

AUTONOMOUS NAVIGATION OF QUADRUPED INTEGRATED WITH

MANIPULATOR

BY

VENKATA CHINTHALAPATI

B.S., OSMANIA UNIVERSITY, 2019

M.S., UNIVERSITY OF ILLINOIS CHICAGO, 2024

THESIS

Submitted as partial fulfillment of the requirements

for the degree of Master of Science in Mechanical

in the Graduate College of the

University of Illinois at Chicago, 2024

Chicago, Illinois

DEFENSE COMMITTEE:

Pranav Bhounsule, Ph.D., Chair

Micheal Scott, Ph.D.

Young Soo Park, Ph.D.

ii

DEDICATION

I would like to dedicate this thesis to my parents Ramachandra Murthy and Rama Devi.

Thank you.

iii

ACKNOWLEDGMENT

I would like to express my deepest gratitude to my advisor, Prof.Pranav Bhounsule for

his invaluable help and guidance throughout my Master's program. Your continued

support helped me to accomplish tasks both academically and professionally. Thank you

to all members of the RAM Lab. Your support and assistance have been crucial, and

without your help, completing my work would have been much more difficult. Lastly, I

want to extend heartful thanks to my friends and family, for your continued support and

understanding.

iv

AUTONOMOUS NAVIGATION OF QUADRUPED INTEGRATED WITH

MANIPULATOR

Venkata Chinthalapati, M.Sc.

The University of Illinois Chicago, 2024

Supervising Professor: Pranav Bhounsule, Ph.D.

The focus of this research is the assembly of the Open Manipulator X on the Unitree

Go1 quadruped robot, enhancing its capabilities to execute complex manipulation tasks in

unstructured environments. By integrating various sensors, including the camera already

present on the Go1, a SLAMTECH LiDAR, and the Go1's IMU sensor, a robust motion

planning and control framework is developed. This framework enables the torque-

controlled quadrupedal robot to perform dynamic locomotion while simultaneously

executing manipulation tasks, thereby achieving a high level of autonomy without the

need for human intervention. The framework is verified on the real robot by performing

tasks such as reaching the specified end effector point by navigating through obstacles

present in the environment. The experimental results demonstrate the effectiveness of the

proposed system in navigating and performing tasks in diverse and challenging scenarios,

showcasing advancements in the field of autonomous robotics.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT .. iii

ABSTRACT ... iv

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

CHAPTER

1. INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Thesis Contribution ... 2

2. BACKGROUND AND RELATED WORK 3

2.1 Quadruped Manipulators... 3

 2.1.1 Using Leg as Arm .. 3

 2.1.2 Integrate External Arm... 4

2.2 Motion Planning.. 6

 2.2.1 Separate Systems (SS) ... 6

 2.2.1 Combined Systems (CS) .. 7

2.3 ROS ... 7

 2.3.1 SLAM .. 10

 2.3.2 ROS Navigation Stack ... 11

 2.3.3 Mapping ... 11

 2.3.4 AMCL Localization ... 13

 2.3.5 Gmapping ... 14

 2.3.6 Sensors and Controller ... 14

 2.3.7 Local and Global Costmaps ... 15

2.4 Global Planner... 16

2.5 Local Planner .. 16

 2.5.1 DWA Algorithm .. 17

 2.5.2 TEB Algorithm .. 17

2.6 Unitree Go1 ... 19

2.7 Open Manipulator-X ... 21

2.8 SLAMTEC Mapper M2 .. 22

vi

3. SETUP AND METHODOLOGY.. 24

3.1 Simulation Setup ... 25

 3.1.1 Gazebo Setup ... 26

 3.1.2 Quadruped - Motion Planning.. 28

 3.1.3 Manipulator - Motion Planning.. 30

3.2 Hardware Setup ... 30

 3.2.1 Mechanical Setup ... 31

 3.2.2 Network Setup.. 32

 3.2.3 Hardware Testing Environment ... 34

4. RESULTS AND CONCLUSION ... 36

4.1 Simulation results.. 36

4.2 Hardware results ... 38

4.2 Conclusion .. 40

REFERENCES .. 41

vii

LIST OF TABLES

Table Page

1 Unitree Go1 Specifications ... 20

2 Open Manipulator-X M2 Specifications. .. 21

3 SLAMTEC Mapper M2 Specifications ... 23

4 Motion capture data for hardware test, Marker Placed on the object

picked up and dropped at the target location ... 41

viii

LIST OF FIGURES

Figure Page

1 Dodecapod robot using its many limbs for manipulation or inspection

tasks ... 5

2 Spot (Left), Aliengo (Right) .. 5

3 ROS Communication Architecture. Messages are published and

subscribed between nodes and topics for communication. Service

requests and response communication between server and client................... 8

