
 1

 ME-5493-001 Final Project, Robotics
December 16, Fall 2017
San Antonio, TX, USA

 MOTION CAPTURE AND HUMANOIDS

 Andrew Waterreus

Robotics and Motion Laboratory,
Dept. of Mechanical Engineering

San Antonio, TX, USA 78249
ajwhersh@gmail.com

ABSTRACT
The generation of new custom motions with robots,

especially humanoids, requires a significant amount of time and
is quite challenging, especially for those new to programming,
or the operation of robotic systems. In order to reduce the amount
of time required, as well as significantly make this process easier
for beginners, a motion capture system could be utilized to track
the motion of a human occupant, and generate data that could
then be uploaded to the robot as a new custom motion.

The proper utilization of a DARWIN OP2 robot and how to
develop new motions needed to be learnt in order to realize the
challenge needing to be overcome. Next, simulation and
animation files were provided to allow for faster testing of the
processed data acquired from a motion capture system. These
took a significant amount of time to learn to use due to lack of
prior programming knowledge, and unfamiliarity with the
structure of the particular codes. Data was acquired from the
motion capture system about a simple movement of the right arm
which the robot would have been capable of replicating, but the
data was not processed into a form that was able to be tested by
the animation code before the semester ended. Thus, more work
in the future needs to be performed in order to see that this
experiment comes to fruition.

1. NOMENCLATURE
RAM – Robotics and Motion
DOF – Degrees of Freedom

2. INTRODUCTION
 While learning to operate a DARWIN OP2 humanoid robot,
the difficulty of generating new custom robotic motions was
realized. A significant amount of time could potentially be saved
by developing a method of processing the extensive data
generated by a motion capture system, into a form that would be
usable by the robot. Luckily, C programs had already been
developed to generate custom data and an accompanying
humanoid animation by another student. This would allow for
the processed data from the motion capture system to be rapidly
tested on an animation, rather than needing to constantly upload
and run each test on the physical robot. Although the human
body is much more complex than the DARWIN OP2 robot could

possibly represent, the idea was chosen to be pursued, as long as
motions were kept simple.

3. METHODS
First a position in the RAM Lab at UTSA needed to be

acquired as it possessed the required materials and equipment
necessary to perform this experiment, as well as mentorship in
the form of Dr. Pranav Bhounsule and other more advanced
students. This was done early in the semester so as to become
familiar with the equipment and the other lab members. The
experiment would be performed with a DARWIN OP2
humanoid robot supplied by the RAM lab, C code files for both
simulation and animation generation of a humanoid robot
supplied by another student member in the lab, and lastly, the
VICON motion capture system available in Dr. Amir Jafari’s
side of the lab. The code files and images of the equipment can
be found in Appendix sections A and B respectively.

In performing the experiment, the operation of the
DARWIN OP2 robot first needed to become familiar, so time
was spent in the lab learning how to modify its C++ files in order
to make it perform desired tasks, such as different physical or
vocal animations. The robot did come with a small booklet that
provided introductory le During this portion of the project, an
opportunity to represent the UTSA RAM lab on Live TV by
modifying the DARWIN robot to perform a simple introduction
and greeting at the opening of the San Antonio DoSeum’s new
exhibit, “Science Fiction, Future Science,” was presented. This
opportunity provided excellent motivation to quickly learn how
to modify voice animation files, and to create unique body
motions.

Next, time needed to be spent on learning to properly utilize
the humanoid simulation and animation files provided by the
graduate student Robert Brothers. This required a significant
amount of time due to lack of prior coding knowledge and
needing to decipher a skilled programmer’s codes. The codes
were not written for a beginner level programmer so they did not
have many descriptive comments to provide explanations of
each line. The simulation and animation codes, as well as images
of the animation can be viewed in Appendix sections A and B
respectively.

