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Abstract—This report presents a methodology to generate 

energy efficient, steady state and non-steady state walking 
motions for a simple biped robot, and analyzes how the 
Mechanical Cost Of Transport (MCOT) changes with step length 
and step velocity. For simplicity, we ignore the mechanical 
energy of swing leg which is a small potation of total mechanical 
energy. Simulation results show that for steady state walking, 
MCOT increases with step velocity and step length. However, for 
non-steady state walking, MCOT increases with step velocity but 
decreases with step length. Next, multiple-step walking is 
generated to compare its MCOT with that of one-step walking 
for the same distance travelled. Results show that MCOT and 
total step time respectively decreases and increases as the 
number of steps increases. 
 

Index Terms—Passive dynamic walking, energy efficiency, 
multi-step walking, versatility, walking speed. 
 

I. INTRODUCTION 

ASSIVE dynamic walking has been developed as a possible 
explanation for energy-efficient human walking. McGeer 

[1] showed that a dynamic walker without any actuation or 
control can walk stably on downhill shallow slopes powered 
by gravity. Garcia et al. [2] proposed the simplest stable 
walking model of previously developed passive dynamic 
walkers but allows one to take advantage of analytical 
methods to analyze its dynamics. Some researchers have 
added actuators to passive dynamic walkers to enable them to 
walk on level ground while talking advantage of their high 
energy efficiency [3]. Particularly, applying an impulse at toe-
off immediately before touch down or a torque on the stance 
leg are two general methods of actuation [1].  

Though passive dynamic walkers are well-known for their 
energy efficiency, they mostly suffer from versatility. 
Changing speed is one of the aspects that can increase 
versatility of dynamic walkers. There has been little research 
on changing speed of walkers while keeping the energy cost 
low in the literature. Mandersloot et al. [4] used a dynamic 
programming approach to develop control laws for each 
desired velocity. Hobbelen and Wisse [5] controlled the 
walking speed using a feedforward and feedback control, but 
the desired speed was achieved after several steps. Van Zijl [6]  
proposed a strategy to make walking speed transitions in a 
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single step. Seethapathi and Srinivasan [7] showed that the 
cost of changing walking speeds between steps is quite high, 
and predicted that subjects prefer lower speeds for shorter 
distances. 

In this study, energy efficient walking motions are realized 
for a simple biped walking on level ground for both steady 
state and non-steady state cases. For simplicity, we ignore the 
energy cost of swing leg in our optimization. Furthermore, we 
develop multiple step planning motions in which the walker 
takes several short steps instead of a single long step.  

This report is set up as follows. In Section II, the model of 
the walker is introduced. Section III presents the methods used 
to develop energy-efficient, versatile walking. Simulation 
results are given in Section IV. Section V gives discussion. 
The report is finished with a conclusion in Section VI. 
 

II. MODEL 

A. Model Description 

Fig. 1 (a) shows a cartoon of the simplest walker. The model 
has a mass M at the hip and point mass m at each of the feet. 
Each leg has length. Gravity g points downwards. The leg in 
contact with the ramp is called the stance leg while the other 
leg is called the swing leg. The angle made by the stance leg 
with the normal to the ramp is θ and the angle made by the 
swing leg with the stance leg is φ. The hip torque is T. There 
is a torsional spring with spring constant K between the two 
legs (not shown). The rest length of the spring is zero and 
corresponds to the position when both legs are parallel. Fig. 1 
(b) describes a typical step of the simplest walker. In the mid-
stance position shown in (iii), the gravity is along the stance 
leg direction. Between (iii) and (iv), the swing leg penetrates 
the ground leading to foot scuffing. We ignore this but a 
physical robot needs a mechanism to lift the leg. At (v) or the 
instance just before the foot strike, an impulsive push-off, P, is 
applied by the trailing leg. In (vi), the swing leg collides with 
the ground and becomes the new stance leg. 

 

B. Equations of Motion 

A single step of the walker is given below:  
 

collision

one step/ period one limit cycle

Single Stance Heel strike Single Stance


  


 
(1) 

 
We describe the equations for single stance, heel-strike and  
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Fig. 1. Simplest walking model. 
 

the switching surface called collision in the above equation. 