4 ROS Navigation Stack... 12

5 Overview of Front-End and Back-End involved in SLAM 13

6 AMCL Localization – Probability Distribution of Robot’s position based

on Particle density ... 14

7 Integration of Local and Global Costmaps with Path Planners for

trajectory planning... 15

8 TEB Local Planner General Graph Optimization model framework 18

9 Unitree Go1 Quadruped Robot.. 20

10 Robotis Open Manipulator-X .. 22

11 SLAMTEC LiDAR Mapper M2 ... 22

12 ROS Simulation Setup architecture... 26

13 Gazebo URDF Model of Go1 assembled with LiDAR and Open

Manipulator ... 27

14 Gazebo Environment 1(Left), Environment 2(Right) 28

15 Terminal commands to generate map of simulation environment 28

16 Terminal commands to launch the manipulator controller for

manipulation .. 29

17 Gmapping of Gazebo environment 1 viewed on Rviz (Left),

Map generated after gmapping saved as a YAML file (Right) 29

ix

18 Global Costmap with Laser Scan data, Global Planner trajectory from the

Robot position to the Goal position, the rectangular area around the

Robot is the Local Costmap, The green box around the Robot is the Go1

footprint area ... 31

19 Stereo Camera feedback for effective Manipulator End effector

 motion planning to object position in the 3D space 32

20 Go1 Mechanical connection setup with the manipulator, LiDAR, and

Host PC.. 33

21 Open Manipulator-X communication and power connection setup with

Unitree Go1 ... 34

22 Overview of Manipulator, LiDAR, and Depth camera network setup............ 35

23 LiDAR, Manipulator, Buck converter, and manipulator controller

integrated with quadruped

with a 3D-printed base plate.. 36

24 Hardware testing environment map on the (Top), Top View of the

hardware testing environment .. 37

25 Front view of hardware testing environment .. 37

26 Global Path for the target location viewed on Rviz (Left), Gazebo

simulation environment 1 (Right) ... 38

27 Quadruped reaching the target location as seen in Rviz (Left),

Manipulator end effector at the specified target location to pick up the

object (Right)... 39

28 Global Path for the target location viewed on Rviz (Left), Gazebo

simulation environment 2 (Right) ... 40

29 X and Y coordinates data of the pick-up object from the initial position to

the target end effector position .. 42

30 Top view of Quadruped following the Global path indicated by the red

path planned towards the target position, The Local path is represented in

green. The x-axis of the robot frame (Red) represents the direction of the

heading of Go1 .. 42

31 Front view of Quadruped following trajectory to target point carrying a

blue color block ... 43

x

32 Manipulator dropping the object at the specified target point after

navigating to reachable space within the target location 43

1

CHAPTER 1: INTRODUCTION

In the wake of significant scientific and technological advancements, it has become

possible to engineer robotic systems that are not only more intelligent but also capable of

a broader spectrum of applications. These systems are constantly being developed to

mitigate human limitations and enhance efficiency, cost-effectiveness, and safety across

multiple sectors, including industry, agriculture, surveillance, security, and even domestic

settings. Historically, research in mobile robotics has emphasized the development of

fully autonomous systems or those requiring minimal human intervention, thereby

enhancing productivity and safety while potentially offering economic benefits.

Quadrupeds, or four-legged robots, are engineered to mimic the locomotion of animals

such as dogs and horses, making them particularly effective in traversing complex

terrains like rubble, caves, and construction sites. Equipped with advanced sensors like

cameras and LIDAR, these robots can replace humans in hazardous environments,

collecting crucial data and providing first responders with vital pre-entry information to

enhance their safety.

Integrating a manipulative limb into a quadruped significantly broadens its application in

real-world scenarios. These robots can navigate and interact with their environment,

performing tasks that are dangerous, physically demanding, or require intricate manual

dexterity. Such capabilities make quadruped manipulators versatile, functioning

efficiently both indoors and outdoors under various conditions. They are programmable

to execute tasks with high precision, either autonomously or in collaboration with other

systems.

2

Several leading companies are exploring the use of these robots for package handling and

other logistics applications. The integration of a manipulative arm with a quadruped

extends its functionality, allowing it to undertake more complex tasks.

1.1 Thesis Contribution

In this thesis, the integration of the Go1 quadruped robot with the Open Manipulator X

and sophisticated sensory technology—cameras and LIDAR—is explored. The primary

aim of this integration is to empower the robot to autonomously navigate to a

predetermined end-effector point. This capability is crucial for tasks where objects must

be transported from one location to another, a common requirement in logistics, delivery

services, and operations in challenging or dangerous environments.

The autonomous navigation system allows the robot to locate and move toward specific

coordinates or objects within its environment. This functionality is particularly useful in

scenarios such as warehouse operations, where the robot can pick up and transport goods

from storage to shipping areas without human intervention. Additionally, in hazardous or

inaccessible locations—such as disaster sites, contaminated areas, or extreme

environments like deep mines or arctic stations—the robot's ability to operate

independently reduces the risk to human life and increases operational efficiency.

Moreover, in remote or extreme climatic conditions where human presence is limited,

such as polar research stations or desert outposts, the robot can perform regular supply

runs, transporting food, medicine, or equipment between locations. Its robust design and

3

autonomous capabilities ensure that operations can continue smoothly, despite adverse

weather conditions or challenging terrains.

Thus, the integration of autonomous navigation and manipulation capabilities in the Go1

quadruped robot with Open Manipulator X not only enhances its utility in conventional

settings but also opens up possibilities for its application in areas where traditional

robotic solutions are impractical. This makes it a valuable asset for industries and sectors

requiring reliable, autonomous transport and handling of goods in complex and

unstructured environments.

4

CHAPTER 2: BACKGROUND AND RELATED WORK

2.1 Quadruped Manipulators

Quadruped robots have garnered significant attention from researchers in recent decades

due to their adaptability and agility. These are more adept at traversing obstacles, such as

boulders or holes, and executing locomotion in unpredictable and unstructured

environments than wheeled/tracked robots. In recent years, these robots have

demonstrated significant potential for real-world applications in a variety of sectors,

including education, construction surveillance, parcel delivery, search and rescue, and

inspection.

2.1.1 Using Leg as Arm

One strategy institutions have explored to address manipulation challenges is the leg-arm

approach. In this method, the legs of the robot are multi-functional, allowing them to

perform some manipulation tasks. When necessary, the robot adjusts its position so that a

leg can reach the target object. ETH Zurich applied this technique to ANYmal, a

quadruped robot developed by ANYbotics, enabling it to press elevator buttons.

However, the robot can only manipulate while stationary, as it cannot walk and

manipulate simultaneously. The manipulation capabilities are limited to the area the leg

can reach. A similar implementation by Xin et al. allowed for tasks such as pressing

buttons, inspecting pipes, and sensing surfaces. Nonetheless, this change in the robot's

kinematic configuration poses significant challenges in maintaining the stability of its

center of mass (CoM) and controlling the overall system. Additionally, the motion

5

planner requires a complex optimization process to consistently provide the most

effective solution.

Figure 1: Dodecapod robot using its many limbs for manipulation or inspection tasks.

2.1.2 Integrate External Arm

A mobile manipulator refers to a system that combines a robotic manipulator with a

mobile platform. When the mobile base is a quadruped robot, the system is known as a

quadruped manipulator. While mobile platforms offer the advantage of covering large

work areas, they generally lack manipulation capabilities. On the other hand, robotic

arms excel in manipulation tasks but are confined to stationary workstations. By

integrating a quadruped base with a manipulator arm, a more advanced system is created,

offering benefits such as increased reach and maneuverability. However, this

combination also introduces challenges, including the complexity of control due to the

higher number of degrees of freedom (DoF) and the increased risk of instability in the

overall system.

6

Figure 2: Spot (Left), Aliengo (Right)

2.2 Motion Planning

Mobile manipulators must carefully manage the movement of their platform and address

various constraints depending on the specific goals during motion planning. One critical

factor is ensuring the robot does not collide with obstacles in its environment.