 2

Once a basic understanding of the code files was obtained,
the proper utilization of the VICON motion capture system
needed to be learned. Currently, only a few students working
under Dr. Jafari know how to use it, so the grad student Christian
Wahrmund was consulted, as was advised by Dr. Bhounsule.
Christian provided a satisfactory explanation of how the system
is able to acquire usable data about motion within the system
during utilization. First the VICON Nexus, or the system’s
software was activated on Christian’s computer. Christian
performed this while I set the system up. Two tripods with high
quality cameras were set up among the already mounted cameras
in order to bring the total number of cameras to eight. Extra care
was taken during this step, as the equipment for the motion
capture system alone is worth over $40,000.

Next, the system was calibrated in order for all of the
cameras to know where they were with respect to each other and
a coordinate origin point generated by Christian. This was done
by utilizing a wand with four LEDs and algorithms that come
with the VICON software that uses the known distances and
relations of the LEDs to analyze the varying images of the
cameras to develop relations between each camera. Even a tiny
bump on one of the cameras would upset these relationships and
cause the entire system to require recalibration, as was
experienced once.

The cameras operate by tracking small reflective silver
markers placed on the user’s body. The correct placing of the
markers can be seen in the image below.

 VICON system marker placement

The cameras work by scanning for the specific reflectivity

of the markers and generating 3-D coordinates for each of them
within the system. For the project, it was determined that it
would be best to only gather data on the motion of my right arm,
as the system generates a significant amount of data and a
“motion” that the DARWIN robot would be capable of
performing needed to be done. The robot has only 20 DOF,

while the human body has 244, although many are utilized in
small actions like bending of fingers, which the robot does not
even have. In the recorded motion, only the shoulder and elbow
joints were rotated, as the robot’s arm has 4 DOF here, the same
as a human arm. Thus, it should be capable of replicating the
motion within reasonable limits. The VICON Nexus saves all of
the data required for any VICON Nexus software to digitally
repeat the motion.

Finally, the motion capture data needed to be processed to
convert the Cartesian coordinates of the markers into rotation
angles of the shoulder and elbow which could be used in the
simulation, as well as the robot itself. Unfortunately, this was not
completed before the Fall 2017 semester ended, and so will need
to be performed at a later date.

4. RESULTS
The simulation file, when run, generates a significant

amount of data in the form of coordinate and rotation values for
the entire body of the simple humanoid model generated by the
animation file, as can be seen in this image.

 Simulation file data

When the animation file is run it generates a basic humanoid

figure based off of the simulation files data. Depending on the
data, the figure can assume a large variety of positions; an
example can be seen in the following image.

 3

 Animation based on simulation file data

After the motion capture system was utilized, the data for

the whole test was saved so that it could be opened on, and
digitally repeated from any complete VICON software.
Unfortunately, the charts of the Cartesian coordinates for each
marker were only able to currently be viewed on the software
and images of them were not taken at the time when the system
was being used. A figure of the data file showing how much data
was generated can be seen in the following image though, as well
as the large variety of file formats, observed through the
subscripts at the end of each file’s name.

 Arm Test 2 Folder image

5. DISCUSSION
The simulation code file generates a large list of coordinate

and angular rotation values that are then used by the animation
file in generating the humanoid image. This experiment would
test the possibility of utilizing the data from the VICON system,

after some filtering and other post processing, as a potential
substitute for the simulation files data. Due to running out of
time, this possibility was not fully tested unfortunately.

The data collected from the motion capture test needs to be
able to be viewable from software other than VICON, so I
needed to search for software packages that could open the
various file formats, which was a task not previously expected.
A potential method suggested by Dr. Bhounsule was software
packages available for download on MATLAB.

Although data was able to be obtained about the motion of
an arm, and the basic operation and utilization of the DARWIN
OP2 robot was able to be learnt, the full experiment was not able
to be completed. Limitations in my approach that could be the
cause of this may have been that I started with almost zero
knowledge of programming or the utilization of the required
equipment. Due to my lack of familiarity with the VICON
software, I had not expected the format of the data it would
produce, and how many different file formats it would be
generated as.

