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ABSTRACT

In this study human arm modeled with a three-link planar
manipulator activated by Hill muscle model. Employing
controller, values of force and torques applied to the joints
calculated and finally, solving dynamics differential equations,
joints and muscle forces trajectories was calculated and
presented.

1. INTRODUCTION

In this study, we modeled human arm with a three-link
planar manipulator with six muscles to travel on a desired path.
For muscles, a nonlinear model named Hill muscle based on the
physiological concept of real muscles has been used. We applied
the trend based on the method used in [1, 2]. For making the
movement of manipulator, a task-space which is the location of
end-effector of manipulator, was defined and a simple feedback
was applied on that. Joint space also defined as the states of each
joint including position and velocity. Muscle space is the third
space we are using in this study to address the length and linear
velocity of the muscles. It is shown that damping factor of each
joint play a significant role in the convergence of the end effector
trajectory to the desired path. So, an internal force term besides
to the task-space feedback was considered in order to control the
damping factors in joint space [1].
In the next section, we formulate the kinematics of Muscle-joint
space by which we define the relationship between muscle
lengths and geometry of links and joints. In the following, we
introduce the kinematic of links to calculate the position of end
effector in terms of geometry. Secondly, we consider the
modeling of Hill muscle dynamics and after calculation of joint
torques. Finally, we apply the joint torques to the dynamics of
the three-link manipulator obtained from inverse dynamics in
order to calculate the joint states, find, and control the location
of manipulator’s end-effector.

2. METHODS

The three-link arm manipulator model and equations are
exerted from the combination of method and equations presented
in [1, 2]. The manipulator used to model the arm is shown in
fig.1.
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Figure 1. Three-link manipulator model representing arm.

In first step, we need define the kinematics of muscle and
joints. Kinematics between muscle space and joint space is
expressed in the following equation:

(r? +s° +2rs, cos6,)"?

(r, +s,° —2r,s,c086)
(r) +s,° +2r,s, €05 6,)
(r? +s,>—2r,s,cos8,)"?
(r,2 +s,° — 2r,s, cos 6,)"?
(17 +ss” — 21,8, €05 6;) " |
@)

1/2

12

)
L= (1,10, 05, 16)" =

Here, | € R%is the length vector representing length of all

muscles, (‘9 ,9 a(93) is the angle of all three joints. r1_4 and
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51_4 are positions at them muscles connect to the bones. Taking
derivative of eq. (1) leads to eq. (2).
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| € R%is the vector of linear velocity (contractile) of the muscles
while @ € R*is the vector of angular velocity of the joints.
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In next step we need to find joint torques form the muscle forces.
The relation can be expressed by means of virtual work principal.
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F e R® is the vector of muscle forces, 7 € R is the vector of

T 3x6
joint torques and W= Q(Q) eR which is introduced
before in eq. (2)
The inverse relationship between the joint torque and the muscle
force can be obtained as follows:
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6
ke €eR’ isa voluntary vector that represent the internal force

generated by muscles.

After expressing the kinematics between muscle space and joint
space, we need to obtain the kinematics of the links. The position
of end effector can be calculated as following:
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After taking derivative respect to time, we have:
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Where X € R%is the vector of end-effector velocity and
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Where |-1_3 are the lengths of three links. In the following, we

consider the modeling of muscle dynamics based on Hill model.
The viscosity of muscle depends on the activation level of
muscle. The Hill muscle inspired by some physiological
concepts and mathematically expressed as follows:

F=a—(ab+b)l ©)

Where is the output force produced by muscle and applied to the
correlated link, and a=a fO 20 (& s the control input, fo

is the maximum output force of the isometric contraction model



and O is the muscle activation level). In this study & is
considered to keep semipositive. hand bo are two damping
coefficients. Dis the damping coefficient depends on the control
input & , and bO >'Ois damping coefficient belong to the

muscle by its own and independent of Q& . Since based on the
physiological research, muscle have a springlike behavior, an
end-effector position feedback control signal to the muscle input

(& ) represent this behavior:
@=-W*ITK Ax+ (1 -W*W)k, (10)

Where J € R?*® is the Jacobian matrix from task space to joint
. 2x2.. .