Additionally, the system's structural and operational boundaries, such as limitations in

joint angles, torque, and movement ranges, must be considered. These constraints can

vary based on the robot's design and the task it is performing.

Because these robots often have a high number of degrees of freedom (DoF), they are

considered kinematically redundant. This means that there are numerous ways for the

manipulator’s end-effector to reach the same position, leading to a wide array of possible

solutions. While this redundancy provides flexibility, it also increases the complexity of

the control algorithms, making motion planning far more challenging. The system has to

choose the optimal solution out of many, which often involves a balance between

efficiency, stability, and task-specific requirements. This complexity is a major factor in

why motion planning remains a significant hurdle for achieving effective loco-

manipulation in mobile robots.

7

2.2.1 Independent Systems

In this method, the mobile platform and the manipulator are treated as independent

systems, with motion planning done sequentially—first for one component and then for

the other. This allows the use of existing algorithms that are typically applied to

individual systems. When executing manipulation tasks, the quadruped remains

stationary.

However, there are several key observations regarding the Separate System approach:

• If one subsystem is poorly positioned, it may prevent the manipulator from

reaching its target.

• Achieving the best possible result for each subsystem individually does not

necessarily lead to an optimal outcome for the entire system.

• Despite these limitations, this method tends to produce more stable and reliable

results because of the simpler, modular planning process.

By approaching the platform and manipulator separately, the complexity is reduced, but it

may limit overall system efficiency and performance in certain scenarios.

2.2.1 Integrated Systems

Another approach is to treat the integration of the platform and manipulator as a unified,

complex system. This method enables simultaneous execution of various tasks, such as

manipulator control, torso adjustment, managing joint constraints, and navigating

environmental challenges. However, it significantly increases the complexity of the

system due to the need to handle the interactions between the mobile base and the arm, as

well as the unpredictable disturbances caused by the manipulator's movement.

8

This integrated approach fully leverages the system's capabilities, allowing for

sophisticated, coordinated actions. However, it presents several substantial challenges:

• It demands considerably more computational power and energy to manage the

intricacies of the combined system.

• The generated motion paths are often not optimal, requiring additional

optimization algorithms to refine them.

• If the integration is not carefully executed, the solutions can be unstable and more

vulnerable to external disturbances.

• Achieving a robust and stable solution is more difficult, as improper

implementation can lead to instability throughout the robot.

While this approach offers the potential for advanced functionality and efficiency, it also

introduces significant technical hurdles that must be carefully managed to avoid

compromising the system's stability and performance.

2.3 ROS

ROS is an open-source, meta-operating system for building robotic applications. It

provides the typical services of an operating system (OS), including hardware

abstraction, low-level device control, message-passing between processes, and package

management. It also provides tools and libraries for writing, building, and running code

across multiple computers. Since it is not an actual OS, it has to be installed on an

existing one, such as Ubuntu, one of the Linux distributions. Following is a list of basic

ROS terminology and architectural components:

9

Figure 3: ROS Communication Architecture. Messages are published and subscribed between nodes and topics
for communication. Service requests and response communication between server and client.

• Nodes: The base unit in ROS is called a node. Nodes are in charge of handling

devices or computing algorithms - each node for a separate task. Nodes can

communicate with each other using topics or services. ROS software is distributed

in packages. A single package is usually developed for performing one type of

task and can contain one or multiple nodes.

• Message: A message is a data structure used for communication between nodes.

A simple specification language defines messages and can include various data

types such as integers, floats, and arrays. For example, a message might contain

sensor readings, commands, or state information.

• Master: The ROS Master provides naming and registration services to the nodes

in a ROS-based system. It acts as a central manager that keeps track of all active

nodes, their publications, and their subscriptions. The Master is essential for

nodes to discover each other and communicate.

10

• Topics: In ROS, topic is a data stream used to exchange information between

nodes. Topics are used to send frequent messages of one type, such as sensor

readouts or information on motor goal speed. Each topic is registered under a

unique name and with a defined message type. Nodes can connect to the topic to

either publish messages or subscribe to them. For a given topic, one node can not

publish and subscribe to it at the same time, but there are no restrictions on the

number of different nodes publishing or subscribing.

• Services: A service is a synchronous communication mechanism in ROS. It

allows one node to send a request to another node and receive a response.

Services are defined by a pair of messages: one for the request and one for the

response. This is useful for tasks that require a request-reply interaction.

ROS acts as a meta-operating system for robots as it provides hardware abstraction,

low-level device control, inter-processes message-passing, and package management.

The main advantage of ROS is that it allows manipulation of sensor data of the robot as a

labeled abstract data stream, called topic, without having to deal with hardware drivers.

This makes the programming of robots much easier for software developers as they do

not have to deal with hardware drivers and interfaces. Also, ROS provides many high-

level applications such as arm controllers, face tracking, mapping, localization, and path

planning.

Mobile robot navigation generally requires solutions for three different problems:

mapping, localization, and path planning. In ROS, the Navigation Stack plays a role in

integrating all the functions necessary for autonomous navigation.

11

2.3.1 SLAM

Simultaneous Localization And Mapping (SLAM) is an important algorithm that allows

the robot to acknowledge the obstacles around it and localize itself. When combined with

some other methods, such as path planning, it is possible to allow robots to navigate

unknown or partially known environments. ROS has a package that performs SLAM and

path planning along with other functionalities for navigation like Navigation Stack:

Gmapping and hector_mapping.

Both Gmapping and hector_mapping are implementations of SLAM, a technique that

consists of mapping an environment at the same time that the robot is moving, in other

words, while the robot navigates through an environment, it gathers information from the

environment through its sensors and generates a map. This way you have a mobile base

able not only to generate a map of an unknown environment but also to update the

existent map, thus enabling the use of the device in more generic environments, not

immune to changes.

The difference between Gmapping and hector_mapping is that the first one takes in

account the odometry information to generate and update the map and the robot’s pose.

However, the robot needs to have proprioceptive sensors, which makes the usage of it

hard for some robots (e.g. flying robots). The odometry information is interesting because

they are able to aid on the generation of more precise maps, since understanding the robot

kinematics we can estimate its pose.

Kinematics is influenced, basically, by the way that the devices that guarantee the robot’s

movement are assembled. Some examples of mechanic features that influence the

12

kinematics are: the wheel type, the number of wheels, the wheel’s positioning and the

angle at which they are disposed.