6. CONCLUSION AND FUTURE WORK
The operation and utilization of the UTSA RAM Lab’s

DARWIN OP2 was learnt and during this process, the challenge
of generating new, custom motions with robots, especially
humanoids, was realized. The possibility of using motion
capture, to gather data about a human test subject, and then using
that data to more rapidly generate the custom motions was
presented. In order to more easily start this experiment, C code
files were provided that could first generate custom data in a
form that could potentially be similar to the data generated by a
motion capture system; then the data would be used to generate
a moving humanoid figure through an animation code. The data
eventually obtained by the motion capture system needed some
filtering and post processing, as the VICON system rapidly
generates a significant amount of data. The system generated
30.1 MB of data through less than ten seconds of motion capture
of only seven markers on one arm. This is larger than most full
textbook pdf files. Limitations that delayed progress through this
experiment would be lack of prior programming knowledge, as
well as no familiarity with the equipment.

In the future, a proper method of rapidly filtering the
VICON data into a form usable by the animation file, and
potentially the DARWIN robot, might be found. The simulation
and animation codes could also be more fully understood, as this
was a large source of delay. Potentially the codes could be
modified to include descriptive comments so that other
beginners could more rapidly use them.

ACKNOWLEDGMENTS
I’d like to acknowledge Dr. Pranav Bhounsule and Dr. Amir

Jafari for their mentorship and the ability to use their equipment,
as well as a position in the RAM Lab.

 I’d also like to acknowledge Robert Brothers and Christian
Wahrmund for their assistance in performing the experiment.

 4

APPENDIX
A. Code
 A.1 Simulation.c code

#include <stdio.h>
#include <math.h>
#include "params.h"

#include <string.h>
#include "le_ludecomp.c"
#include "useful.c"

int save_date_for_animation();
FILE *fid;
int HEAD_HEIGHT = 1; //If HEAD_YAW is set to (Lf+L5+L4+Lty+Lh) in MATLAB then do this, we assume that the height is

int main()
{

 double t=0, q[NQ] = {0}, u[NU] = {0}; q[NQ-1] = 1;
 int i;

 double tend = 10*60;
 double dt = 0.1;

 fid = fopen("data.txt","w");

 double temp_pos[3];

 sdinit(); sdprinterr(stderr);
 //sdstate(t,q,u); sdprinterr(stderr);

 ///////// modify the head joint location %%%
 if (HEAD_HEIGHT==1) //Takes the height to (Lf+L5+L4+Lty+Lh/2) instead of (Lf+L5+L4+Lty+Lh) (in MATLAB)
 {
 sdgetbtj(HEAD_YAW,temp_pos); temp_pos[2] = temp_pos[2]-Lh/2;
 sdbtj(HEAD_YAW,temp_pos);

 sdgetitj(HEAD_PITCH,temp_pos); temp_pos[2] = temp_pos[2]-Lh/2;
 sditj(HEAD_PITCH,temp_pos);
 sdgetbtj(HEAD_PITCH,temp_pos); temp_pos[2] = temp_pos[2]-Lh/2;
 sdbtj(HEAD_PITCH,temp_pos);
 }

 sdinit(); sdprinterr(stderr);
 sdstate(t,q,u); sdprinterr(stderr);

 while (1)
 {

 5

 int k=0;
 for (i=6;i<NQ-1;i++)
 {
 double tt = 0.1*t;

 //if (i==BT2 || i==BS2 || i== BF2 || i==BSR || i==BSL)
 //{//do nothing
 //}
 //else
 //{
 //printf("%d \n",k);
 //q[i] = joint_limits_rad[k][1] + (sin(tt)+1)*((joint_limits_rad[k][0]-joint_limits_rad[k][1])/2.0);
 q[i] = 0.5*(-sin(tt)+1)*joint_limits_rad[k][0] + 0.5*(sin(tt)+1)*joint_limits_rad[k][1];
 //q[i] = joint_limits_rad[k][0] ;
 //q[i] = joint_limits_rad[k][1] ;
 //q[i] = (joint_limits_rad[k][0]+joint_limits_rad[k][1])/2.0;

 //if (k==LSS || k==RSS)
 //printf("%f ",q[k]);
 k +=1;

 //}
 //printf("\n");
 }

 sdstate(t,q,u); sdprinterr(stderr);

