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ABSTRACT 
In this study human arm modeled with a three-link planar 

manipulator activated by Hill muscle model. Employing 

controller, values of force and torques applied to the joints 

calculated and finally, solving dynamics differential equations, 

joints and muscle forces trajectories was calculated and 

presented.  

 

1. INTRODUCTION 
In this study, we modeled human arm with a three-link 

planar manipulator with six muscles to travel on a desired path. 

For muscles, a nonlinear model named Hill muscle based on the 

physiological concept of real muscles has been used. We applied 

the trend based on the method used in [1, 2]. For making the 

movement of manipulator, a task-space which is the location of 

end-effector of manipulator, was defined and a simple feedback 

was applied on that. Joint space also defined as the states of each 

joint including position and velocity. Muscle space is the third 

space we are using in this study to address the length and linear 

velocity of the muscles. It is shown that damping factor of each 

joint play a significant role in the convergence of the end effector 

trajectory to the desired path. So, an internal force term besides 

to the task-space feedback was considered in order to control the 

damping factors in joint space [1]. 

In the next section, we formulate the kinematics of Muscle-joint 

space by which we define the relationship between muscle 

lengths and geometry of links and joints. In the following, we 

introduce the kinematic of links to calculate the position of end 

effector in terms of geometry. Secondly, we consider the 

modeling of Hill muscle dynamics and after calculation of joint 

torques. Finally, we apply the joint torques to the dynamics of 

the three-link manipulator obtained from inverse dynamics in 

order to calculate the joint states, find, and control the location 

of manipulator’s end-effector.  

 

2. METHODS 
The three-link arm manipulator model and equations are 

exerted from the combination of method and equations presented 

in [1, 2]. The manipulator used to model the arm is shown in 

fig.1. 

 

 

 
Figure 1. Three-link manipulator model representing arm. 

 

 In first step, we need define the kinematics of muscle and 

joints. Kinematics between muscle space and joint space is 

expressed in the following equation:  
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(1) 

 

Here, 
6l R is the length vector representing length of all 

muscles, 1 2 3( , , )    is the angle of all three joints. 1 4r  and 
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1 4s   are positions at them muscles connect to the bones. Taking 

derivative of eq. (1) leads to eq. (2). 

 

( )l Q                                                                (2) 

6l R is the vector of linear velocity (contractile) of the muscles 

while 
3R  is the vector of angular velocity of the joints. 

6 3( ) xQ R   is the Jacobian matrix from the joint space to the 

muscle space.  
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In next step we need to find joint torques form the muscle forces. 

The relation can be expressed by means of virtual work principal.  

 

WF                                                                          (4) 

 
6F R  is the vector of muscle forces, 

3R  is the vector of 

joint torques and 
3 6( )T xW Q R   which is introduced 

before in eq. (2) 

The inverse relationship between the joint torque and the muscle 

force can be obtained as follows: 

 

( ) eF W I W W k                                             (5) 

While 
1 6 3( )T T xW W WW R    is pseudoinverse matrix of 

W and 
6 6( ) xI W W R   means null space of W 

, and 

6

ek R  is a voluntary vector that represent the internal force 

generated by muscles.  

After expressing the kinematics between muscle space and joint 

space, we need to obtain the kinematics of the links. The position 

of end effector can be calculated as following: 
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After taking derivative respect to time, we have: 

 

( )x J                                                                       (7) 

Where 
2x R is the vector of end-effector velocity and 

3 2( ) xJ R  is the Jacobian matrix defined from the task space 

(end-effector position) to joint space as following: 
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11 1 1 2 1 2 3 1 2 3 sin sin( ) sin( )j L L L              

12 2 1 2 3 1 2 3 sin( ) sin( )j L L           

13 3 1 2 3sin( )j L        

21 1 1 2 1 2 3 1 2 3 cos cos( ) cos( )j L L L            

22 2 1 2 3 1 2 3cos( ) cos( )j L L          

23 3 1 2 3cos( )j L                                                (8) 

 

Where 1 3L   are the lengths of three links. In the following, we 

consider the modeling of muscle dynamics based on Hill model. 