2.3.2 ROS Navigation Stack

To achieve the navigation task, the Navigation Stack is used to integrate the mapping,

localization, and path planning together. It takes in information from odometry, sensor

streams, and the goal position to produce safe velocity commands and send it to the

mobile base (Fig.4). The odometry comes through nav_msgs/Odometry message over

ROS which stores an estimate of the position and velocity of a robot in free space to

determine the robot’s location. The sensor information comes through either

sensor_msgs/LaserScan or sensor_msgs/PointCloud messages over ROS to avoid any

obstacles. The goal is sent to the navigation stack by geometry_msgs/PoseStamped

message. The navigation stack sends the velocity commands through geometry_msgs/

Twist message on /cmd_vel topic.

Figure 4: ROS Navigation Stack

13

2.3.3 Mapping

ROS provides a wrapper for OpenSlam’s Gmapping. A particle filter-based mapping

approach is used by the gmapping package to build an occupancy grid map. Gmapping

algorithm will estimate the Lidar pose firstly based on the previous map and motion

model. Then it will compute the weight according to the sensor observation to resample

and update the map of particle. It will execute these steps in a cycle to complete mapping.

Figure 5: Overview of Front-End and Back-End involved in SLAM

Then a package named map_server could be used to save that map. The maps are stored

in a pair of files: YAML file and image file. The YAML file describes the map meta-data

and names the image file. The image file encodes the occupancy data.

When initialized without a prior map, the robot only knows about the obstacles detected

by its sensors and can avoid these seen obstacles. For unknown areas, the robot will

generate an optimistic global path that may encounter unseen obstacles. In such cases, the

robot can re-plan its path to navigate around the newly detected obstacles.

14

2.3.4 AMCL Localization

The localization part is solved in the amcl package using an Adaptive Monte Carlo

Localization which is also based on particle filters, it is a probabilistic localization system

of a robot’s movement in 2D space, and it adopts the particle filter to track the position

and orientation of a robot in the known map. To let the robot move to an accurate

position, you can adopt Adaptive Monte Carlo Localization to adjust the robot’s position,

which works like putting the particles uniformly on the map, and then these particles will

gather in an area after algorithm calculation. The more the particles in an area, the greater

the probability that the robot is in this area.

Figure 6: AMCL Localization – Probability Distribution of Robot’s position based on Particle density

2.3.5 Gmapping

Gmapping, as well as amcl, is a localization system, but unlike amcl, it runs on an

unknown environment, performing Simultaneous Localization and Mapping (SLAM). It

15

creates a 2D occupancy grid map using the robot pose and the laser data (or converted

data, i.e. Kinect data). It works over the Odom to map transformation, therefore it does

not need the map nor IMU information, needing only the odometry.

2.3.6 Sensors and Controller

These blocks of the system overview are in respect to the hardware-software interaction

and, as indicated, are platform specific nodes. The odometry source and the base

controller blocks are specific to the robot you are using, since the first one is usually

published using the wheel encoders data and the second one is responsible for taking the

velocity data from the cmd_vel topic and assuring that the robot reproduces these

velocities.

2.3.7 Local and Global Costmaps

The local and global 2D costmaps are the topics containing the information that

represents the projection of the obstacles in a 2D plane (the floor), as well as a security

inflation radius, an area around the obstacles that guarantees that the robot will not collide

with any objects, no matter what is its orientation. These projections are associated to a

cost, and the robot's objective is to achieve the navigation goal by creating a path with the

least possible cost. While the global costmap represents the whole environment, the local

costmap is, in general, a scrolling window that moves in the global costmap about the

robot's current position.

16

Figure 7: Integration of Local and Global Costmaps with Path Planners for trajectory planning

2.4 Global Planner

The global path planner in ROS operates on the global_costmap, which is generally

initialized from a prior static map, then it could be updated frequently based on

the value of the update_ frequency parameter. The global path planner generates a long-

term plan from the start or current position to the goal position before the robot starts

moving. It will be seeded with the costmap and the start and goal positions. These start

and goal positions are expressed by their x and y coordinates. A grid-based global

planner that can use Dijkstra’s algorithm or A* algorithm to compute the shortest

collision-free path for a robot is obtained in the global_planner package.

2.5 Local Planner

The local path planner or the controller in ROS operates on the local_costmap, which

only uses local sensor information to build an obstacle map and dynamically updated

with sensor data. It takes the generated plan from the global planner, and it will try to

17

follow it as close as possible considering the kinematics and dynamics of the robot as

well as any moving obstacles information in the local_costmap. ROS provides

implementation of two local path planning algorithms namely the Trajectory Rollout and

the Dynamic Window Approach (DWA) in the package base_local_planner.

2.5.1 DWA Algorithm

DWA (Dynamic-Window Approach) is an algorithm that mainly samples multiple sets of

velocity in velocity space (v, w), and predicts their trajectories in a specific time

according to the robot dynamics model. Then these trajectories will be scored by the

evaluation function, and the optimal trajectory is picked to propel the robot to move.

DWA algorithm converts the position control of the robot into speed control. Before it

predicts the robot's motion trajectory under speed mode, the robot's motion model should

be analyzed first. v(t) and w(t) refer to the linear and angular velocities in the world

coordinate system. In the sampling period Δt, if the robot’s displacement is small and it

executes uniform linear motion, the robot motion model is

𝑥(𝑡) = 𝑥(𝑡 − 1) + 𝑣(𝑡) ∙ ∆𝑡 ∙ cos(𝜃(𝑡 − 1))

𝑦(𝑡) = 𝑦(𝑡 − 1) + 𝑣(𝑡) ∙ ∆𝑡 ∙ 𝑠𝑖𝑛(𝜃(𝑡 − 1))

𝜃(𝑡) = 𝜃(𝑡 − 1) + 𝑤(𝑡) ∙ ∆𝑡

x(t), y(t), and θ(t) are the pose of the robot under the world coordinate system at t

moment.

2.5.2 TEB Algorithm

TEB (Timed Elastic Band) algorithm optimizes the motion trajectory by correcting the

initial trajectory of the global path planning. It mainly optimizes the distance between the

18

robot and the obstacle, the length of the path, and the execution time of the trajectory.