 

C. Single Stance Phase (Continuous Dynamics):  

In this phase of motion, the stance leg pivots and rotates about 
the stationary foot; while the swing leg pivots and rotates 
about the hinge connecting the two legs. We assume that the 
stance leg does not slip, there is no hip hinge friction, and 
ignore foot scuffing. We obtain (2) and (3) defined below by 
taking moments about stance foot contact point and hip hinge 
respectively, and non-dimensionalizing time with / g and 

applying the limit, m / M 0 . In (3), τ is the non-dimensional 
torque obtained by dividing the torque, T, by Mg. The non-
dimensional spring constant is k and is obtained by dividing K 
by Mgl. The equations are 
 

sin ( )     (2) 
 

 
2sin ( ) { cos ( )}sin ( ) k              (3) 

 
We suppose that there is no flight phase during locomotion. 
This is guaranteed through applying the following condition: 
 

2 cos 2 0     (4) 
 

D. Collision Event (Switching Surface):  

We integrate the single stance equations given above till the 
foot-strike event, wherein the swing leg is about to impact the 
ground. Using super-script and to denote the instant just 
before and just after foot-strike respectively, we can write the 
foot-strike event as 

 
cos ( ) cos ( ) 0         (5) 

 

E. Heel-strike Phase (Discontinuous Dynamics):  

In this phase of motion, the legs exchange their roles, that 
is, the current swing leg becomes the new stance leg and the 
current stance leg becomes the new swing leg. We assume that 
the stance leg applies an impulse P. This is followed by an 
instantaneous plastic collision (no slip and no bounce) of the 

swing leg. The swapping of legs is expressed by (6) and (7). 
The angular rates of the legs after support exchange are given 
by (8) and (9) and are obtained by applying conservation of 
angular momentum about stance foot contact point and hip 
hinge respectively, followed by non-dimensionalizing time 
with / g and applying the limit, m / M 0 . The non-

dimensional impulse is p and is obtained by dividing the 
impulse, P by M g . 

 
    (6) 
 

2        (7) 
 

cos2 psin 2          (8) 
 

(1 cos2 )(psin 2 cos2 )             (9) 
 

 

III. METHODS 

A. Single-Step Walking Motions 

We develop a control strategy that enables the walker to 
change its speed in a single step. To this end, we define the 
Pointcare map as 

 
n 1 n nS( , ) x x u (10) 

 
where nx , n 1x , and nu are the vector of states at the 

beginning of the step, the vector of states at the beginning of 
the next step, and the vector of control inputs, respectively. 
The function S is obtained through equations of motions. In 
case of steady state walking where the states at the beginning 
of the step are the same as the states at the beginning of the 
next step, Eq. (10) changes to 
 

* * *S( , )x x u (11) 
 
where x* is called the vector of fixed points and u* is the 
corresponding vector of control inputs. Eq. (10) is a set of 
nonlinear equations where the number of unknown variables 
(control inputs and some joint angles) is more than that of 
equations. To solve these equations, we use optimization.  
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A mathematical optimization problem has the form  
0minimize f ( )

subject to 

x

bf(x)

 
(12) 

 
Where x is the vector of optimization parameters, the function 
f0 is the cost function, f is the vector of the constraint 
functions, and b is the vector of constant bounds for the 
constraints.  

In our optimization problem we define Mechanical Cost of 
Transport (MCOT) as the cost function. MCOT is defined as 
the total mechanical energy used per weight per distance 
traveled.  

In order for the walker to be able to walk on level ground, 
some mechanical energy should be added to the system to 
overcome the loss of energy during heel strike. This can be 
done by applying a push-off force P to the stance leg and/or 
torque τ to the swing leg. The mechanical work of force P and 
torque   done on the system can be calculated as [3] 

 
2

P

1
W P

2
  (13) 

 
T

0
W dt     (14) 

 
MCOT can be then defined as a weighted sum of the two 
mechanical works per weight and distance traveled, 
 

T2

0

tot

0.5P dt
MCOT

m gd

 
  

