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ABSTRACT 
The goal of this project was to create a set of parametric 

equations to define the outermost curve of the mascot for the 
University of Texas at San Antonio. This was accomplished in 
three parts: image processing, data processing, and curve fitting. 
The results were accurate with maximum error under 3% for 
each parametric curve. The accuracy of the solution depended on 
time and computing power, and the lack of these prevented the 
results from having higher accuracy. 
 
1. INTRODUCTION 

The majority of the work on this project came from Wolfram 
Alpha analysts that created curves for objects and people like: 
Barack Obama, the Pink Panther, and Adele [1]. In order to 
accomplish the majority of the image processing and data 
plotting MathWorks was used to provide understanding to the 
commands used in MATLAB [2]. The data processing was done 
in both MATLAB and Microsoft EXCEL. The majority of the 
curve fitting was accomplished using Nutonian’s Eureqa 
software. Information for the general proceedings came from a 
mixture of prior knowledge and the above mentioned resources. 
2. NOMENCLATURE 

MATLAB: Matrix Laboratory, software by MathWorks. 
EXCEL: Spreadsheet manipulation software, by Microsoft. 
Cartesian: Typical x-y-z coordinate system. 
3D image: Image file that has three distinct inputs for color 

values. Commonly RGB. 
2D image: Image file that has two distinct inputs for color 

values. Commonly BW. 
Eureqa: Curve fitting software, by Nutonian. 
WolframAlpha: Alternative software used by others to fit 

equations to curves.  
 

3. METHODS 
In order to be familiarized with complex curve fitting, the 

first steps taken were research of a blog performed by Wolfram 
Alpha analysts that created curves for objects and people like: 
Barack Obama, the Pink Panther, and Adele [1]. After reading 
through this blog, it was clear that there are certain steps and 

flows required for curve fitting. The determined steps were: 
image processing, data processing, and curve fitting. 

Before tackling the Rowdy image, a lot of work was done 
on a simple curve that was found on the internet. This simple 
curve was used as a sample in order to understand the concepts 
of curve fitting and to verify that the equation solver was indeed 
working correctly. This work was a precursor, but not necessarily 
a vital part in determining the equations for Rowdy.  

Following the first and second steps majorly relied on the 
use of MATLAB. The first the image for Rowdy was pulled off 
of the internet from the UTSA webpage [3]. Once the image was 
then read into MATLAB by the command ‘imread()’. In order to 
verify that the image was properly read, the command 
‘imshow()’ was used to display the image in a figure. The read 
image can be seen in Figure 1. Once the image was verified to 
be appearing correctly, the next step was taken.  

 Figure 1: Original Rowdy Image 
Originally, a lack of understanding of how to properly trace 

the image was missing. After various trials and errors, the 
command ‘im2bw()’ was used to convert any of the colors that 
were not white in the original image to black, and to leave any 
white space in the image. This also compressed the png three 
dimensional file to a black and white two-dimensional file. This 
compressed file can be seen in Figure 2.  
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 Figure 2: Compressed BW Image 
After converting the image to a usable format, the command 

‘edge()’ was used to trace all of the edges in the modified black 
and white rowdy image as seen in Figure 3.  

 Figure 3: Traced Image 
Using the edges of the image, the command 

‘bwboundaries()’ was used to get the coordinates for the traced 
boundaries in terms of the photograph coordinate system. 

Once the edge of Rowdy was determined, the next step was 
determining data points from the traced edge. This was 
accomplished by first determining the size to the traced lines. 
This was done using the command ‘size()’. Once the size was 
determined, the column and row used to start the next trace were 
determined. In addition, this command converted the image 
coordinate system into the Cartesian coordinate system.  

The command ‘bwtraceboundary()’ was used to find the 
data points for the trace shown above. The trace only determined 
the value for the outermost edges. In order to assure that no other 
edges were traced, the compressed image was shown with the 
newly traced data points on top of it, shown in Figure 4.  

 Figure 4: BW Image with Edge Trace 
After verifying that the outer edges were traced, and no other 

edges were included, the image processing phase concluded and 
the data processing phase began.  

The first step in the data processing phase was to get the data 
points from the edge trace into arrays. This was done using the 
output of the ‘bwtraceboundary()’ function used to determine the 
edges. Columns and rows of the edge were outputs of said 
command. The data from this action is seen in Figure 5. 