TEB algorithm describes the path planning problem as a multi-objective optimization

problem, which means that it will optimize the minimized execution time of the

trajectory, and the constraint that keeps a certain distance between the robot and the

obstacle, and follows the motion dynamics. As most of the optimization targets are local

and only related to consecutive states of the robot, this optimization is targeted at sparse

models.

The improved framework of the robot control system is as follows. N discrete poses with

time information constitute the trajectory generated by the TEB algorithm. And then G2O

(General Graph Optimization) algorithm is used to optimize these poses so that the

generated trajectory is the shortest, the least time-consuming, and the farthest from

obstacles. The speed and acceleration are limited to make the trajectory meet the

requirements of robot kinematics.

Figure 8: TEB Local Planner General Graph Optimization model framework

The coordinate of the center of the robot as well as the turning direction determine its

pose in the environment. Firstly, define the robot pose

19

𝑋𝑎 = (𝑥𝑖 ,𝑦𝑖 , 𝛽𝑖)𝑇 𝜖 𝑅2 × 𝑆1

𝜏 = {∆𝑇𝑖 }𝑖=0,1,…,𝑛−1

𝐵 ∶= (𝑄, 𝜏)

The TEB algorithm sets the posture and time interval as the variables to be optimized and

solves the optimal path under dynamic constraints. These dynamic constraints include

velocity and acceleration limits, path lengths, distances between obstacles and the robot,

and how long the robot will run on a trajectory. Then, the optimal path Q is obtained by

setting the weighted multi-objective function.

Considering the characteristics and performance of both the Dynamic-Window Approach

(DWA) and the Timed Elastic Band (TEB) algorithm, the TEB algorithm is selected for

our application due to its superior adaptability and optimization capabilities in dynamic

environments. While DWA is effective in static settings by sampling velocities and

selecting optimal trajectories based on a robot's dynamic model, it can struggle with

moving obstacles as it focuses primarily on short-term predictions without extensive

future trajectory considerations. In contrast, the TEB algorithm excels in scenarios with

dynamic obstacles by continuously optimizing the robot's trajectory through multi-

objective optimization. It accounts for various dynamic constraints such as velocity,

acceleration, path length, and obstacle distance, ensuring the trajectory is both safe and

efficient. By using the General Graph Optimization (G2O) algorithm, TEB ensures that

the generated path is the shortest, least time-consuming, and maintains a safe distance

from obstacles. These capabilities make TEB a more robust and reliable choice for

20

environments where obstacles are in motion, providing enhanced performance and safety

for the robot's navigation tasks.

2.6 Unitree Go1

The Unitree Go1 is a cutting-edge quadruped robot designed by Unitree Robotics,

characterized by its highly dynamic and adaptable locomotion. Each of its four torque-

controlled legs features three degrees of freedom, enabling the robot to walk, trot, and run

with remarkable stability across varied terrains. This advanced locomotion capability is

ideal for navigating complex environments.

The Go1 is equipped with an array of sensors that enhance its perception abilities,

including five fisheye stereo depth cameras and IMUs (Inertial Measurement Units),

which furnish the robot with comprehensive environmental awareness. These sensors

empower the Go1 to adeptly handle tasks such as obstacle avoidance, terrain mapping,

and autonomous navigation. Furthermore, the robot is capable of carrying a payload of up

to 5 kilograms, making it suitable for a variety of applications. It also incorporates

substantial computing power with 3x Nvidia Jetson Nanos and one Raspberry Pi, which

are on the same network. They process the extensive sensory data and support complex

computational tasks required for its operations.

21

Figure 9: Unitree Go1 Quadruped Robot

Items Unit Unitree Go1

Pay Load kg 5

Max Speed m/sec 3.7

DOF 12

Power Output V 24

Depth Camera 5

Ultrasonic Sensors 4

Controllers 4 (3 Nano + 1 Raspberry Pi)

Table 1: Unitree Go1 Specifications

The version bought was the developer’s version which comes with an onboard personal

computer (PC) and allows connections to multiple interfaces, for example, High

Definition Multimedia Interface (HDMI), Ethernet, and Universal Serial Bus (USB).

Regarding software, the onboard PC allows remote connections and new

implementations can be made. The underlying interface supports C/C++ and ROS.

2.7 Open Manipulator-X

The Open Manipulator-X is a versatile, open-source robotic arm developed by ROBOTIS

powered by Dynamixel Servo Motors. It features 4 degrees of freedom (DoF) in its

standard configuration. These include three rotational joints and one end-effector joint,

22

enabling the arm to perform various movements. The design allows for easy

manipulation and precise control of objects in three-dimensional space.

The Open Manipulator-X is fully compatible with ROS (Robot Operating System),

providing access to a wide range of libraries and tools for robotic control, simulation, and

programming. The arm can be controlled using MoveIt, a ROS-based software for motion

planning, manipulation, and control.

Items Unit Open Manipulator-X

Actuator Dynamixel XM430-W350-T

Input Voltage V 12

DOF 5 (4 DOF + 1DOF Gripper)

Payload g 500

Reach mm 380

Table 2: Open Manipulator-X Specifications

Figure 10: Robotis Open Manipulator-X

2.8 SLAMTEC Mapper M2

SLAMTEC Mapper is a new type of laser sensor introduced by SLAMTEC, which is

different from traditional LIDAR. It is built with a unique SLAM optimization algorithm

and high-performance LIDAR to fuse map data more than 10 times per second and

construct up to 100,000 square meters of mapping area. The LIDAR carries out 9200

23

measurements per second, and the longest-ranging distance can reach 40 meters. The

built-in processing system can process data in real-time and output high-precision maps

and pose

Figure 11: SLAMTEC LiDAR Mapper M2

Items Unit SLAMTEC Mapper M2

Distance Range m 40

Sampling Rate Hz 9200

Maximum Area m 300*300

Mapping resolution m 0.05

Power V 5

Table 3: SLAMTEC Mapper M2 Specifications

24

CHAPTER 3: SETUP AND METHODOLOGY

Initially, The Jetson Nano computer was first equipped with the Linux Ubuntu 18.04

operating system. However, because of performance problems experienced during the

first configuration, the environment was later built up on a virtual machine that is hosted

on a personal computer to guarantee stability and ease of management. Subsequently,

ROS Melodic was installed using Debian packages, adhering to the specifications

outlined in the official ROS manual. A dedicated workspace, named catkin_ws, was

established to promote organized source code administration and efficiently separate

development from other system components.