 (15) 

 
where β, totm g , and d are weighted factor, total weight, and 

distance traveled, respectively.  
In this report, for simplicity we assume that β=0. In other 
words, we suppose that both swing and stance legs are 
massless and there is only one mass M at the hip. Thus, 
MCOT is reduced to  
 

2

tot

P
MCOT

2m gd
  

(16) 

 
We consider all (initial, before and after heel-strike, and final) 
joint variables of the stance leg and P as optimization 
variables.  The constraints of the optimization problem are 
 

 
 

2

1

2

min max

min max

min max

( ) 0

cos 2 p sin 2 0

d | sin | | sin | 0

cos 2 0

(0) (T) 0

(0) 0

(T) 0

P P P

 

   

 

   

      

    

   
   

   

   
 

    

    

 



 

 

  

 

(17) 

 

To summarize, first we fix the step length, the initial 
velocity and final velocity. Next, we divide the single step 
walking into three phases (Eq. (1)): 1- single stance, 2- heel-
strike, 3- single stance. The first single-stance phase is 
continuous in time and the walking motion in this phase is 
computed by forward integration of Eq. (2) over the time 
interval from the beginning of the walking to just before heel-
strike. The heel-strike phase occurs at an infinitesimal time 
interval where there is a jump in joint velocities. This phase is 
discontinuous in time and the walking motion in this phase is 
computed by solving algebraic equations (Eqs. (6) and (8)). 
The second single stance is similar to the first single stance, 
but with a difference, the walking motion in this phase is 
computed over the time interval from just after heel-strike to 
the end of walking. Finally, we solve Eq. (16) subject to the 
constraints expressed in Eq. (17) using SNOPT [8]. 
 

B. Multiple Steps Walking Motions 

Multiple steps walking motions consist of N single-step 
walking motions where the continuity of joint variables 
between steps should be maintained. Thus the procedure is 
similar to that mentioned in the previous section but, the cost. 
function is modified as 
 

2N
i

i 1 tot i

P
MCOT

2m gd

  
(18) 

 
Where Pi is the push-off force applied at step i and di is the 
step length at step i. 

In order to compare the energy efficiency of single-step 
walking motion and multiple steps walking motions, we apply 
the following constraint (Eq. (19)) where d* is the total 
distance traveled by the walker. In other words, we are 
interested in determining whether it is more energy efficient to 
take only one long step with the length d* or to take N short 
steps di. 

 
N

*
i

i 1

d d 0


   (19) 

 

IV. RESULTS 

In order to determine how MCOT changes with step length 
and step velocity for steady state walking, we solve the 
optimization problem for each particular step length and the 
same initial and final velocities. Fig. 2 shows the contour of 
MCOT as a function of step length and step velocity. As can 
be seen from the figure, MCOT increases as the step length 
increases and MCOT increases as the step velocity increases, 
and vice versa. The minimum value of MCOT is 1.566 (10-4) 
which is corresponding to the step length of 0.1 and step 
velocity of 0.1. The maximum value of MCOT is 0.09338 
which is corresponding to the step length of 0.7 and step 
velocity of 0.9.  

For Non-steady state walking, we fix the initial velocity at 
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1 0.5  and solve the optimization problem for different values 

of step length and final step velocity. Fig. 3(a) demonstrates 
the plot of MCOT as a function of final step velocity 

2  for 

1 0.5  and different values of step length. As seen from the 

figure, when the final step velocity increases for a fixed value 
of step length, MCOT also increases. This means that in order 
for the walker to have higher agility, a larger push-off force 
should be applied to the stance leg just before heel-strike. 
Furthermore, when the final step velocity is 

2 0.5  (steady 

state walking), we see that MCOT increases as the step length 
increases, similar to Fig. (2). However, when the final step 
velocity is higher than the initial step velocity, MCOT 
decreases as the step length increases. This is due to the fact 
that first MCOT is defined as energy usage per weight per 
distance traveled (step length) so large step length means 
smaller MCOT, and second larger step length requires longer 
time assuming the velocity is constant (Fig. 3(b)). When the 
step length increases, the walker has longer time to reach the 
specified final velocity. This implies that the amount of push-
off force as the control input can decrease, leading to less 
energy usage.  