The viscosity of muscle depends on the activation level of 

muscle. The Hill muscle inspired by some physiological 

concepts and mathematically expressed as follows: 

 

 0( )F b b l                                                     (9) 

 

Where is the output force produced by muscle and applied to the 

correlated link, and 0 0f    (  is the control input, 0f  

is the maximum output force of the isometric contraction model 
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and   is the muscle activation level). In this study   is 

considered to keep semipositive. b and 0b  are two damping 

coefficients. b is the damping coefficient depends on the control 

input  , and 0 0b is damping coefficient belong to the 

muscle by its own and independent of  . Since based on the 

physiological research, muscle have a springlike behavior, an 

end-effector position feedback control signal to the muscle input 

( ) represent this behavior:  

 

( )T

p eW J K x I W W k                             (10) 

 

Where 
2 3xJ R  is the Jacobian matrix from task space to joint 

space (defined in eq. (7)), 
2 2x

pK R is the position feedback 

gain, 
2x R  is the position of end-effector and 

2

dx x x R    is the position error from desired position. 

6( ) eI W W k R  is the null space vector that determine the 

internal force and 0ek   means a voluntary vector. The first 

term in eq. (10) represent the springlike force of muscle. 

Generalizing the Hill model for all muscles in the system, the 

overall muscle dynamics obtained as following:  
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0( )AU AB B l                                                        (11) 

 

Where  

 

1 2 3 4 5 6( , , , , , )A diag         

(1,1,1,1,1,1)TU    

1 2 3 4 5 6( , , , , , )B diag b b b b b b   

0 01 02 03 04 05 06( , , , , , )B diag b b b b b b   

 

Forces of all muscle in the system are obtainable form eq. (11) 

which are substituted in eq. (4) to calculate the three torques 

applied to the three links.  

In order to calculate joint trajectory we need joint angles and 

angular (states of the system) velocity. Inverse dynamics would 

be exerted to calculate six states (three angles and three angular 

velocities). Dynamics equations extracted form inverse 

dynamics used in [2] expressed as follows: 
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Where, 

  is the vector of joint moment. 

( )M   is the inertia matrix. (It is symmetric, so only six 

elements need to be de fined.) 

  is the vector of angular acceleration. 

( , )C    is the vector of centrifugal/Coriolis terms. 

( )G   is the vector of gravity terms. 

extT  is the vector of joint moments because of other external 

forces besides gravity. 

and: 
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Where, 
1 3 1 3 1 3

, ,L m I
  

 are the links’ lengths, masses and 

inertias respectively. Moreover, 
1 3

d


 are distances from links’ 

center of mass to the proximal joints. Physical parameters of 

three-link arm model are expressed in table 1. 

 
Table 1. Physical parameters for three links. 

Link L(m) m (kg) I(kg m2) 

Link 1 0.31 1.93 0.0141 

Link 2 0.27 1.32 0.0120 

Link 3 0.15 0.35 0.001 

 

In this three-link manipulator, we do not have any external torque 

and we neglect the gravity term in eq. (12).  

 

Substituting joint moments in eq. (12) and using ODE45 

solver, states of the system (three joint angles and three joint 

angular velocity) and six muscle forces have be obtained.  The 

Controller’s coefficients for calculation of muscle forces and 

joint moments (we need joint moments to substitute in eq. (12)) 

have been determined via trial and error. 

 

 

3. RESULTS 
Hand (end-effector) trajectory could be drawn by means of 

the joint angles calculated via ODE45 in the previous section. 

Hand trajectory compared to the desired path are depicted in 

Fig.2. 

