
 1  

ME 5493 Robotics 
December 15, Fall 2017 

San Antonio, TX, USA 

          DOMAIN RANDOMIZATION FOR CLASSIFYING IMAGES 
 

 

 Ezra Ameperosa 
Robotics and Motion Laboratory, 

Dept. of Mechanical Engineering 
San Antonio, TX, USA 78249 
ezra.ameperosa@gmail.com 

 

 

 

ABSTRACT 
When creating simulations for robots we often find 

that when implementing on the actual system, it doesn’t 

always work as intended as we cannot model such things 

as wear and tear of robot parts and so on. We refer to this 

as the “reality gap”. In this paper we investigate Domain 

Randomization for computer vision, a technique in deep 

neural networks in which a network is trained on generated 

images with random image features. We use GoogleNet 

CNN with pretrained weights and train it with our synthetic 

dataset. We train the neural network three separate times 

with varying learning rate and observe how well each 

generalizes to the real world. Our results show that our 

synthetic data may need more complexity in its 

randomization and we discuss possible improvements.  

1. INTRODUCTION 
There lies an issue in transferring simulation into 

hardware: the reality gap. While we can make exquisite 

simulations that represent the real world accurately, there 

is the underlying fact that nothing is made perfect. 

Moreover, trying to model all the discrepancies between a 

simulated and real environment is a challenging task. 

With the advancements in machine learning and deep 

neural networks, we see work in closing the reality gap 

using synthetic data. Using synthetic data is attractive as 

neural networks require a lot of data and creating synthetic 

data is quick with the advances in computation power. 

Furthermore, collecting and labeling data is time 

consuming, however we can quickly and easily label our 

data if we create it synthetically. In [1] Bousmalis et al. 

uses domain adaptation in which they train their network 

with synthetic data and transfer policies to real-world 

model and continue with training their network to better 

adapt to the real world. Peng et al. [2] use inaccurate 3D 

CAD models to create synthetic images that improves 

performance on the PASCAL data set. In [3] the authors 

use pure synthetic data to have robotic manipulator locate 

and pick up objects. Here they claim to be the first to 

successfully transfer a deep neural network trained only on 

fabricated data. 

In this paper we explore the use of domain 

randomization in computer vision and create a binary 

classification neural network trained only on synthetic data 

to identify a toy resembling the school’s mascot, Rowdy.  

2. METHODS. 
We wish to perform binary classification of whether 

Rowdy is in a picture or not with the use of domain 

randomization. In the proceeding sections we describe our 

approach to creating synthetic images and the deep neural 

network architecture we use to train the classifier. 

 

2.1 Domain Randomization 

In creating the synthetic data, we randomize various 

aspects to train the classifier to be invariant to these 

randomizations when it is expose to real images. For 

creating and rendering the images, we use Blender. We 

randomize the following elements: 

• Three cameras varying in position  

• Number of lighting sources and their placement 

• Number and type of distraction shapes 

• Size, position and orientation of each object 

• Color of the background and objects. 

Each generated scene contains three cameras set at a 

fixed radius from the center of the scene. The cameras are 

oriented spherically about the center of the scene 

randomizing ϕ and θ angle. The lights are randomized in a 

similar manner as the cameras. Between 1 and 5 light 

sources are added in each scene are set normal to the 

background. 

There are 0 to 5 distraction shapes added to each scene 

that can either be a sphere or a cube. Each distraction shape 

is given a random color, and is positioned randomly in each 

scene. 
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We generate 3,350 randomized scenes taking images 

of each scene with the three cameras with half of the scenes 

containing Rowdy. We then separate 90% of the images 

into a training data set and the rest as the validation data 

set. There was no preprocessing of the generated images. 

 

2.2 Neural Network 

For our neural network we used the GoogleNet 

architecture with pretrained weights from ILSVRC2014 

data set. We choose GoogleNet because of its speed and 

accuracy compared to other architectures [4]. We also use 

transfer learning rather than learning from scratch as [3] 

shows learning is faster than random weights, which is 

typical for transfer learning. We modify GoogleNet to 

output binary classification and change the last three layers 

into a two neuron fully connected layer, a softmax layer 

and a classification layer. 