Fig. 4 depicts MCOT versus step length when the walker 
speed decreases from 

1 0.8  to 
2 0.7  . From figure, it is 

clear that MCOT increases as step length increases. It should 
be noted that the walker is unable to decrease the speed 
considerably. For decreasing speed, the walker needs to 
dissipate energy. Since there is no control input to remove 
energy from the system, the required amount of energy can 
only be dissipated through heel-strike impact and taking 
longer step length. Since there is a bound on the step length 
the walker can take, reaching to much slower speed is not 
always possible.   

Fig. 5(a) shows MCOT versus number of steps for two 
cases, the blue dashed line for steady state walking 

1 2 0.5     , and the red dashed line for non-steady state 

walking, 
1 0.5  and 

2 0.6  . For both cases, the total distance 

that the walker needs to travel is d*=0.9. As we can see MCOT 
decreases as the number of steps increases for both cases. 
Thus taking several short steps is more energy efficient than 
talking one long step. Fig. 5(b) illustrates corresponding total 
step time versus number of steps. From the figure, we see the 
total step time increases as the number of steps increases. 
Since in our simulation mechanical cost of transport is 
minimized, time is a parameter that chosen by optimization 
automatically. We see that there is a trade-off between MCOT 
and total step time.  
 

V. DISCUSSION 

We have presented a methodology that enables the walker 
to walk on level ground with steady state motion and non-
steady state motion while keeping the energy cost minimum. 
The results confirm the previous observations that the cost of 
changing walking speeds between steps is considerably high.  

Fig. 2. The contour of MCOT as a function of step length and 
step velocity. 

 

Fig. 3. (a) MCOT versus 
2  for different values of step length 

and 
1 0.5  , (b) Step time versus 

2  for different values of 

step length and 
1 0.5  . 

 

Fig. 4. MCOT versus step length for 
1 0.8  to 

2 0.7   

 
Moreover, multiple-steps walking motions are showed to be 
more energy efficient than a single step walking motion for a 
particular traveled distance. 

Our results imply that there is a trade-off between energy 
efficiency and versatility. When energy efficient is the main 
priority, the walker should take step length and step velocity 
corresponding to minimum energy cost and stick to the steady 
state walking. However, when the agility is important or the 
walker desires to take different step lengths in order to pass 
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Fig 5. (a) MCOT versus number of step for both steady state 
walking and non-steady state walking. (b) Total step time 
versus number of step for both steady state walking and non-
steady state walking.  

 
over ditches, non-steady state walking is preferred. In 
addition, we can see a trade-off between MCOT and total step 
time for multiple steps walking motions. Selection of 
appropriate number of steps (N) should be made based on task 
specifications.  

While our optimization algorithm improves energy efficient 
and versatility of bipedal robots, it also demonstrates several 
shortcomings. First, we only considered the stance leg in the 
optimization. Though the energy usage of the swing leg is not 
considerable compared to that of the stance leg, the more 
accurate method would be to include the cost of swinging leg 
in the mechanical cost of transport. Second, stability and 
disturbance rejection are big issues for bipedal robots. We 
suppose that the biped is stable and no disturbance is applied 
to the robot. However, many kinds of disturbances exit in 
reality. Thus formulating the stability and disturbance 
rejection problems and imposing them as constraints in the 
optimization problem can make the system viable in real 
environments. Third, our algorithm is valid for only level 
ground. However, the most advantage of legged robots over 
other mobile robots is their ability to move on any terrain. Our 
approach does not consider the flight phase which happens 
when the speed of the robot exceeds a particular speed.  
 

VI. CONCLUSION AND FUTURE WORK 

This report presented an optimization algorithm to improve 
energy efficiency and versatility of bipedal robots.  Simulation 
results demonstrated that for steady state walking, MCOT 
increases with step velocity and step length. However, for 
non-steady state walking, MCOT increases with step velocity 
but decreases with step length. Then, multiple-step walking 
was generated to compare its MCOT with that of one-step 
walking for the same distance travelled. Results showed that 
MCOT and total step time respectively decreases and 
increases as the number of steps increases. Future work would 
be considering swing leg cost in the optimization, taking 
external disturbances into account and including flight phase 
in locomotion.  
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