 //save data to a file
 save_data_for_animation();

 if (t>tend)
 break;

 t += dt;

 }

 //close file
 fclose(fid);

 // check for errors
 sdprinterr(stderr);

 return 0;
}

void
sduforce(double t, double *q, double *u)
{}

int save_data_for_animation()
{
 double pos1[3],pos2[3];

 6

 int info[50], slider[6];
 int inb_body_no,outb_body_no;
 double inb_to_joint[3], body_to_joint[3];
 double pos_end_effector[3] = {0};
 int ii,jj,i;

 //Handle the torso first
 sdgetbtj(TORSO,body_to_joint); sdprinterr(stderr);
 sdpos(TORSO,body_to_joint,pos1); sdprinterr(stderr);
 sdgetitj(HEAD_YAW,inb_to_joint); sdprinterr(stderr);
 sdpos(TORSO,inb_to_joint,pos2);
 fprintf(fid,"%f %f %f ",pos1[0],pos1[1],pos1[2]);
 fprintf(fid,"%f %f %f ",pos2[0],pos2[1],pos2[2]);

 printf("%f %f %f ",pos1[0],pos1[1],pos1[2]);
 printf("%f %f %f ",pos2[0],pos2[1],pos2[2]);
 printf("\n");

 // All joints except the TORSO joint
 for (ii=1;ii<NBOD;ii++) //cycle through info file
 {
 // (body=outb_body_no) - body_to_joint - (joint=outb_body_no) - inb_to_joint - (body=inb_body_no)
 // sdjnt(joint,info,slider);
 // where info[2] info[3] is
 // inboard outboard (from _i file)

 //This loop finds the start position of all joints except the TORSO
 for (jj=1;jj<NBOD;jj++)
 {
 sdjnt(jj,info,slider); sdprinterr(stderr);
 //inb_body_no = info[2]; //inboard body number = inboard joint number
 outb_body_no = info[3]; //outboard body number = outboard joint number
 if (outb_body_no==ii)
 {
 sdgetbtj(outb_body_no,body_to_joint); sdprinterr(stderr);
 sdpos(outb_body_no,body_to_joint,pos1); sdprinterr(stderr);
 }
 }

 //This find the end position of all joints except the TORSO
 //Need to handle end-effectors differently
 if (ii == R_ELBOW_YAW)
 {
 pos_end_effector[0] = 0; pos_end_effector[1] = -LH; pos_end_effector[2] = 0; //position of end-effector wrt last joint (see

Darwin kinematics figure from ASME paper)
 for (i=0;i<3;i++)
 pos_end_effector[i] += body_to_joint[i]; //position of end-effector wrt to com, as com = 0,0,0
 sdpos(ii,pos_end_effector,pos2);

 }
 else if (ii == L_ELBOW_YAW)
 {

 7

 pos_end_effector[0] = 0; pos_end_effector[1] = LH; pos_end_effector[2] = 0; //position of end-effector wrt last joint (see
Darwin kinematics figure from ASME paper)

 for (i=0;i<3;i++)
 pos_end_effector[i] += body_to_joint[i]; //position of end-effector wrt to com, as com = 0,0,0
 sdpos(ii,pos_end_effector,pos2);
 }
 else if (ii==R_ANKLE_ROLL)
 {
 pos_end_effector[0] = 0; pos_end_effector[1] = 0; pos_end_effector[2] = -LF; //position of end-effector wrt last joint (see

Darwin kinematics figure from ASME paper)
 for (i=0;i<3;i++)
 pos_end_effector[i] += body_to_joint[i]; //position of end-effector wrt to com, as com = 0,0,0
 sdpos(ii,pos_end_effector,pos2);
 }
 else if (ii==L_ANKLE_ROLL)
 {
 pos_end_effector[0] = 0; pos_end_effector[1] = 0; pos_end_effector[2] = -LF; //position of end-effector wrt last joint (see