The workspace includes several critical packages essential for the operation and

integration of the Go1 quadruped robot with the Open Manipulator X, as outlined below:

• Unitree Go1 Packages: Sourced from Unitree Robotics, this collection of

packages provides comprehensive support for operating the Go1 robot. It includes

drivers and interfaces for cameras, ultrasonic sensors, and other navigation-related

sensors. These packages are designed for both simulated environments and real-

world applications, including a tailored interface for the Gazebo simulator which

significantly aids in development and testing.

• OpenManipulator-X Packages: These packages, provided by ROBOTIS,

contain all necessary URDF files and manipulator control software required to

integrate and operate the Open Manipulator X. This integration is crucial for

achieving precise manipulation capabilities.

25

• Slamtec M2 Lidar Mapper Packages: Obtained directly from Slamtec's official

website, these packages are integral for navigation. They include all necessary

configuration files for the move base framework and the TEB (Timed Elastic

Band) path planner, which is utilized for dynamic and efficient path planning

based on the robot’s and obstacles' velocities.

The files in these packages are further modified to the current hardware and simulation

setup. All the modified files are uploaded to the GitHub repository and can be found

following the link: https://github.com/vchint6/pathplanning_go1

3.1 Simulation Setup

After downloading the necessary packages, the initial step involves setting up the

combined system of the Unitree Go1 quadruped, LIDAR, and manipulator using the

URDF files provided in the packages and including all necessary plugins for the sensors.

The LIDAR and manipulator are linked to the base link of the quadruped.

A simulation environment was developed using Gazebo and integrated with ROS to test

the system's robustness, assess its stability, and evaluate the motion planning algorithm

based on inverse kinematics (IK). This simulation enables the visualization of the

quadruped's behavior in both Gazebo and RViz.

26

Figure 12: ROS Simulation Setup architecture

• The simulation is initiated by running a ROS launch file which provides the robot

description including URDF, Meshes, Sensors, and nodes for running the

controller and motion planning

• Control commands are published from the terminal or a control node to specific

topics that the controllers for the quadruped and manipulator are subscribed to.

• The controller nodes publish the joint states to a topic, such as /joint_states.

Gazebo subscribes to this topic to update the physical simulation, while RViz

subscribes to visualize the joint movements.

• Gazebo updates the simulation environment based on the new joint states and

simulates the physical interactions. It provides feedback by publishing sensor data

and the new state of the robot on various topics.

• RViz visualizes the current state of the robot based on the joint states and other

sensor data. This visualization helps in monitoring the robot's behavior and

ensuring the commands are executed correctly.

3.1.1 Gazebo Setup

27

The purpose of integrating the manipulator on the quadruped robot is to enable it to

perform pick-up and drop-off tasks, similar to delivery applications such as delivering

groceries or packages. To demonstrate this capability, an environment was created in

Gazebo (Fig.14) where the robot picks up a tennis ball from one point and moves it to a

target point. This setup showcases the robot's ability to handle objects autonomously,

utilizing all available sensors for feedback.

Similar to the real Unitree Go1 quadruped total of five depth cameras are strategically

mounted on the robot. These include cameras on the face, chin, and both the left and right

sides of the quadruped's trunk. These cameras provide comprehensive visual coverage of

the surroundings, allowing the robot to detect objects.

Figure 13: Gazebo URDF Model of Go1 assembled with LiDAR and Open Manipulator

A LIDAR sensor is mounted on the top of the quadruped. The LIDAR emits laser beams

that can sense objects within a 20-meter range(Fig.13) . The detected objects are

28

represented by blue light rays in the simulation, providing a clear indication of the robot's

sensory range.

Figure 14: Gazebo Environment 1(Left), Environment 2(Right)

3.1.2 Quadruped - Motion Planning

The motion planning process for the quadruped robot involves several crucial steps,

starting with the creation of a map of the environment and ending with the robot reaching

the target location.

• The list of Terminal commands to run the slam package for generating the map

for navigation is shown in Fig.15 and Fig.16 lists the commands to launch the

Manipulator controller for manipulation to end effector position.

Figure 15: Terminal commands to generate map of simulation environment

29

Figure 16: Terminal commands to launch the manipulator controller for manipulation

• After Launch the simulation world and go1 controller (Fig.15) the quadruped

should be switched from the FixedStand to Trotting to control the translation of

the robot.

• The robot first uses its LIDAR sensor along with the Gmapping (SLAM)

algorithm to create a map of the simulation environment(Fig.15). This map is

essential for navigation as it provides the robot with an understanding of the

surroundings, including the positions of obstacles and free spaces in a format that

the navigation stack can easily load.

Figure 17: Gmapping of Gazebo environment 1 viewed on Rviz (Left),
Map generated after gmapping saved as a YAML file (Right)

• After the navigation packages are launched the path planning process begins

when a target location for the manipulator end effector is provided. This target

location is specified as coordinates the manipulator needs to reach through the

terminal in the Global frame.

30

• Potential goal points are generated at a distance of 0.3 meters around the target

end effector position. If the planner fails to generate a feasible path, the

orientation of the goal point is changed by 90° to check if the new orientation path

is feasible.

• Once a feasible goal point and orientation are determined, The quadruped should

be switched to move_base mode, a stable and efficient gait for navigation. The

previously saved map is loaded into the move_base node. The move_base node is

responsible for combining global planning and local planning to navigate the

robot to the target location.

• The Timed Elastic Band (TEB) local planner is used to navigate the quadruped

along the global path. If an obstacle is detected along the planned path, the local

planner updates the cost map and re-routes the robot to avoid the obstacle while

still moving toward the target.

• In RViz, the global and local paths of the robot trajectories are visualized,

allowing the operator to monitor the planned and actual paths the robot takes. The

laser scan data recorded by the LIDAR is also visualized in RViz, providing real-

time feedback on the environment and detected obstacles.

31

Figure 18: Global Costmap with Laser Scan data, Global Planner trajectory from the Robot position to the Goal
position, the rectangular area around the Robot is the Local Costmap, The green box around the Robot is the Go1

footprint area

3.1.3 Manipulator - Motion Planning

Due to the specified tolerance parameters for position and orientation, there might be

inaccuracies in the reached target point. To address this, the stereo cameras on the

quadruped are used to send accurate 3D positions of the object for the end effector to

reach the target point with good precision.

