
 1

ME 4773/5493 Fundamental of Robotics
Fall 2016

12 December 2016, San Antonio, TX, USA

POLARIZING ROWDY

Pranav A. Bhounsule, Ph.D.
Dept. of Mechanical Engineering

San Antonio, TX, USA 78249
pranav.bhounsule@utsa.edu

Bradley Hammond
Mechanical Engineering Student

San Antonio, TX, USA 78249
bradley.s.hammond@gmail.com

ABSTRACT
The goal of this project was to create a set of parametric

equations to define the outermost curve of the mascot for the
University of Texas at San Antonio. This was accomplished in
three parts: image processing, data processing, and curve fitting.
The results were accurate with maximum error under 3% for
each parametric curve. The accuracy of the solution depended on
time and computing power, and the lack of these prevented the
results from having higher accuracy.

1. INTRODUCTION

The majority of the work on this project came from Wolfram
Alpha analysts that created curves for objects and people like:
Barack Obama, the Pink Panther, and Adele [1]. In order to
accomplish the majority of the image processing and data
plotting MathWorks was used to provide understanding to the
commands used in MATLAB [2]. The data processing was done
in both MATLAB and Microsoft EXCEL. The majority of the
curve fitting was accomplished using Nutonian’s Eureqa
software. Information for the general proceedings came from a
mixture of prior knowledge and the above mentioned resources.
2. NOMENCLATURE

MATLAB: Matrix Laboratory, software by MathWorks.
EXCEL: Spreadsheet manipulation software, by Microsoft.
Cartesian: Typical x-y-z coordinate system.
3D image: Image file that has three distinct inputs for color

values. Commonly RGB.
2D image: Image file that has two distinct inputs for color

values. Commonly BW.
Eureqa: Curve fitting software, by Nutonian.
WolframAlpha: Alternative software used by others to fit

equations to curves.

3. METHODS
In order to be familiarized with complex curve fitting, the

first steps taken were research of a blog performed by Wolfram
Alpha analysts that created curves for objects and people like:
Barack Obama, the Pink Panther, and Adele [1]. After reading
through this blog, it was clear that there are certain steps and

flows required for curve fitting. The determined steps were:
image processing, data processing, and curve fitting.

Before tackling the Rowdy image, a lot of work was done
on a simple curve that was found on the internet. This simple
curve was used as a sample in order to understand the concepts
of curve fitting and to verify that the equation solver was indeed
working correctly. This work was a precursor, but not necessarily
a vital part in determining the equations for Rowdy.

Following the first and second steps majorly relied on the
use of MATLAB. The first the image for Rowdy was pulled off
of the internet from the UTSA webpage [3]. Once the image was
then read into MATLAB by the command ‘imread()’. In order to
verify that the image was properly read, the command
‘imshow()’ was used to display the image in a figure. The read
image can be seen in Figure 1. Once the image was verified to
be appearing correctly, the next step was taken.

 Figure 1: Original Rowdy Image
Originally, a lack of understanding of how to properly trace

the image was missing. After various trials and errors, the
command ‘im2bw()’ was used to convert any of the colors that
were not white in the original image to black, and to leave any
white space in the image. This also compressed the png three
dimensional file to a black and white two-dimensional file. This
compressed file can be seen in Figure 2.

 2

 Figure 2: Compressed BW Image
After converting the image to a usable format, the command

‘edge()’ was used to trace all of the edges in the modified black
and white rowdy image as seen in Figure 3.

 Figure 3: Traced Image
Using the edges of the image, the command

‘bwboundaries()’ was used to get the coordinates for the traced
boundaries in terms of the photograph coordinate system.

Once the edge of Rowdy was determined, the next step was
determining data points from the traced edge. This was
accomplished by first determining the size to the traced lines.
This was done using the command ‘size()’. Once the size was
determined, the column and row used to start the next trace were
determined. In addition, this command converted the image
coordinate system into the Cartesian coordinate system.

The command ‘bwtraceboundary()’ was used to find the
data points for the trace shown above. The trace only determined
the value for the outermost edges. In order to assure that no other
edges were traced, the compressed image was shown with the
newly traced data points on top of it, shown in Figure 4.

 Figure 4: BW Image with Edge Trace
After verifying that the outer edges were traced, and no other

edges were included, the image processing phase concluded and
the data processing phase began.

The first step in the data processing phase was to get the data
points from the edge trace into arrays. This was done using the
output of the ‘bwtraceboundary()’ function used to determine the
edges. Columns and rows of the edge were outputs of said
command. The data from this action is seen in Figure 5.