space (defined in eq. (7)), Kp € R™is the position feedback

gain, X e R® is the position of end-effector and

2
AX=X—X; € R%is the position error from desired position.
6
(l -W +W)ke € R’is the null space vector that determine the

internal force and ke 20 means a voluntary vector. The first

term in eq. (10) represent the springlike force of muscle.
Generalizing the Hill model for all muscles in the system, the
overall muscle dynamics obtained as following:

o, ... 01\ (b +by, 0
F=| ¢ . |- ’

0 o, )\1 0 0tgbg + by
= AU —(AB+By)i (11)
Where

A=diag(oy, oy, 3,04, 05, %)
U=@1111'

B =diag (b, by, by, by, bs, by)

By = diag (b, ;B3 s Dys , Pog )

Forces of all muscle in the system are obtainable form eq. (11)
which are substituted in eq. (4) to calculate the three torques
applied to the three links.

In order to calculate joint trajectory we need joint angles and
angular (states of the system) velocity. Inverse dynamics would
be exerted to calculate six states (three angles and three angular
velocities). Dynamics equations extracted form inverse
dynamics used in [2] expressed as follows:
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Where,
7 is the vector of joint moment.

M (6) is the inertia matrix. (It is symmetric, so only six
elements need to be de fined.)

6 is the vector of angular acceleration.

C (8, 0) is the vector of centrifugal/Coriolis terms.

G(0) is the vector of gravity terms.

Text is the vector of joint moments because of other external

forces besides gravity.
and:
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Where, |_1_3,ml_3, |1_3 are the links’ lengths, masses and

inertias respectively. Moreover, d1_3 are distances from links’

center of mass to the proximal joints. Physical parameters of
three-link arm model are expressed in table 1.

Table 1. Physical parameters for three links.

Link L(m) m (kg) I(kg m?)
Link 1 0.31 1.93 0.0141
Link 2 0.27 1.32 0.0120
Link 3 0.15 0.35 0.001

In this three-link manipulator, we do not have any external torque
and we neglect the gravity term in eq. (12).

Substituting joint moments in eq. (12) and using ODE45
solver, states of the system (three joint angles and three joint
angular velocity) and six muscle forces have be obtained. The
Controller’s coefficients for calculation of muscle forces and
joint moments (we need joint moments to substitute in eq. (12))
have been determined via trial and error.

3. RESULTS
Hand (end-effector) trajectory could be drawn by means of
the joint angles calculated via ODE45 in the previous section.

Hand trajectory compared to the desired path are depicted in
Fig.2.
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Figure 2. Hand trajectory compared to desired path

Calculated forces for six muscle versus time are presented
in figure 3. Clearly, all of the forces are positive and sensible.
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Figure 3. Six muscle force trajectories during desired path
tracking

4. DISCUSSION

In this study human arm modeled with a three-link planar
mechanism powered by Hill muscle model. Employing
controller, values of force and then moments applied to the joints
calculated and finally, solving dynamics differential equations,
joint trajectory and muscle forces was calculated and drawn.

5. CONCLUSION AND FUTURE WORK

Suggested future work could be application of optimal
controller and making comparison between results of current
controller and the ones form optimal controllers.
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APPENDIX

MATLAB Code:
Main:

cle;

clear all;

close all

T time=10*pi; %% total time of simulation

init_cond=[pi/3 pi/3 pi/3]; %%initial angles if shoulder,
elbow and wrist

options = odeset('RelTol',1e-4);

[t,state] = ode45(@odes,[0
init_cond(2) init_cond(3)...

0000000 0 0],options);

T time],[init cond(1)

%%%%%% plot trajectory and deodesired path

0,

()

figure(1)

T=0:0.1:T time;

Xd=-
0.1935+0.10*cos(T*0.2);Yd=0.5549+0.10*sin(T*0.2);%%
desired path

L1=0.31;L2=0.27;L3=0.15;

x3=L1*cos(state(:,1))+L2*cos(state(:,1)+state(:,2))+L3*co
s(state(:, 1 )+state(:,2)+state(:,3));