 
Figure 2. Hand trajectory compared to desired path 

 

Calculated forces for six muscle versus time are presented 

in figure 3. Clearly, all of the forces are positive and sensible. 
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Figure 3. Six muscle force trajectories during desired path 

tracking 

 

 

 

 

4. DISCUSSION 
In this study human arm modeled with a three-link planar 

mechanism powered by Hill muscle model. Employing 

controller, values of force and then moments applied to the joints 

calculated and finally, solving dynamics differential equations, 

joint trajectory and muscle forces was calculated and drawn.  

5. CONCLUSION AND FUTURE WORK 
Suggested future work could be application of optimal 

controller and making comparison between results of current 

controller and the ones form optimal controllers.     
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APPENDIX 
 

MATLAB Code:  

Main: 

clc; 

clear all; 

close all 

T_time=10*pi; %% total time of simulation 

init_cond=[pi/3 pi/3 pi/3];  %%initial angles if shoulder, 

elbow and wrist 

options = odeset('RelTol',1e-4); 

[t,state] = ode45(@odes,[0 T_time],[init_cond(1) 

init_cond(2) init_cond(3)... 

                  0 0 0 0 0 0 0 0 0],options); 

 

%%%%%% plot trajectory and deodesired path   

%================== 

figure(1) 

 

T=0:0.1:T_time; 

Xd=-

0.1935+0.10*cos(T*0.2);Yd=0.5549+0.10*sin(T*0.2);%% 

desired path 

L1=0.31;L2=0.27;L3=0.15; 

x3=L1*cos(state(:,1))+L2*cos(state(:,1)+state(:,2))+L3*co

s(state(:,1)+state(:,2)+state(:,3)); 
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y3=L1*sin(state(:,1))+L2*sin(state(:,1)+state(:,2))+L3*sin(

state(:,1)+state(:,2)+state(:,3)); 

plot(Xd,Yd,'-.',x3,y3) 

legend('desired path','Trajectory of hand') 

xlabel('x(m)') 

ylabel('y(m)') 

hold off; 

%%%%%%% animation play 

%================== 

r1=0.055;r2=0.055; 

r3=0.03;r4=0.03; 

r5=0.035;r6=0.050; 

s1=0.08;s2=0.08; 

s3=0.12;s4=0.12; 

s5=0.22;s6=0.25; 

w1=0.04;w2=0.05; 

for i=1:35:length(t) 

    figure(2) 

    L1=0.31;L2=0.27;L3=0.15; 

    x0=0;y0=0;  %%shoulder position 

    %%% elbow position 

    x1=L1*cos(state(i,1));x11=L1*cos(state(i,1))-

w1*cos(state(i,1)+state(i,2)); 

    y1=L1*sin(state(i,1));y11=L1*sin(state(i,1))-

w1*sin(state(i,1)+state(i,2));  

    %%% wirst position 

    x2=L1*cos(state(i,1))+L2*cos(state(i,1)+state(i,2)); 

    x22=L1*cos(state(i,1))+L2*cos(state(i,1)+state(i,2))-

w2*cos(state(i,1)+state(i,2)+state(i,3)); 

    y22=L1*sin(state(i,1))+L2*sin(state(i,1)+state(i,2))-

w2*sin(state(i,1)+state(i,2)+state(i,3)); 

    y2=L1*sin(state(i,1))+L2*sin(state(i,1)+state(i,2)); 

    %%% hand position 

    

x3=L1*cos(state(i,1))+L2*cos(state(i,1)+state(i,2))+L3*cos(sta

te(i,1)+state(i,2)+state(i,3)); 

    

y3=L1*sin(state(i,1))+L2*sin(state(i,1)+state(i,2))+L3*sin(stat

e(i,1)+state(i,2)+state(i,3)); 

     

    %%% desired path 

    T=0:0.1:T_time; 

    Xd=-

0.1935+0.10*cos(T*0.2);Yd=0.5549+0.10*sin(T*0.2); 

    plot(Xd,Yd,'-.') 