 Figure 5: Raw Data Rowdy Outline
The first step after gathering the converted data was to adjust

it to the correct orientation, and then to move the correctly
oriented Rowdy outline with the origin about the middle of the
outline. This was accomplished by finding the maxima and
minima of the row and column vectors. Once the minima and
maxima were found, these values for the columns were summed
and divided by two and the values for the rows were simply
subtracted in order to find the location of the middle point of the
outline. These new adjusting factors were then used to “move”
the outline to the correct position with the middle of the outline
at the origin. This new adjusted data is seen in Figure 6.

 3

 Figure 6: Correctly Oriented Cartesian Rowdy Outline
Once the correct orientation of the data was verified, the

next step was to convert the data from Cartesian to polar
coordinates. This was done using the command ‘cart2pol()’. The
data was then shown to be incorrectly oriented once again. This
can be seen in Figure 7. The data was converted to polar because
the data seems to fit better to polar than Cartesian by inspection.

 Figure 7: Incorrectly Oriented Polar Rowdy Outline
In order to orient the polar plot correctly, the theta values

were subtracted by 90° which is గଶ radians. This correctly oriented
the data, which can be seen in Figure 8.

 Figure 8: Polar Rowdy Outline

After plotting the polar rowdy, it was seen from a simple plot
of theta and rho values versus the simple time step set for
parametrization that there was more than one period. This can be
seen in Figure 9 and Figure 10.

 Figure 9: Theta vs. T Before Adjustment

 Figure 10: Rho vs. T Before Adjustment
In order to clean and reduce the data to only a single period,

the raw data was input into Microsoft EXCEL. From inspection
on the time domain plots of rho and theta, the pattern was
observed and located in the data by manually searching for the
maxima and minima. When the repeating period was removed,
it was also observed that the values for rho and theta were
discontinuous because of the data manipulation. This was
rectified by reordering the data to have only continuous values
for rho and theta versus t. The newly adjusted data was then
imported back into MATLAB, as well as imported into
Nutonian’s Eureqa. The final adjusted data is shown in Figure 11
and Figure 12. The final time step is from 0 to 2π.

 4

 Figure 11: Adjusted Theta vs. T Plot

 Figure 12: Adjusted Rho vs. T Plot
After the data was adjusted, the radius vector was scaled

down by a factor of 20. This can be seen in Figure 13. The reason
for sizing down the data was for the equation solver.

 Figure 13: Scaled Down Rowdy Outline

Once the data had been completely conditioned in order to
create the “easiest” equation to solve, the data processing was
finished and the next phase, curve fitting, was started.

The first step in curve fitting was importing the data into the
equation solving software, Eureqa. Once the data was imported,
the function for theta and rho was determined. Both theta and rho
were made to be only functions of t. This provides for a purely
parametric relationship between rho and theta. In addition to
setting the form of the function being solved, the formula
building-blocks were chosen. These options for which formulae
to include came from the blog [1] as mentioned above. The
options selected were as follows: constant, input variable,
addition, subtraction, multiplication, division, negation, sine,
cosine, tangent, square root, step function, sign function, arcsine,
arccosine, and arctangent.

Once the formula blocks were chosen, all that could be done
was wait. The equation solver was run for 114 hours, 31 minutes,
57 seconds for theta and 116 hours, 11 minutes, 45 seconds for
radius. The results of theta versus t are shown in Figure 14 and
the results for radius versus t are shown in Figure 15. The
equation curve is shown in red.

 Figure 14: Eureqa Theta Equation

 Figure 15: Eureqa Rho Equation
Because the deadline for the project approached before the

equation had been fully solved, the equations for theta and rho
were stopped prematurely. The functions for each were then
input into MATLAB in order to plot the parametric plots of the
equations. The final parametric equations plotted are shown in
Figure 15. The final result of the parametric equation is shown
against the raw data in Figure 16.

 5

4. RESULTS
The results of the curve fitting of the outline of Rowdy are

seen in Figure 15. This plot shows the parametric equations only.
Figure 16 shows the parametric equations versus the raw data
(after manipulation) for reference.