Darwin kinematics figure from ASME paper)
 for (i=0;i<3;i++)
 pos_end_effector[i] += body_to_joint[i]; //position of end-effector wrt to com, as com = 0,0,0
 sdpos(ii,pos_end_effector,pos2);
 }
 else if (ii==HEAD_PITCH)
 {
 pos_end_effector[0] = 0; pos_end_effector[1] = 0; //position of end-effector wrt last joint (see Darwin kinematics figure

from ASME paper)
 if (HEAD_HEIGHT == 1)
 pos_end_effector[2] = Lh/2+HY;
 else
 pos_end_effector[2] = HY;
 for (i=0;i<3;i++)
 pos_end_effector[i] += body_to_joint[i]; //position of end-effector wrt to com, as com = 0,0,0
 sdpos(ii,pos_end_effector,pos2);
 }
 else
 {
 //This loop tries to find inboard body joint number attached
 for (jj=1;jj<NBOD;jj++)
 {
 sdjnt(jj,info,slider);
 inb_body_no = info[2]; //inboard body number = inboard joint number
 outb_body_no = info[3]; //outboard body number = outboard joint number
 if (inb_body_no==ii)
 {
 sdgetitj(outb_body_no,inb_to_joint);
 sdpos(inb_body_no,inb_to_joint,pos2);
 }
 }
 }

 fprintf(fid,"%f %f %f ",pos1[0],pos1[1],pos1[2]);
 fprintf(fid,"%f %f %f ",pos2[0],pos2[1],pos2[2]);
 //count=count+6;

 printf("%f %f %f ",pos1[0],pos1[1],pos1[2]);

 8

 printf("%f %f %f ",pos2[0],pos2[1],pos2[2]);
 printf("\n");
 //

 // fprintf(fid,"\n");

 }
 return 0;
}

 A.2 animation.c code

/***/
/*
 animate.c: animate a data file.
*/

/***/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "params.h"

#include "drawstuff.h" /* ODE Graphics stuff */
#include "drawstuff-cga.h" /* CGA stuff to make things clearer */
#include "sdlib.h"
#include "le_ludecomp.c"
#include "useful.c"
//#include "params.h"

#define NPOINTS 10000

// ************ Change this as per the problem being solved *********//
#define DATA_PTS 126 //Set this based on columns in data file
float data[NPOINTS][DATA_PTS]; //Structure that will store the data.
char DATA_FILE[] = "data.txt"; //Data file to read
float STEPS;
int data_points;
//int COUNTER;

double trans_zz = 0.37;

// ** //

static void read_data()
{
 int i, j;
 FILE *fid;
 // int data_points;

 9

 fid = fopen(DATA_FILE,"r");

// double dc[3][3];
// sdang2dc(0,0,0,dc);
// /* Read file */
// for (i=0;i<NU;i++)
// {
// fscanf(fid,"%f", &link_lengths[i]);
// printf("%d %f \n",i,link_lengths[i]);
// }

 i = 0;
// fscanf(fid, "%d", &data_points);
// if (data_points>DATA_POINTS);
// {
// printf("Please increase DATA_POINTS \n");
// exit(1);
// }

 while(!feof(fid))
 {
 for (j=0;j<DATA_PTS;j++)
 fscanf(fid, "%f", &data[i][j]);

 //printf("%d \n",i);
 i = i+1;

 if (i>NPOINTS)
 {
 printf("There more simulation steps then alloted memory for data \n");
 printf("Increase NPOINTS \n");
 exit(1);
 }
 }
 fclose(fid);
 STEPS = i-1;

// /* For Display only */
// for (i=0;i<1;i++)
// {
// for (j=0;j<DATA_PTS;j++)
// printf("%1.2f ",data[i][j]);
// printf("\n");
// }
}

/***/

static void start()
{

 10

 // set up view point

 //Side view
// static float xyz[3] = {1.6759,-0.3451,1.0800};
// static float hpr[3] = {170.5000,-11.0000,0.0000};
//
 //Top view
// static float xyz[3] = {0.3400,-0.5899,2.2900};
// static float hpr[3] = {152.5000,-67.0000,0.0000};