y3=L1*sin(state(:,1))+L2*sin(state(:,1)+state(:,2))+L3*sin(
state(:,1)+state(:,2)+state(:,3));
plot(Xd,Yd,'-.",x3,y3)
legend('desired path','Trajectory of hand')
xlabel('x(m)")
ylabel('y(m))
hold off;
%%%%%%% animation play
%
r1=0.055;r2=0.055;
r3=0.03;r4=0.03;
r5=0.035;r6=0.050;
s1=0.08;s2=0.08;
$3=0.12;s4=0.12;
$5=0.22;56=0.25;
w1=0.04;w2=0.05;
for i=1:35:length(t)
figure(2)
L1=0.31;L2=0.27;1.3=0.15;
x0=0;y0=0; %%shoulder position
%%% elbow position
x1=L1*cos(state(i,1));x11=L1*cos(state(i,1))-
w1 *cos(state(i, 1) +state(i,2));
y1=L1*sin(state(i,1));y11=L1*sin(state(i,1))-
w1 *sin(state(i, 1 )+state(i,2));
%% % wirst position
x2=L1*cos(state(i,1))+L2*cos(state(i,1)+state(i,2));
x22=L1*cos(state(i,1))+L2*cos(state(i, 1 )+state(i,2))-
w2*cos(state(i, 1 )+state(i,2)+state(i,3));
y22=L1*sin(state(i,1))+L2*sin(state(i,1)+state(i,2))-
w2*sin(state(i, 1 )+state(i,2)+state(i,3));
y2=L1*sin(state(i,1))+L2*sin(state(i, 1 )+state(i,2));
%% % hand position

x3=L1*cos(state(i,1))+L2*cos(state(i,1)+state(i,2))+L3 *cos(sta
te(i,1)+state(i,2)+state(i,3));

y3=L1*sin(state(i,1))+L2*sin(state(i, 1 )+state(i,2))+L3 *sin(stat
e(i,1)+state(i,2)+state(i,3));

%%% desired path

T=0:0.1:T_time;

Xd=-
0.1935+0.10*cos(T*0.2);Yd=0.5549+0.10*sin(T*0.2);

plot(Xd,Yd,-.")

hold on

plot([x0,x1,x11,x2,x22,x3],[y0,y1,y11,y2,y22,y3],'d'",'Line Widt
h',4);

circle([x0,y0],0.01)

hold on

circle([x1,y1],0.01)

hold on

circle([x2,y2],0.01)

hold on

circle([x3,y3],0.005)
hold on

%%muscle 1

M1 r=[-
r1,0];M1_s=[sl*cos(state(i,1)),s1*sin(state(i,1))];

plot((M1_r(1),M1_s(1)],IM1_r(2),M1 _s(2)],'r")

hold on;

%%muscle 2

M1 r=[r2,0];M1_s=[s2*cos(state(i,1)),s2*sin(state(i,1))];

plot((M1_r(1),M1_s(1)],[M1_r(2),M1_s(2)],r")

hold on;

%%muscle 3

M1 r=[(L1-s3)*cos(state(i,1)),(L1-s3)*sin(state(i,1))];

M1 _s=[L1*cos(state(i,1))+r3*cos(state(i, | )+state(i,2)),...
L1*sin(state(i,1))+r3*sin(state(i,1)+state(i,2))];

plot((M1_r(1),M1_s(1)],[M1_r(2),M1_s(2)],r")

hold on;

%%muscle 4

M1 _r=[(L1-s4)*cos(state(i,1)),(L1-s4)*sin(state(i,1))];

M1 _s=[x1-rd*cos(state(i,1)+state(i,2)),...
yl-r4*sin(state(i,1)+state(i,2))];

plot((M1_r(1),M1_s(1)],[M1_r(2),M1_s(2)],r")

hold on;

%%muscle 5

M1 _r=[x1+(L2-s5)*cos(state(i,1)+state(i,2)),...
y1+(L2-s5)*sin(state(i,1)+state(i,2))];

M1 _s=[x2+r5*cos(state(i, 1 )+state(i,2)+state(i,3)),...
y2+r5*sin(state(i, 1 )+state(i,2)+state(i,3))];

plot((M1_r(1),M1_s(1)],[M1_r(2),M1_s(2)],r")

hold on;

%%muscle 6

M1 _r=[x1+(L2-s6)*cos(state(i,1)+state(i,2)),...
y1+(L2-s6)*sin(state(i,1)+state(i,2))];