     

    hold on 

    

plot([x0,x1,x11,x2,x22,x3],[y0,y1,y11,y2,y22,y3],'b','LineWidt

h',4); 

    circle([x0,y0],0.01) 

    hold on 

    circle([x1,y1],0.01) 

    hold on 

    circle([x2,y2],0.01) 

    hold on 

    circle([x3,y3],0.005) 

    hold on 

     

    %%muscle 1 

    M1_r=[-

r1,0];M1_s=[s1*cos(state(i,1)),s1*sin(state(i,1))]; 

    plot([M1_r(1),M1_s(1)],[M1_r(2),M1_s(2)],'r') 

    hold on; 

    %%muscle 2 

    

M1_r=[r2,0];M1_s=[s2*cos(state(i,1)),s2*sin(state(i,1))]; 

    plot([M1_r(1),M1_s(1)],[M1_r(2),M1_s(2)],'r') 

    hold on; 

    %%muscle 3 

    M1_r=[(L1-s3)*cos(state(i,1)),(L1-s3)*sin(state(i,1))]; 

    M1_s=[L1*cos(state(i,1))+r3*cos(state(i,1)+state(i,2)),... 

          L1*sin(state(i,1))+r3*sin(state(i,1)+state(i,2))]; 

    plot([M1_r(1),M1_s(1)],[M1_r(2),M1_s(2)],'r') 

    hold on; 

    %%muscle 4 

    M1_r=[(L1-s4)*cos(state(i,1)),(L1-s4)*sin(state(i,1))]; 

    M1_s=[x1-r4*cos(state(i,1)+state(i,2)),... 

          y1-r4*sin(state(i,1)+state(i,2))]; 

    plot([M1_r(1),M1_s(1)],[M1_r(2),M1_s(2)],'r') 

    hold on; 

    %%muscle 5 

    M1_r=[x1+(L2-s5)*cos(state(i,1)+state(i,2)),... 

         y1+(L2-s5)*sin(state(i,1)+state(i,2))]; 

    M1_s=[x2+r5*cos(state(i,1)+state(i,2)+state(i,3)),... 

          y2+r5*sin(state(i,1)+state(i,2)+state(i,3))]; 

    plot([M1_r(1),M1_s(1)],[M1_r(2),M1_s(2)],'r') 

    hold on; 

    %%muscle 6 

    M1_r=[x1+(L2-s6)*cos(state(i,1)+state(i,2)),... 

         y1+(L2-s6)*sin(state(i,1)+state(i,2))]; 

    M1_s=[x2-r6*cos(state(i,1)+state(i,2)+state(i,3)),... 

          y2-r6*sin(state(i,1)+state(i,2)+state(i,3))]; 

    plot([M1_r(1),M1_s(1)],[M1_r(2),M1_s(2)],'r') 

    hold on; 

     

    xlim([-0.4,0.3]) 

    ylim([-0.05,0.8]) 

    xlabel('x(m)') 

    ylabel('y(m)') 

    pause(0.05) 

    hold off 

end 

%%%%%% muscle forces plot 

%======================= 

figure(3) 

subplot(3,2,1) 

plot(t,state(:,7)./t,'r','LineWidth',1.5); 

xlabel('t(sec)');ylabel('N') 

title('Muscle 1') 

subplot(3,2,2) 

plot(t,state(:,8)./t,'r','LineWidth',1.5); 
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xlabel('t(sec)');ylabel('N') 

title('Muscle 2') 

subplot(3,2,3) 

plot(t,state(:,9)./t,'r','LineWidth',1.5); 

xlabel('t(sec)');ylabel('N') 

title('Muscle 3') 

subplot(3,2,4) 

plot(t,state(:,10)./t,'r','LineWidth',1.5); 

xlabel('t(sec)');ylabel('N') 

title('Muscle 4') 

subplot(3,2,5) 

plot(t,state(:,11)./t,'r','LineWidth',1.5); 

xlabel('t(sec)');ylabel('N') 

title('Muscle 5') 

subplot(3,2,6) 

plot(t,state(:,12)./t,'r','LineWidth',1.5); 

xlabel('t(sec)');ylabel('N') 

title('Muscle 6') 