After the quadruped reaches the navigation goal position, the robot's stereo cameras

provide accurate 3D coordinates of the object. The accurate 3D coordinates of the object

are sent to the manipulator controller in the local frame of the manipulator. The controller

computes the Inverse Kinematics of joints to follow the trajectory needed to move the

end effector to the specified position accurately. The camera view can be accessed using

Image View in RViz by subscribing to the corresponding camera topic.

32

Figure 19: Stereo Camera feedback for effective Manipulator End effector
 motion planning to object position in the 3D space

3.2 Hardware Setup

This section details the hardware setup for integrating the Unitree Go1 quadruped robot

with the Open Manipulator X and the SLAMTEC LiDAR sensor. Unlike in simulation,

where it is straightforward to modify the URDF files, integrating these components in

hardware requires a more complex setup. This involves using 3D-printed support plates,

establishing power connections, and ensuring all components are on the same network for

seamless communication. This configuration enables the robot to perform complex tasks

efficiently. In the following sections, the Mechanical and Network for communication

setups are explained

3.2.1 Mechanical Setup

The SLAMTEC LiDAR and Open Manipulator-X are securely mounted on top of the

quadruped using custom 3D-printed support plates. This ensures that all components are

firmly attached and positioned optimally for their functions.

33

Figure 20: Go1 Mechanical connection setup with the manipulator, LiDAR, and Host PC

• SLAMTEC LiDAR Installation:

o The LiDAR is mounted to provide an unobstructed 360-degree view of the

environment. This positioning is crucial for accurate mapping and obstacle

detection.

o The LiDAR is connected to Head Nano3 via a designated port, which

supplies a 5V DC power source.

• Open Manipulator-X Installation:

o The Open Manipulator-X requires a 12V 5A (60W) power supply to

operate efficiently. The quadruped is equipped with a power output of 24V

30A, provided by its rechargeable Lithium-Ion battery.

o A buck converter is used to step down the voltage from 24V to 12V. The

converter is connected to the manipulator, ensuring it receives the

appropriate voltage and current for its operation.

34

o The communication cable for the manipulator is connected to a U2D2

controller, which interfaces with Head Nano2 via the USB port.

Figure 21: Open Manipulator-X communication and power connection setup with Unitree Go1

3.2.2 Network Setup

The network setup for integrating the Unitree Go1 quadruped robot with the Open

Manipulator X and SLAMTEC LiDAR involves ensuring that all components are

connected to a unified network, enabling seamless communication between the sensors,

manipulators, and control systems. This setup is implemented as a ROS multimachine

configuration, with the Host PC serving as the ROS Master. The diagram below

illustrates the network configuration:

35

Figure 22: Overview of Manipulator, LiDAR, and Depth camera network setup

• The Host PC acts as the ROS Master, coordinating communication between all

ROS nodes running on different devices in the network. The Host PC is connected

to Quadruped with a Long Ethernet Cable.

• The LiDAR communicates with the Host PC over Wi-Fi to provide real-time

sensor data for navigation and path planning. All the LiDAR packages are hence

installed on the host system.

• Open Manipulator-X communication interface U2D2 controller is connected to

Head Nano 2. All the ROS packages needed to control the manipulator are

installed on the Nano 2 controller.

36

Figure 23: LiDAR, Manipulator, Buck converter, and manipulator controller integrated with quadruped
with a 3D-printed base plate

3.2.3 Hardware Testing Environment

To validate the functionality of the integrated system, a closed testing environment

was built in the lab.

The first step involved mapping the environment using the SLAMTEC LiDAR. To

test the setup, an object is picked up using teleop keyboard controls. The robot drops

the object at a specified target location input through the terminal using the saved

map. This process verifies the accuracy and reliability of the navigation and

manipulation system.

37

Figure 24: Hardware testing environment map on the (Top), Top View of the hardware testing environment

Figure 25: Front view of hardware testing environment

38

CHAPTER 4: RESULTS AND CONCLUSION

4.1 Simulation results

The motion planning algorithms were tested in two different Gazebo simulation

environments, as described in the Gazebo setup section.

In Gazebo Environment 1, tennis balls were placed at various locations within the

simulation world. The locations of these tennis balls, provided as 3D coordinates, were

input into the terminal. The integrated quadruped and manipulator system successfully

planned paths to the specified locations. Upon reaching each position, the system utilized

feedback from the depth cameras to accurately approach and pick up the tennis balls.

Figure 26: Global Path for the target location viewed on Rviz (Left), Gazebo simulation environment 1 (Right)

39

Figure 27: Quadruped reaching the target location as seen in Rviz (Left), Manipulator end effector at the
specified target location to pick up the object (Right)

After picking up a ball, the system was given a drop location. The robot then planned and

executed a path to this specified drop location.

In Gazebo Environment 2, the process was similar, with tennis ball locations specified as

3D coordinates. However, this environment included obstacles, adding complexity to the

path planning and navigation tasks. The integrated system demonstrated its ability to

navigate around obstacles while planning paths to the specified ball locations. Upon

reaching the positions, it used feedback from the depth cameras to precisely pick up the

tennis balls. The system then navigated to the specified drop locations, avoiding obstacles

along the way.

40

Figure 28: Global Path for the target location viewed on Rviz (Left), Gazebo simulation environment 2 (Right)

The results demonstrate that the integrated system can effectively plan and execute

complex motion tasks, including navigating to specific coordinates, using sensor

feedback to perform precise manipulations, and transporting objects to designated

locations within the simulation environment.

4.1 Hardware results

After configuring the system, we tested the motion planning and control algorithms on

the actual hardware. One significant difference between the hardware implementation

and the simulation was the absence of depth camera feedback for object pickup. Due to

latency issues in the camera’s video stream, real-time object detection was not feasible.

41

To overcome this limitation, we used teleoperated keyboard controls to manually handle

object pickup. Once the object was secured, we specified the drop location, and the robot

successfully navigated to and released the object at the target location.

One of the most critical metrics for validating the system's performance is repeatability.

The object drop test at specified coordinates was conducted 15 times, with successful

results in 11 of those trials. To further assess the system’s accuracy, a marker was placed

on the object to track the robot manipulator’s ability to reach the desired end-effector

position. Using motion capture, data was collected from the moment the end-effector

position was assigned until the manipulator reached the target and released the object.

The recorded data revealed a mean error of 4.56 mm on the x-axis and -21.97 mm on the

y-axis when reaching the target, with a standard deviation of 12.58 mm in the x-axis and

14.46 mm in the y-axis. This indicates the system's accuracy in hitting the intended drop

points, though some variability exists.