 //right side view
// static float xyz[3] = { 1.3294,0.1563,0.5600};
// static float hpr[3] = {-173.5000,-0.5000,0.0000};

 //front close up view
 static float xyz[3] = { 0.5725,0.0056,0.3900};
 static float hpr[3] = {-178.5000,2.0000,0.0000};

 dsSetViewpoint (xyz,hpr);
}

/**/
// called when a key pressed

static void command (int cmd)
{
 // don't handle user input yet.
 dsPrint ("received command %d (`%c')\n",cmd,cmd);
}

/***/

//f
static void display (int pause)
{
 //float center[3];
 float RR[12]={0};
 float R[12] = {0};
 float pos1[3], pos2[3], mid_pos[3];
 double dpos[3];
 int ii,i,j;
 //float sides[3] = { WIDTH, HEIGHT, LENGTH };

 static int COUNTER = 0;

 //printf("%d \n",COUNTER);

 j = 0;

 /* NOTE: The R matrix is as follows

 11

 R = [R[0] R[1] R[2] R[3];
 R[4] R[5] R[6] R[7];
 R[8] R[9] R[10] R[11]];
 The elements R[3], R[7] and R[11] are not used */
 RR[0] = RR[5] = RR[10] = 1;

 //int bodies = data_points/6;
 for (ii=0;ii<NBOD;ii++)
 {

// center[XX] = data[COUNTER][j]+trans_xx; j = j+1;
// center[YY] = data[COUNTER][j]+trans_yy; j = j+1;
// center[ZZ] = data[COUNTER][j]+trans_zz; j = j+1;

// for (i = 0; i < 12; i++)
// R[i] = 0;

// R[0] = data[COUNTER][j]; j = j+1;
// R[1] = data[COUNTER][j]; j = j+1;
// R[2] = data[COUNTER][j]; j = j+1;
// R[4] = data[COUNTER][j]; j = j+1;
// R[5] = data[COUNTER][j]; j = j+1;
// R[6] = data[COUNTER][j]; j = j+1;
// R[8] = data[COUNTER][j]; j = j+1;
// R[9] = data[COUNTER][j]; j = j+1;
// R[10] = data[COUNTER][j]; j = j+1;

 pos1[XX] = data[COUNTER][j]; j = j+1;
 pos1[YY] = data[COUNTER][j]; j = j+1;
 pos1[ZZ] = data[COUNTER][j]+ trans_zz; j = j+1;

 pos2[XX] = data[COUNTER][j]; j = j+1;
 pos2[YY] = data[COUNTER][j]; j = j+1;
 pos2[ZZ] = data[COUNTER][j]+ trans_zz; j = j+1;

 float link_length = sqrt((pos2[0]-pos1[0])*(pos2[0]-pos1[0])+
 (pos2[1]-pos1[1])*(pos2[1]-pos1[1])+
 (pos2[2]-pos1[2])*(pos2[2]-pos1[2]));

 if (link_length!=0)
 {
 dpos[0] = (pos2[0]-pos1[0])/link_length;
 dpos[1] = (pos2[1]-pos1[1])/link_length;
 dpos[2] = (pos2[2]-pos1[2])/link_length;
 }

 //A: Get position of mid-point
 //sdvadd(pos1,pos2,mid_pos); sdvmul(0.5,mid_pos,mid_pos);
 for (i=0;i<3;i++)
 mid_pos[i] = 0.5*(pos1[i]+pos2[i]);

 12

 //B: Get orientation matrix

// A method to find R matrix between vector along z axis and line joint 2 joints (Rodriguez formulae)
 double zvec[3]={0,0,1}; //already normalized

// % Get the axis and angle
// 1) angle = acos(v1'*v2);
 float value = dpos[0]*zvec[0]+dpos[1]*zvec[1]+dpos[2]*zvec[2];
 if (value>=1)
 value = 1;
 if (value<=-1)
 value = -1;
 //if (ii==11)
 // printf("%f \n",temp);
 //float theta = acos(dpos[0]*zvec[0]+dpos[1]*zvec[1]+dpos[2]*zvec[2]);
 float theta = acos(value);//angle between zvector and dpos
 //theta = 0.5;
 //double theta_temp = acos(dpos[0]*zvec[0]+dpos[1]*zvec[1]+dpos[2]*zvec[2]);
 //if (ii==11)
 // printf("%f \n",theta_temp);