M1 _s=[x2-r6*cos(state(i,1)+state(i,2)+state(i,3)),...
y2-r6*sin(state(i,1)+state(i,2)+state(i,3))];

plot((M1_r(1),M1_s(1)],[M1_r(2),M1_s(2)],r")

hold on;

x1im([-0.4,0.3])
ylim([-0.05,0.8])
xlabel('x(m)")
ylabel('y(m)')
pause(0.05)
hold off
end
%%%%%% muscle forces plot
%
figure(3)
subplot(3,2,1)
plot(t,state(:,7)./t,'t','LineWidth',1.5);
xlabel('t(sec)");ylabel('N")
title("Muscle 1")
subplot(3,2,2)
plot(t,state(:,8)./t,'r','LineWidth',1.5);




xlabel('t(sec)');ylabel('N")
title('Muscle 2')
subplot(3,2,3)
plot(t,state(:,9)./t,'r','LineWidth',1.5);
xlabel('t(sec)");ylabel('N")
title('Muscle 3')
subplot(3,2,4)
plot(t,state(:,10)./t,'r",'LineWidth',1.5);
xlabel('t(sec)');ylabel('N")
title('Muscle 4")
subplot(3,2,5)
plot(t,state(:,11)./t,'r','LineWidth',1.5);
xlabel('t(sec)");ylabel('N")
title('Muscle 5)
subplot(3,2,6)
plot(t,state(:,12)./t,'r",'LineWidth', 1.5);
xlabel('t(sec)");ylabel('N")
title('Muscle 6')

ODEs:

function dx=odes(t,x)
%%% parameters of hand
%
L1=0.31;L.2=0.27;L.3=0.15;
11=0.0141;12=0.0120;13=0.001;
ml=1.93;m2=1.32;m3=0.35;
d1=0.165;d2=0.135;d3=0.075;
%%% Insertion of each muscle
%
r1=0.055;r2=0.055;
r3=0.03;r4=0.03;
r5=0.035;r6=0.050;
s1=0.08;s2=0.08;
$3=0.12;s4=0.12;
$5=0.22;56=0.25;
%%% length of each muscle
%
1=(r1"2+s1"2+2*r1*s1.*cos(x(1)).*2)."(0.5);
12=(r2"2+8272-2*12*s2 *cos(x(1)).”2).7(0.5);
13=(r3/"2+s3"2+2*r3*s3.*cos(x(2)).*2)."(0.5);
14=(1r4"2+s4"2-2*r4*s4 . *cos(x(2))."2).”(0.5);
15=(r5"2+s5"2-2*r5*s5.*cos(x(3)).72).~(0.5);
16=(r6"2+s6"2-2*r6*s6.*cos(x(3)).72).~(0.5);
1=[11 12 13 14 15 16];
%%"%e Jacobian matrix from the joint space to the muscle

space
%
qll=-

rl1*s1.*sin(x(1))./(r1"2+s1"2+2*r1 *s1.*cos(x(1)).72).~(0.5);
ql12=r2*s2.*sin(x(1))./(r2"2+s2"2-

2*12*s2.*cos(x(1)).72).~(0.5);
q23=-

r3*s3.*sin(x(2))./(r3"2+s3/2+2*r3*s3.*cos(x(2)).72).~(0.5);
q24=r4*s4.*sin(x(2))./(r4"2+s4"2-

2*r4*s4 *cos(x(2)).72).~(0.5);

q35=-
r5%*s5.%sin(x(2))./(r52+s5"2+2*r5*s5. *cos(x(3)).~2).~(0.5);
q36=r6*s6.*sin(x(2))./(r6"2+s6"2-
2*r6*s6.*cos(x(3)).~2).7(0.5);
W=[ql11,q12,0,0,0,0;
0,0,923,q24,0,0;
0,0,0,0,935,936];
Wplus=W'/(W*W");

%% "% Jacobian matrix from the task space to the joint space
%
J(1,1)=-L1*sin(x(1))-L2*sin(x(1)+x(2))-
L3*sin(x(1)+x(2)*+x(3));
J(1,2)=-L2*sin(x(1)+x(2))-L3*sin(x(1)+x(2)+x(3));
J(1,3)=-L3*sin(x(1)+x(2)+x(3));
J(2,1)=L1*cos(x(1))+L2*cos(x(1)+x(2))+L3*cos(x(1)+x(2
)+x(3));
J(2,2)=L2*cos(x(1)+x(2))+L3*cos(x(1)+x(2)+x(3));
J(2,3)=L3*cos(x(1)+x(2)+x(3));