 Figure 16: Final Parametric Rowdy Outline

 Figure 17: Parametric vs. Raw Data
The equation for theta is below:
θ(t) = 0.556738090065424*atan(t) +

0.010487943000249*t^3*sin(t) +
sqrt(0.010487943000249*t)*cos(5.95913927067941 +
8.19679130439689*t) - 1.77704993174192 -
0.195473619171639*cos(5.95913927067941 +
8.19679130439689*t) -
1.83359205127117*atan(11.1783053639771 -
2.75262576041691*t)

The equation for rho is below:
ρ(t) = 66 0.145 "r = 11.6780633156058 +

5.25737866674741*sin(0.379873080930965*t^2 -
0.410797114659848*t) + -
15.0338841955986*sin(9.01717345398399*t)/(18.4868878908
716 + 9.01717345398399*cos(t) + t*sin(9.01717345398399*t))
+ atan(9.01717345398399*cos(t)) -
asin(cos(7.9712359849161*t))

As seen in the figures, the fit that was produced is at least
visually recognizable as close to Rowdy when the two are set on
top of each other. However, looking at the parametric plot by
itself may not lend the observer to immediately think of Rowdy.

The equations that are used for the parametric curve are still
basic equations in that no step or sign functions were used to
create the difficult curves seen in Rowdy’s outline. However, for
having only basic equations, such as sine, cosine, tangent, square
root, and others the results are surprisingly accurate.

According to the absolute error from the equation solver, the
error on the theta equation is a maximum of 0.12187883% and
the maximum error on the rho equation is 2.0093349%.
5. DISCUSSION

The results are surprisingly accurate for a first try at curve
fitting. The maximum error between the two parametric
equations is just over 2%. The fit of the parametric curves over
the top of the raw data shows how similar the two plots are. This
is a promising curve for the outline of Rowdy.

As seen in Figure 14 and 15, the curve of theta vs t and rho
vs t is not perfect. These small deviations seen in the parametric
equations compound and show larger errors in the final plot of
theta vs t and rho vs t as the inputs to a polar line.

The first reason why the results are not as accurate as they
could be is because of the complexity of the curves. Looking at
Figures 11 and 12 it can be seen that the curves for both theta and
rho are not easily expressed by simple equations. The other
complexity is that the Rowdy outline has very harsh curves, not
smooth ones, which makes the simple sine or cosine waves not
able to be applied to the curve.

The second reason why the curves are not as accurate as they
could be is because of time. In any application involving curve
fitting, time will always be a great factor. If the curve is very
complex, then much more time will be needed compared to a
simple curve.

The third reason why the curves are not as accurate as they
could be is because the number of cores used to compute the
calculations was only 8. The option to double or quadruple the
cores was available for a price through Nutonian. However,
because of the cost limitations, this option was not explored, and
thus the number of searches and computations per second was
greatly reduced.

The limitations of this approach are somewhat outlined in
the reasons why the final curve was not as accurate as desired. If
there had been more time, more computer cores, or simpler
curves, the equation for Rowdy’s outline surely would have been
determined.

 6

6. CONCLUSION AND FUTURE WORK
The project for consisted of three main parts: image

processing, data processing, and curve fitting. Each part was
accomplished with the help of MATLAB, EXCEL, and Eureqa.
While the results were fairly accurate, the results desired were
not accomplished. This was mainly due to limitations in time,
processing power, and the complexity of the curve. The biggest
lesson to be learned from this process is that time and processing
power are needed to accomplish the fitting of complex curves. In
addition, had the project research and work been started and
understood earlier, the results may have been more accurate.

Currently the equation solver is still searching for solutions
to the outline of Rowdy. This is because I plan to finish what was
started. This project has the basis for many future curve to be fit.
The reason why curve equations are useful is because instead of
trying to distort the image file of a logo, one can simply increase
the sizing factor on an equation like radius and increase the size
of the logo without distorting the pixels. Hopefully this project
can be completed soon.
ACKNOWLEDGMENTS

Dr. Pranav Bhounsule – for all of his help as my professor
this semester

Rebecca Hammond – my wife for being supportive and
enduring my long nights working on this project

Michael Mayer – my peer and friend in Engineering for
always motivating me to do better and to keep striving for
greatness in my studies
REFERENCES

[1] Trott, M. (2009). Making Formulas… for Everything—
From pi to the pink Panther to sir Isaac Newton. Retrieved
December 13, 2016, from WolframAlpha,
http://blog.wolframalpha.com/2013/05/17/making-formulas-
for-everything-from-pi-to-the-pink-panther-to-sir-isaac-newton/

 [2] MATLAB and Simulink for technical computing -

MATLAB & Simulink. (1994). Retrieved December 13, 2016,
from MathWorks, https://www.mathworks.com/

 [3] Welcome to the university of Texas at San Antonio.

(2016). Retrieved December 13, 2016, from UTSA,
https://www.utsa.edu/