// OR theta = acos((pos2[ZZ]-pos1[ZZ])/length);

// 2) axis = cross(v1,v2)/norm(cross(v1,v2));
 double axis[3];
 sdvcross(zvec,dpos,axis);
 double l_axis = sqrt(axis[0]*axis[0]+axis[1]*axis[1]+axis[2]*axis[2]);
 //if (ii==11)
 // printf("%f \n",l_axis);
 if (l_axis!=0) //normalize if length is not equal to zero
 {
 axis[0] = axis[0]/l_axis;
 axis[1] = axis[1]/l_axis;
 axis[2] = axis[2]/l_axis;
 }

// % A skew symmetric representation of the normalized axis
// 3) axis_skewed = [0 -axis(3) axis(2) ; axis(3) 0 -axis(1) ; -axis(2) axis(1) 0];
 double axis_skewed[3][3]={0};
 axis_skewed[0][1] = -axis[2];
 axis_skewed[0][2] = axis[1];
 axis_skewed[1][0] = axis[2];
 axis_skewed[1][2] = -axis[0];
 axis_skewed[2][0] = -axis[1];
 axis_skewed[2][1] = axis[0];
//
// % Rodrigues formula for the rotation matrix
// 4) R = eye(3) + sin(angle)*axis_skewed + (1-cos(angle))*axis_skewed*axis_skewed;
 double I[3][3], r[3][3]={0};
 double A[3][3], B[3][3]={0};

 identity(3, &I[0][0]);
 multiplySCALAR2MAT(3, 3, &axis_skewed[0][0], sin(theta), &A[0][0]);
 multiplyMAT2MAT(3, 3, 3, 3, &axis_skewed[0][0], &axis_skewed[0][0], &B[0][0]);

// int iii,jjj;

 13

// if (ii==11)
// {
// for(iii=0;iii<3;iii++)
// {
// for(jjj=0;jjj<3;jjj++)
// {
// printf("%f ",B[iii][jjj]);
// }
// printf("\n");
// }
// printf("\n");
// }

 float one_cos = (1-cos(theta));
 //if (ii==11)
 // printf("%f \n",theta);
 multiplySCALAR2MAT(3, 3, &B[0][0], one_cos , &B[0][0]);

 add(3, 3, &I[0][0], &A[0][0], &r[0][0]);

// int iii,jjj;
// if (ii==11)
// {
// for(iii=0;iii<3;iii++)
// {
// for(jjj=0;jjj<3;jjj++)
// {
// printf("%f ",B[iii][jjj]);
// }
// printf("\n");
// }
// printf("\n");
// }

 add(3, 3, &B[0][0], &r[0][0], &r[0][0]);
// int iii,jjj;
// if (ii==11)
// {
// for(iii=0;iii<3;iii++)
// {
// for(jjj=0;jjj<3;jjj++)
// {
// printf("%f ",B[iii][jjj]);
// }
// printf("\n");
// }
// printf("\n");
// }

 //5) Convert r matrix to something which draw-stuff understands
 for (i = 0; i < 12; i++)

 14

 {
 R[i] = 0;
 //if (ii==11)
 // printf("%f ",R[i]);
 }
 //if (ii==11)
 //printf("\n");

 for (i = 0; i < 3; i++)
 {
 R[i] = r[0][i];
 R[i+4] = r[1][i];
 R[i+8] = r[2][i];

 }
 /*if (ii==11)
 {
 for (i=0;i<12;i++)
 printf("%f ",R[i]);

 }
 printf("\n");*/

 //Now draw something
 //for (i=0;i<12;i++)
 // printf("%f ,", R[i]);
 // printf("\n");

 //Put spheres at the joints
 dsSetTexture (DS_WOOD);
 dsSetColor (0,1,0);
 dsDrawSphere(pos2,RR,0.015);