We use 5 epochs to train the network with a minibatch 

size of 32. We perform stochastic gradient descent with 

momentum experimenting with different learning rates 

(1e-4, 1e-5, and 1e-6). We keep the momentum constant to 

default at 0.9 and add L2 regularization with the constant 

equal to 0.1. 

3. RESULTS 
Initially, we trained the classifier at a learning rate of 

1e-6 giving us a 95.82% accuracy on the validation images. 

We test the trained classifier on actual images with some 

distractions and find that this first classifier is overfitting 

the training data; the classifier falsely identifies Rowdy in 

the real images. We retrain the classifier two additional 

times with different learning rates (Table 1). We test each 

classifier, examining how well the classifiers generalize to 

real images. Alike Figure 2, we exhibit each classifier to 

the same images to determine how well each perform. We 

find that the classifier with 85% validation accuracy 

performs the best on classifying real images. 

 

Table 1: Accuracy of the classifier is on synthetic data using 

different learning rates. We test how well each generalize to 

real images. 

Learning Rate 
Validation 

Accuracy 

1e-4 95.82 

1e-5 91.84 

1e-6 85.57 

 

We perform further tests on the classifier with 85% 

accuracy and exhibit to different images changing features 

such as the Rowdy figure, the position and orientation 

(Figure 3). We also test on images with Rowdy partially 

occluded with the classifier showing it can identify 

correctly. The robustness of the classifier is tested, 

changing the background and introducing different 

distraction objects.  

 

 
Figure 2: Certainty of the classifiers of different validation 

accuracies. Each classifier is subjected to the same image, 

labeling the image of either having Rowdy in the picture or 

not. The number under each label state each classifiers 

certainty. 

4.  DISCUSSION 
The classifier is robust in identifying images that are 

closely related to the synthetic data, however it has 

limitations on classifying with textured backgrounds as we 

trained on a single-color background. Adding more 

variability in the background, texturing and patterns, 

would make the classifier adapt better to backgrounds. 

There are also difficulties in misclassifying real images 

with distraction objects whose shapes are exceptionally 

more complex than spheres and cubes (Figure 4). Because 

we used two simple shapes with no textures for distraction, Figure 1: Sample Synthetic data. The top row has Rowdy 

randomly oriented in the pictures. The bottom row does not have 

Rowdy. 
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perhaps our we need to add new shapes and add textures as 

well to help with the classifier from overfitting.  

 

 
Figure 4: False Postive detection of Rowdy 

Evaluating the classifiers of different validation 

accuracies, we showed that the classifier with the lowest 

accuracy to be the best at classifying real images—even 

then the classifier is not perfect. We speculate this behavior 

to be that there is not enough randomness in generating the 

images. We understand that if the training data is too 

simple, the neural network will tend to become bias.  

 

5. CONCLUSION AND FUTURE WORK 
This paper demonstrated that training a neural network 

on strictly synthetic images to classify real images is 

possible. We see in making randomly generated images a 

certain threshold of complexity is needed to properly use 

domain randomization. 

For future works we will add more elements to 

randomize in each scene to increase the complexity. In 

exploring how complex a scene would need be to train a 

neural network would give a threshold or a standard to 

using domain randomization. 

Using domain randomization for closing the reality 

gap between simulation and the real world is a promising 

tool for neural networks. Moving forward we hope to 

capitalize on the potential domain randomization has and 

improve general robotics. 

 

REFERENCES 
[1] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, 

M. Kalakrishnan, L. Downs, J. Ibarz, P. Pastor, K. 

Konolige, et al. Using simulation and domain 

adaptation to improve efficiency of deep robotic 

grasping. arXiv preprint arXiv:1709.07857, 2017. 

 

[2] Xingchao Peng, Baochen Sun, Karim Ali, and Kate 

Saenko. Learning deep object detectors from 3d 

models. In Proceedings of the IEEE International 

Conference on Computer Vision, pages 1278–1286, 

2015. 

 

[3] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, 

and P. Abbeel, “Domain randomization for transferring 

deep neural networks from simulation to the real 

world,” arXiv preprint arXiv:1703.06907, 2017 

 

[4]  MathWorks,”Pretrained Convolutional Neural 

Networks”  www.mathworks.com/help/nnet/ug/ 

 pretrained-convolutional-neural-networks.html 

 

 

 

 

 

 

Figure 3: Classifier tested on real images 
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