 

ODEs: 

 

function dx=odes(t,x) 

%%% parameters of hand 

%====================== 

L1=0.31;L2=0.27;L3=0.15; 

I1=0.0141;I2=0.0120;I3=0.001; 

m1=1.93;m2=1.32;m3=0.35; 

d1=0.165;d2=0.135;d3=0.075; 

%%% Insertion of each muscle 

%====================== 

r1=0.055;r2=0.055; 

r3=0.03;r4=0.03; 

r5=0.035;r6=0.050; 

s1=0.08;s2=0.08; 

s3=0.12;s4=0.12; 

s5=0.22;s6=0.25; 

%%% length of each muscle 

%====================== 

l1=(r1^2+s1^2+2*r1*s1.*cos(x(1)).^2).^(0.5); 

l2=(r2^2+s2^2-2*r2*s2.*cos(x(1)).^2).^(0.5); 

l3=(r3^2+s3^2+2*r3*s3.*cos(x(2)).^2).^(0.5); 

l4=(r4^2+s4^2-2*r4*s4.*cos(x(2)).^2).^(0.5); 

l5=(r5^2+s5^2-2*r5*s5.*cos(x(3)).^2).^(0.5); 

l6=(r6^2+s6^2-2*r6*s6.*cos(x(3)).^2).^(0.5); 

l=[l1 l2 l3 l4 l5 l6]; 

%%%e Jacobian matrix from the joint space to the muscle 

space 

%====================== 

q11=-

r1*s1.*sin(x(1))./(r1^2+s1^2+2*r1*s1.*cos(x(1)).^2).^(0.5); 

q12=r2*s2.*sin(x(1))./(r2^2+s2^2-

2*r2*s2.*cos(x(1)).^2).^(0.5); 

q23=-

r3*s3.*sin(x(2))./(r3^2+s3^2+2*r3*s3.*cos(x(2)).^2).^(0.5); 

q24=r4*s4.*sin(x(2))./(r4^2+s4^2-

2*r4*s4.*cos(x(2)).^2).^(0.5); 

q35=-

r5*s5.*sin(x(2))./(r5^2+s5^2+2*r5*s5.*cos(x(3)).^2).^(0.5); 

q36=r6*s6.*sin(x(2))./(r6^2+s6^2-

2*r6*s6.*cos(x(3)).^2).^(0.5); 

W=[q11,q12,0,0,0,0; 

   0,0,q23,q24,0,0; 

   0,0,0,0,q35,q36]; 

Wplus=W'/(W*W'); 

 

%%% Jacobian matrix from the task space to the joint space  

%====================== 

J(1,1)=-L1*sin(x(1))-L2*sin(x(1)+x(2))-

L3*sin(x(1)+x(2)+x(3)); 

J(1,2)=-L2*sin(x(1)+x(2))-L3*sin(x(1)+x(2)+x(3)); 

J(1,3)=-L3*sin(x(1)+x(2)+x(3)); 

J(2,1)=L1*cos(x(1))+L2*cos(x(1)+x(2))+L3*cos(x(1)+x(2

)+x(3)); 

J(2,2)=L2*cos(x(1)+x(2))+L3*cos(x(1)+x(2)+x(3)); 

J(2,3)=L3*cos(x(1)+x(2)+x(3)); 

 

  

 

%%% *desired path and controller parameters* 

% 

%========================================* 

Xd=-0.1935+0.10*cos(t*0.2);Yd=0.5549+0.10*sin(t*0.2); 

Kp=25*diag(ones(1,2));Ke=20*ones(6,1); 

 

 

%%% controller configuration on hill muscle model and end 

effector position 

%======================================== 

X=L1*cos(x(1))+L2*cos(x(1)+x(2))+L3*cos(x(1)+x(2)+x(

3)); 