 //Option 1: to use lines
 // dsSetTexture (DS_WOOD);
 // dsSetColor (1,0,0);
 // dsDrawLine(pos1,pos2);

 //Option 2: Use solids (box or capsule)
 dsSetTexture (DS_WOOD);
 //dsSetColor (0,0,0); //black
 dsSetColor (1,1,1); //gray
 //ooiijjj
 //printf("%f %f",robot_dim[ii][0],robot_dim[ii][1]);

 float dimensions[3] = {robot_dim[ii][0],robot_dim[ii][1],link_length};
 //if(ii==11 || ii==12)
 //{
 dsDrawBox(mid_pos,R,dimensions);
 //printf("%f %f %f \n", mid_pos[0],mid_pos[1],mid_pos[2]);
 //for (i=0;i<12;i++)
 // printf("%f ,", R[i]);
 //printf("\n");
 //dsDrawCapsule(mid_pos,R,link_length,0.01);
 //dsDrawCylinder(mid_pos,R,link_length,0.01);

 15

 //}
 }

 // Various geometries that can be animated //
// switch(STR)
// {
// case 'b':
// /* Draw a box */
// dsSetTexture (DS_WOOD);
// dsSetColor (0,0,1);
// dsDrawBox(center, R, sides);
// break;
// case 's':
// /* Draw a sphere */
// dsSetTexture (DS_WOOD);
// dsSetColor (0,1,0);
// dsDrawSphere(center,R,RADIUS);
// break;
// case 'c':
// /* Draw a cylinder */
// dsSetTexture (DS_WOOD);
// dsSetColor (1,0,0);
// dsDrawCylinder(center,R,LENGTH,RADIUS);
// break;
// case 'p':
// /* Draw a capsule */
// dsSetTexture (DS_WOOD);
// dsSetColor (0.5,0.5,0.5);
// dsDrawCapsule(center,R,LENGTH,RADIUS);
// break;
// default :
// /* Draw a box */
// dsSetTexture (DS_WOOD);
// dsSetColor (0,0,1);
// dsDrawBox(center, R, sides);
// }

 COUNTER+=1;

 if(COUNTER>=STEPS)
 COUNTER = 0; //reset counter

 /* Delay */
 //double f;
 //for(f = 0.0; f < 2000000.0; f += 0.1);

}

 16

/***/
/**/

//void
//sduforce(double t, double *q, double *u)
//{}

int main (int argc, char **argv)
{

 // Read data and load this into memory
 read_data();

// printf("/*********************************/");
/* printf("\nWhich geometry do you want to be animated? \n");
 printf("b = box \ns = sphere \nc = cylinder \np = capsule\n");
 printf("Enter a choice \n");
 scanf("%c",&STR);*/

 dsFunctions fn;

 // setup pointers to drawstuff callback functions
 fn.version = DS_VERSION;
 fn.start = &start;
 fn.step = &display;
 fn.command = &command;
 fn.stop = 0;
#ifdef WIN32
 fn.path_to_textures = "C:/cga/kdc/sim5/useful/drawstuff-windows/textures";
#else
 //Change to this appropriately
 // fn.path_to_textures = "/Users/pab47/Documents/DISK/template_files/template_C/animation-

drawstuff/home_comp/useful/drawstuff-linux/textures";
 fn.path_to_textures = "/Users/andrewwaterreus/Desktop/darwin_animation/drawstuff/textures";
// fn.path_to_textures = "/Users/pranavb/Documents/pranavb-macbook/2014Backup/template_files/template_C/animation-

drawstuff/all_geometries/drawstuff/textures";
 // fn.path_to_textures = "/Users/pranavb/Documents/2014Backup/template_files/template_C/animation-

drawstuff/all_geometries/drawstuff/textures";
#endif

 // do display
 dsSimulationLoop(argc, argv, /* command line arguments */
 2*352, 2*288, /* window size */
 &fn); /* callback info */

 return 0;
}

/**/

 17

B. Images
 B.1 DARWIN OP2 Robot

 B.2 VICON motion capture system

 18