%%"% *desired path and controller parameters*
%

% E3
Xd=-0.1935+0.10*cos(t*0.2);Yd=0.5549+0.10*sin(t*0.2);
Kp=25*diag(ones(1,2));Ke=20*ones(6,1);

%% % controller configuration on hill muscle model and end
effector position

%

X=L1*cos(x(1))+L2*cos(x(1)+x(2))+L3*cos(x(1)+x(2)+x(
3

Y=L1*sin(x(1))+L2*sin(x(1)+x(2))+L3*sin(x(1)+x(2)+x(3
);

alpha=-Wplus*J'*Kp*[X-Xd;Y-Yd]+(eye(6,6)-
Wplus*W)*Ke;

alpha(alpha<0)=0;

A=diag(alpha);

U=ones(1,6)";

B=diag(ones(1,6)*10);

B0=diag(ones(1,6)*10);

F=A*U-(A*B+BO)*W'*[x(4):x(5);x(6)];

T(1:3)=W*F;

%%% dynamics equationt ode's

%

M(1,1)=m1*d1"2+11+m2*(L1"2+d2"2+2*L1*d2.*cos(x(2
N)+HI2+...

m3*(L1"2+L2"2+d3"2+2*L1*L2.*cos(x(2))+2*L1*d3*cos(x(
2)+x(3))+2*L2*d3*cos(x(3)))+13;
M(1,2)=m2*(d2/2+L1*d2*cos(x(2)))+I12+m3*(L2"2+d3"2
+L1*L2*cos(x(2))...
+L1*d3*cos(x(2)+x(3))+2*L2*d3*cos(x(3)))+I3;



M(1,3)=m3*(d3"2+L1*d3*cos(x(2)+x(3))+L2*d3*cos(x(3
I3,
M(2,1)=m2*(d2/2+L1*d2*cos(x(2)))+12...

+m3*(L2/2+d3/2+L1*L2*cos(x(2))+2*L2*d3*cos(x(3))+L1*
d3*cos(x(2)+x(3)))+13;

M(2,2)=m2*d2/2+I12+m3*(L2/2+d3"2+L2*d3*cos(x(3)))
+I3;

M(2,3)=m3*(d3"2+L2*d3*cos(x(3)))+13;

M(3,1)=m3*(d3"2+L1*d3*cos(x(2)+x(3))+L2*d3*cos(x(3
))+13;

M(3,2)=m3*(d3"2+L2*d3*cos(x(3)))+13;

M(3,3)=m3*d3/2+13;

C(1)=-
((M2*L1*d2+m3*L1*L2)*sin(x(2))+m3*L1*d3*sin(x(2)+x(3))
)*(2*x(4)*x(5)+x(5)"2)...

(m3*L1*d3*sin(x(2)+x(3))+m3*L2*d3*sin(x(3)))*(2*x(4)*x(6
)T2*x(5)*x(6)+x(6)"2);

C(2)=((m3*L1*L2+m2*d2*L1)*sin(x(2))+m3*d3*L1*sin(
X(2)+X(3))*x(4)2 ...

m3*d3 *Lz*sin(x(3))*(2 *3(4)*x(6)+2*x(5)*x(6)+x(6)"2);
C(3)=(m3*L1*d3*sin(x(3)+x(4))+m3*L2*d3*sin(x(3)))*x
»H"2 ...
+m3*L2*d3*sin(x(3))*(2*x(4)*x(5)+x(5)"2);

dx(1)=x(4);
dx(2)=x(5);
dx(3)=x(6);
dx(4:6)=M\(T'-C");
dx(7:12)=F,
dx=dx";

end

Circle:
function circle(x,r)
%sx and y are the coordinates of the center of the circle
%r is the radius of the circle
%0.01 is the angle step, bigger values will draw the circle
faster but
%you might notice imperfections (not very smooth)
ang=0:0.01:2*pi;
xp=r*cos(ang);
yp=r#*sin(ang);
plot(x(1)+xp,x(2)+yp,k','LineWidth',2);
fill(x(1)+xp,x(2)+yp,'k")
end



