that

- 1. a_i is the distance between z_i and z_{i-1} along x_i .
- 2. α_i is the angle between z_i and z_{i-1} along x_i .
- 3. d_i is the distance between x_{i-1} and x_i along z_{i-1} .
- 4. θ_i is the angle between x_{i-1} and x_i along z_{i-1} .

Algorithm for using DH for forward kinematics There are three steps.

1. Assign coordinate frames:

- (a) Assign z_i along the axis of actuation for each link, where i = 0, 1, 2, ... (n-1).
- (b) Assign the base frame $o_0 x_0 y_0 z_0$. The z_0 has already been assigned. Assign x_0 arbitrarily. Assign y_0 based on x_0 and z_0 using right hand rule.

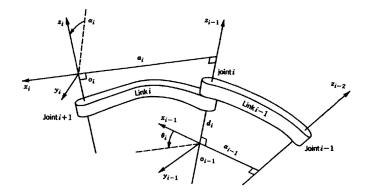
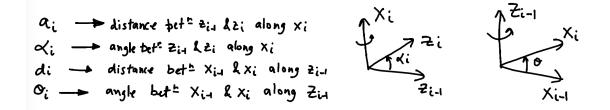


Figure 1: Demonstration of the parameters $a_i \alpha_i d_i$, and θ_i .

- (c) Now assign coordinate frames $o_i x_i y_i z_i$ for i = 1, 2, ..., n 1. z_i is already attached in first step. Next we assign x_i using these rules.
 - i. z_{i-1} and z_i are not coplanar: In this case, there is a unique shorted distance segment that is perpendicular to z_{i-1} and z_i . Choose this as x_i axis. The origin o_i is where x_i intersects z_i . The y_i is found from right hand rules.
 - ii. z_{i-1} and z_i parallel: In this case, there infinitely many perpendiculars. Choose any of these perpendiculars for x_i . Furthermore, where x_i intersects z_i we draw the origin x_i . Finally, y_i is found from the right hand rule. To make equations simpler, choose x_i such that is passes through o_{i-1} . This will make $d_i = 0$. Also, since z_{i-1} is parallel to z_i , $\alpha_i = 0$.
 - iii. z_{i-1} and z_i intersect: In this case, x_i is chosen to be normal to the plane formed by z_{i-1} and z_i . There will be two possible directions for x_i , one of them is chosen arbitrarily and o_i is obtained by the intersection of z - i and x_i . Finally y_i is obtained from right nucle. Also, since z_{i-1} intersects z_i , $a_i = 0$.
- (d) Finally we need to attach an end effector frame, $o_n x_n y_n z_n$. Attach z_n to be the same direction as z_{n-1} . Now depending on the relation between z_n and z_{n-1} , attach frame x_n . Finally, attach y_n using the right hand rule.
- 2. Generate a table for DH parameter: Now generate the DH table as follows.

Link	a_i	α_i	d_i	θ_i
1				
2				
•				
•				
•				
n				

Here is a cheat sheet to help populate the table



3. Apply DH transformation to evaluate forward kinematics: Finally, use the DH formulate to link two adjacent frames

$$\mathbf{H}_{i}^{i-1} = \begin{bmatrix} c\theta_{i} & -s\theta_{i}c\alpha_{i} & s\theta_{i}s\alpha_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -c\theta_{i}s\alpha_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The position and orientation of the end-effector is found using the formula

$$\mathbf{H}_n^0 = \mathbf{H}_1^0 \mathbf{H}_2^1 \mathbf{H}_3^2 \dots \mathbf{H}_n^{n-1} = \begin{bmatrix} \mathbf{R}_n^0 & \mathbf{d}_n^0 \\ \mathbf{0} & 1 \end{bmatrix}$$

The position of the end-effector is \mathbf{d}_n^0 and the orientation is \mathbf{R}_n^0 . From \mathbf{R}_n^0 , we can recover the Euler angles for the end-effector frame.