Y=L1*sin(x(1))+L2*sin(x(1)+x(2))+L3*sin(x(1)+x(2)+x(3

)); 

alpha=-Wplus*J'*Kp*[X-Xd;Y-Yd]+(eye(6,6)-

Wplus*W)*Ke; 

alpha(alpha<0)=0; 

A=diag(alpha); 

U=ones(1,6)'; 

B=diag(ones(1,6)*10); 

B0=diag(ones(1,6)*10); 

F=A*U-(A*B+B0)*W'*[x(4);x(5);x(6)]; 

T(1:3)=W*F; 

%%% dynamics equation+ ode's 

%======================================== 

M(1,1)=m1*d1^2+I1+m2*(L1^2+d2^2+2*L1*d2.*cos(x(2

)))+I2+... 

    

m3*(L1^2+L2^2+d3^2+2*L1*L2.*cos(x(2))+2*L1*d3*cos(x(

2)+x(3))+2*L2*d3*cos(x(3)))+I3; 

M(1,2)=m2*(d2^2+L1*d2*cos(x(2)))+I2+m3*(L2^2+d3^2

+L1*L2*cos(x(2))... 

       +L1*d3*cos(x(2)+x(3))+2*L2*d3*cos(x(3)))+I3; 
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M(1,3)=m3*(d3^2+L1*d3*cos(x(2)+x(3))+L2*d3*cos(x(3

)))+I3; 

M(2,1)=m2*(d2^2+L1*d2*cos(x(2)))+I2... 

       

+m3*(L2^2+d3^2+L1*L2*cos(x(2))+2*L2*d3*cos(x(3))+L1*

d3*cos(x(2)+x(3)))+I3; 

M(2,2)=m2*d2^2+I2+m3*(L2^2+d3^2+L2*d3*cos(x(3)))

+I3; 

M(2,3)=m3*(d3^2+L2*d3*cos(x(3)))+I3; 

M(3,1)=m3*(d3^2+L1*d3*cos(x(2)+x(3))+L2*d3*cos(x(3

)))+I3; 

M(3,2)=m3*(d3^2+L2*d3*cos(x(3)))+I3; 

M(3,3)=m3*d3^2+I3; 

C(1)=-

((m2*L1*d2+m3*L1*L2)*sin(x(2))+m3*L1*d3*sin(x(2)+x(3))

)*(2*x(4)*x(5)+x(5)^2)... 

       -

(m3*L1*d3*sin(x(2)+x(3))+m3*L2*d3*sin(x(3)))*(2*x(4)*x(6

)+2*x(5)*x(6)+x(6)^2); 

C(2)=((m3*L1*L2+m2*d2*L1)*sin(x(2))+m3*d3*L1*sin(

x(2)+x(3)))*x(4)^2 ... 

      -

m3*d3*L2*sin(x(3))*(2*x(4)*x(6)+2*x(5)*x(6)+x(6)^2); 

C(3)=(m3*L1*d3*sin(x(3)+x(4))+m3*L2*d3*sin(x(3)))*x

(4)^2 ... 

    +m3*L2*d3*sin(x(3))*(2*x(4)*x(5)+x(5)^2); 

 

dx(1)=x(4); 

dx(2)=x(5); 

dx(3)=x(6); 

dx(4:6)=M\(T'-C'); 

dx(7:12)=F; 

dx=dx'; 

end 

 

 

 

Circle: 

function circle(x,r) 

%x and y are the coordinates of the center of the circle 

%r is the radius of the circle 

%0.01 is the angle step, bigger values will draw the circle 

faster but 

%you might notice imperfections (not very smooth) 

ang=0:0.01:2*pi;  

xp=r*cos(ang); 

yp=r*sin(ang); 

plot(x(1)+xp,x(2)+yp,'k','LineWidth',2); 

fill(x(1)+xp,x(2)+yp,'k') 

end 

 

 

 

 

 

 

 

 