 Figure 5: Raw Data Rowdy Outline 
The first step after gathering the converted data was to adjust 

it to the correct orientation, and then to move the correctly 
oriented Rowdy outline with the origin about the middle of the 
outline. This was accomplished by finding the maxima and 
minima of the row and column vectors. Once the minima and 
maxima were found, these values for the columns were summed 
and divided by two and the values for the rows were simply 
subtracted in order to find the location of the middle point of the 
outline.  These new adjusting factors were then used to “move” 
the outline to the correct position with the middle of the outline 
at the origin. This new adjusted data is seen in Figure 6. 
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 Figure 6: Correctly Oriented Cartesian Rowdy Outline 
Once the correct orientation of the data was verified, the 

next step was to convert the data from Cartesian to polar 
coordinates. This was done using the command ‘cart2pol()’. The 
data was then shown to be incorrectly oriented once again. This 
can be seen in Figure 7. The data was converted to polar because 
the data seems to fit better to polar than Cartesian by inspection. 

 Figure 7: Incorrectly Oriented Polar Rowdy Outline 
In order to orient the polar plot correctly, the theta values 

were subtracted by 90° which is గଶ radians. This correctly oriented 
the data, which can be seen in Figure 8. 

 Figure 8: Polar Rowdy Outline 

After plotting the polar rowdy, it was seen from a simple plot 
of theta and rho values versus the simple time step set for 
parametrization that there was more than one period. This can be 
seen in Figure 9 and Figure 10.  

 Figure 9: Theta vs. T Before Adjustment 

 Figure 10: Rho vs. T Before Adjustment 
In order to clean and reduce the data to only a single period, 

the raw data was input into Microsoft EXCEL. From inspection 
on the time domain plots of rho and theta, the pattern was 
observed and located in the data by manually searching for the 
maxima and minima. When the repeating period was removed, 
it was also observed that the values for rho and theta were 
discontinuous because of the data manipulation. This was 
rectified by reordering the data to have only continuous values 
for rho and theta versus t. The newly adjusted data was then 
imported back into MATLAB, as well as imported into 
Nutonian’s Eureqa. The final adjusted data is shown in Figure 11 
and Figure 12. The final time step is from 0 to 2π.  
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 Figure 11: Adjusted Theta vs. T Plot 

 Figure 12: Adjusted Rho vs. T Plot 
After the data was adjusted, the radius vector was scaled 

down by a factor of 20. This can be seen in Figure 13. The reason 
for sizing down the data was for the equation solver.  

 Figure 13: Scaled Down Rowdy Outline 

Once the data had been completely conditioned in order to 
create the “easiest” equation to solve, the data processing was 
finished and the next phase, curve fitting, was started. 

The first step in curve fitting was importing the data into the 
equation solving software, Eureqa. Once the data was imported, 
the function for theta and rho was determined. Both theta and rho 
were made to be only functions of t. This provides for a purely 
parametric relationship between rho and theta. In addition to 
setting the form of the function being solved, the formula 
building-blocks were chosen. These options for which formulae 
to include came from the blog [1] as mentioned above. The 
options selected were as follows: constant, input variable, 
addition, subtraction, multiplication, division, negation, sine, 
cosine, tangent, square root, step function, sign function, arcsine, 
arccosine, and arctangent.  

Once the formula blocks were chosen, all that could be done 
was wait. The equation solver was run for 114 hours, 31 minutes, 
57 seconds for theta and 116 hours, 11 minutes, 45 seconds for 
radius. The results of theta versus t are shown in Figure 14 and 
the results for radius versus t are shown in Figure 15. The 
equation curve is shown in red. 

 Figure 14: Eureqa Theta Equation 

 Figure 15: Eureqa Rho Equation 
Because the deadline for the project approached before the 

equation had been fully solved, the equations for theta and rho 
were stopped prematurely. The functions for each were then 
input into MATLAB in order to plot the parametric plots of the 
equations. The final parametric equations plotted are shown in 
Figure 15. The final result of the parametric equation is shown 
against the raw data in Figure 16.  
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4. RESULTS 
The results of the curve fitting of the outline of Rowdy are 

seen in Figure 15. This plot shows the parametric equations only. 
Figure 16 shows the parametric equations versus the raw data 
(after manipulation) for reference.  