Mocap_X(mm) Mocap_Y(mm) Map_X(mm) Map_Y(mm)

Test 1 -10.35 -127.56 -12.7 -10.69

Test 2 11.77 -128.25 9.42 -11.38

Test 3 19.31 -158.58 16.96 -41.71

Mean Error

4.56 -21.97

Std Dev.

12.58 14.46

Table 4: Motion capture data for hardware test, Marker Placed on the object picked up and dropped at the target
location

42

Figure 29:X and Y coordinates data of the pick-up object from the initial position to the target end effector
position

Figure 30: Top view of Quadruped following the Global path indicated by the red path planned towards the target

position, The Local path is represented in green. The x-axis of the robot frame (Red) represents the direction of the
heading of Go1

43

Figure 31: Front view of Quadruped following trajectory to target point carrying a blue color block.

Figure 32: Manipulator dropping the object at the specified target point after navigating to reachable space

within the target location

4.1 Conclusion

Building a working quadruped manipulator integrated system was the major goal of this

thesis and required a number of critical processes. Initially, a thorough literature review

was performed to comprehend the conventional approaches to integration for quadruped

44

manipulators. The assessment emphasized that the most challenging part of developing a

stable and efficient quadruped manipulator is motion planning. Based on existing

knowledge about motion planning in quadrupedal robots with appendages, two primary

approaches were identified: breaking the system down into its component parts or

evaluating it as a whole.

After a thorough analysis of the application, it was decided that the robotic arm would be

best used for motion planning as an autonomous system. Consequently, a distinct system

strategy was implemented using the ROS packages, which included quadruped route

planning and manipulator inverse kinematics (IK).

Simulations were conducted using RViz and Gazebo to validate the quadruped arm

system for SLAM path planning. Following positive results from the simulations, the

hardware was tested. Although the Go1's depth cameras were unable to perform real-time

object tracking due to latency concerns, the successful demonstration of path planning to

a defined target point incorporated both the quadruped's navigation and the manipulator's

IK motion planning.

45

REFERENCES

1. Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics. Springer

Berlin Heidelberg, 1 edition, 5 2008. doi:10.1007/978-3-540-30301-5.

2. Priyaranjan Biswal and Prases K. Mohanty. Development of quadruped walking

robots: A review. Ain Shams Engineering Journal, 12:2017–2031, 6 2021.

doi:10.1016/J.ASEJ. 2020.11.005.

3. Navvab Kashiri et al. Centauro: A hybrid locomotion and high power resilient

manipulation platform. IEEE Robotics and Automation Letters, 4(2):1595–1602,

2019. doi:10.1109/ LRA.2019.2896758

4. Hui Chai et al. A survey of the development of quadruped robots: Joint

configuration, dynamic locomotion control method and mobile manipulation

approach. Biomimetic Intelligence and Robotics, 2(1):100029, 2022.

doi:10.1016/J.BIROB.2021.100029.

5. Dan Zhang, Chao Cheng, Jun Fu, Hang Su, and Luquan Ren. Recent

advancements in agriculture robots: Benefits and challenges. Machines 2023, Vol.

11, Page 48, 11:48, 1 2023. doi:10. 3390/MACHINES11010048.

6. Unitree Robotics. Aliengo, 2020. Accessed on Dec. 28, 2022. URL: https://shop.

unitree.com/products/aliengo.

7. Maria S. Lopes, A.Paulo Moreira, Manuel Silva, and Filipe Santos. A Review on

Quadruped Manipulators. Unpublished, September 2023.

8. Maria S. Lopes, A. Paulo Moreira, Manuel Silva, and Filipe Santos. Robotic arm

development for a quadruped robot. Unpublished, October 2023.

9. Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo.

Robotics: Modelling, Planning and Control. Springer London, 2009.

doi:10.1007/978-1-84628-642-1

46

10. Kevin (Kevin M.) Lynch and Frank C. Park. Modern robotics : mechanics,

planning, and control. Cambridge University Press, 2017.

11. Mark W. Spong, Seth Hutchinson, and Vidyasagar M. Robot Modeling and

Control, volume 141. Wiley, 1st edition, 2005.

12. Robotic Systems Control. Dynamics of robotic manipulators, 2022. Accessed on

Mar. 25, 2023. URL: https://www.youtube.com/watch?v=QN-Awth50aA.

13. Robotic Systems Lab: Legged Robotics at ETH Zürich. Anymal using an

elevator, 2017. Accessed on Dec. 28, 2022. URL:

https://www.youtube.com/watch?v=gM1z60aeunU.

14. Boston Dynamics. Spot’s on it, 2021. Accessed on Dec. 28, 2022. URL:

https://www. youtube.com/watch?v=7atZfX85nd4.

15. Deep Robotics. Jueying x20, 2022. Accessed on Dec. 28, 2022. URL:

https://www. deeprobotics.cn/en/products.html.

16. Unitree Robotics. Unitree robotics aliengo + z1 for fire rescue, 2022. Accessed on

Dec. 28, 2022. URL: https://www.youtube.com/watch?v=7CVwGY65In8

17. Thushara Sandakalum and Marcelo H. Ang. Motion planning for mobile

manipulators—a systematic review. Machines, 10, 2 2022.

doi:10.3390/MACHINES10020097.

18. Jun Li et al. Whole-body control for a torque-controlled legged mobile

manipulator. Actuators, 11:304, 10 2022. doi:10.3390/ACT11110304.

19. Unitree Robotics. Ros simulation packages for unitree robots, 2020. Accessed on

Dec. 22, 2022. URL: https://github.com/unitreerobotics/unitree_ros.

20. Chitta et al. ros_control: A generic and simple control framework for ros. The

Journal of Open Source Software, 2017. doi:10.21105/joss.00456.

https://www.youtube.com/watch?v=QN-Awth50aA
https://www.youtube.com/watch?v=gM1z60aeunU
https://www.youtube.com/watch?v=7CVwGY65In8
https://github.com/unitreerobotics/unitree_ros

47

21. Guiyang Xin, Fanlian Zeng, and Kairong Qin. Loco-manipulation control for

arm-mounted quadruped robots: Dynamic and kinematic strategies. Machines,

10:719, 8 2022. doi:10. 3390/MACHINES10080719/S1.