 Figure 16: Final Parametric Rowdy Outline 

 Figure 17: Parametric vs. Raw Data 
The equation for theta is below: 
θ(t) = 0.556738090065424*atan(t) + 

0.010487943000249*t^3*sin(t) + 
sqrt(0.010487943000249*t)*cos(5.95913927067941 + 
8.19679130439689*t) - 1.77704993174192 - 
0.195473619171639*cos(5.95913927067941 + 
8.19679130439689*t) - 
1.83359205127117*atan(11.1783053639771 - 
2.75262576041691*t) 

 
 
 

The equation for rho is below: 
ρ(t) = 66 0.145 "r = 11.6780633156058 + 

5.25737866674741*sin(0.379873080930965*t^2 - 
0.410797114659848*t) + -
15.0338841955986*sin(9.01717345398399*t)/(18.4868878908
716 + 9.01717345398399*cos(t) + t*sin(9.01717345398399*t)) 
+ atan(9.01717345398399*cos(t)) - 
asin(cos(7.9712359849161*t)) 

As seen in the figures, the fit that was produced is at least 
visually recognizable as close to Rowdy when the two are set on 
top of each other. However, looking at the parametric plot by 
itself may not lend the observer to immediately think of Rowdy.  

The equations that are used for the parametric curve are still 
basic equations in that no step or sign functions were used to 
create the difficult curves seen in Rowdy’s outline. However, for 
having only basic equations, such as sine, cosine, tangent, square 
root, and others the results are surprisingly accurate.  

According to the absolute error from the equation solver, the 
error on the theta equation is a maximum of 0.12187883% and 
the maximum error on the rho equation is 2.0093349%. 
5. DISCUSSION 

The results are surprisingly accurate for a first try at curve 
fitting. The maximum error between the two parametric 
equations is just over 2%. The fit of the parametric curves over 
the top of the raw data shows how similar the two plots are. This 
is a promising curve for the outline of Rowdy. 

As seen in Figure 14 and 15, the curve of theta vs t and rho 
vs t is not perfect. These small deviations seen in the parametric 
equations compound and show larger errors in the final plot of 
theta vs t and rho vs t as the inputs to a polar line. 

The first reason why the results are not as accurate as they 
could be is because of the complexity of the curves. Looking at 
Figures 11 and 12 it can be seen that the curves for both theta and 
rho are not easily expressed by simple equations. The other 
complexity is that the Rowdy outline has very harsh curves, not 
smooth ones, which makes the simple sine or cosine waves not 
able to be applied to the curve.  

The second reason why the curves are not as accurate as they 
could be is because of time. In any application involving curve 
fitting, time will always be a great factor. If the curve is very 
complex, then much more time will be needed compared to a 
simple curve.  

The third reason why the curves are not as accurate as they 
could be is because the number of cores used to compute the 
calculations was only 8. The option to double or quadruple the 
cores was available for a price through Nutonian. However, 
because of the cost limitations, this option was not explored, and 
thus the number of searches and computations per second was 
greatly reduced. 

The limitations of this approach are somewhat outlined in 
the reasons why the final curve was not as accurate as desired. If 
there had been more time, more computer cores, or simpler 
curves, the equation for Rowdy’s outline surely would have been 
determined.  
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6. CONCLUSION AND FUTURE WORK 
The project for consisted of three main parts: image 

processing, data processing, and curve fitting. Each part was 
accomplished with the help of MATLAB, EXCEL, and Eureqa. 
While the results were fairly accurate, the results desired were 
not accomplished. This was mainly due to limitations in time, 
processing power, and the complexity of the curve. The biggest 
lesson to be learned from this process is that time and processing 
power are needed to accomplish the fitting of complex curves. In 
addition, had the project research and work been started and 
understood earlier, the results may have been more accurate. 

Currently the equation solver is still searching for solutions 
to the outline of Rowdy. This is because I plan to finish what was 
started. This project has the basis for many future curve to be fit. 
The reason why curve equations are useful is because instead of 
trying to distort the image file of a logo, one can simply increase 
the sizing factor on an equation like radius and increase the size 
of the logo without distorting the pixels. Hopefully this project 
can be completed soon.  
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