Trajectory Generation for Digit

By Tanmay Mittal

Introduction

The goal is to make the robot move by computationally calculating joint angles according to generated trajectory to achieve a desired distance. I worked on the trajectory generation part.

Trapezoidal trajectory

Trapezoidal vs polynomial comparison

Research paper method

JERK LIMITED VELOCITY PROFILE GENERATION FOR HIGH SPEED INDUSTRIAL ROBOT TRAJECTORIES
Proposes a trapezoidal trajectory
Generates a time optimal trajectory with the given jerk value (assuming possible max acceleration, max deceleration, max velocity)

Modifies the jerk value to fit the proposed final time generating a time fixed trajectory(assuming possible max acceleration, max deceleration, max velocity)

Generate 3 time segments

- Acceleration (x) - jerk(green) + constant acceleration(blue) + jerk(green)
- Constant velocity (x_hat) - constant velocity(red)
- Deceleration (x_line) - jerk(green) + deceleration(blue) + jerk(green)

Use piecewise functions to generate trajectory

Time optimal traveling period

Calculates the best time regions

X_hat (constant velocity)(red)
X_line (deceleration)(green blue green) right side
Does not change the green input jerk values

Decides to delete or keep the constant velocity(red) and/or acceleration(blue) and/or deceleration(blue).
And/or it decides to adjusts the max and min acceleration and deceleration value according to the equation below-

$$
\begin{align*}
& A \leftarrow 0.5 . J x, \text { if } v_{p}-v_{0}>0.25 . J x^{2} \text { (no const. acc.) } \\
& D \leftarrow 0.5 J \bar{x}, \text { if } v_{p}-v_{f}>0.25 . J x^{2} \text { (no const. dec.) } \tag{7}
\end{align*}
$$

Time fixed trajectories

Checks if input tf-t0 is larger than time optimal solution. If not it gives an error message and asks to set the optimal time value or a larger value to be the input tf-t0 difference.

Calculates time periods of acceleration deceleration and constant acceleration

1. $X($ acceleration)(green blue green)left side
2. X_hat (constant velocity)(red)
3. X_line (deceleration)(green blue green) right side

Adjusts the jerk value and stretch the graph to reach tf

$$
\begin{array}{r}
A \leftarrow 0.5 . J x, \text { if } x<\frac{2 A}{\gamma J J} \text { (no const. acc.) } \\
D \leftarrow 0.5 . J x, \text { if } x<\frac{2 D}{\gamma . J} \text { (no const. dec.) } \\
\quad J=J_{e} \leftarrow \gamma . J
\end{array}
$$

Adjust A or D if necessary (explain the γ constant later)
Decides to delete the constant velocity(red) and/or acceleration(blue) and/or deceleration(blue) if the trajectory is going back in time accommodate the max velocity.

Jerk readjustment

A jerk minimizing constant y is calculated (different for each condition depending on whether constant acceleration and/or constant deceleration and/or constant velocity is removed).

Value between $0 \& 1$ to decrease the original jerk value
Jerk value decreased to make the graph continuous and respect the tf value while achieving accurate distance.

Acceleration and deceleration readjustments (rare)

Time optimal

$$
\begin{align*}
& A \leftarrow 0.5 . J x \text {, if } v_{p}-v_{0}>0.25 . J x^{2} \text { (no const. acc.) } \\
& D \leftarrow 0.5 J x \text {, if } v_{p}-v_{f}>0.25 . J x^{2} \text { (no const. dec.) } \tag{7}
\end{align*}
$$

Time fixed

$$
\begin{array}{r}
A \leftarrow 0.5 . J x, \text { if } x<\frac{2 A}{\gamma J} \text { (no const. acc.) } \\
D \leftarrow 0.5 . J x, \text { if } x<\frac{2 D}{\gamma . J} \text { (no const. dec.) } \\
\quad J=J_{e} \leftarrow \gamma . J \tag{33c}
\end{array}
$$

Normal trajectory

t4 = constant velocity(red)
t2= constant acceleration(1st blue) t6= constant deceleration(2nd blue

$$
\begin{align*}
\operatorname{CASE}\left(T_{1}\right. & \left.>0, T_{2}>0, T_{6}>0, v_{0} \neq V, v_{f} \neq V\right) \\
V & =v_{0}-\frac{A^{2}}{\gamma J}+A x=v_{f}-\frac{D^{2}}{\gamma \cdot J}+D x \tag{46}
\end{align*}
$$

$$
\begin{gather*}
\left(v_{0}-V+\frac{D}{A}\left(v_{f}-V\right)\right) x+2 V T-2 L \\
+\frac{1}{D}\left(v_{f}-V\right)\left(\frac{D^{2}}{A^{2}}\left(v_{0}-V\right)-v_{f}+V\right)=0 \tag{47}\\
\gamma=\frac{A^{2}}{J\left(A x+v_{0}-V\right)} \tag{48}\\
x=\frac{V-v_{f}}{D}+\frac{D}{J}
\end{gather*}
$$

Jerk readjustment

Different equation for each condition

$$
\gamma=\frac{A^{2}}{J\left(A x+v_{0}-V\right)}
$$

Without correction

With correction

$\operatorname{CASE}\left(T_{4}>0, T_{2}>0, T_{6}=0, v_{0} \neq V, v_{f} \neq V\right)$

Constant deceleration region removed

$$
\begin{equation*}
V=v_{0}-\frac{A^{2}}{\gamma J}+A x=v_{f}+\frac{1}{4} \gamma J x^{2} \tag{52}
\end{equation*}
$$

$$
\frac{A\left(v_{0}-V\right)}{4\left(V-v_{f}\right)} x^{2}+\left(v_{f}-V\right) x+2 V T-2 L-\frac{1}{A}\left(v_{0}-V\right)^{2}=0
$$

Without correction

$$
\begin{equation*}
\gamma=\frac{4\left(V-v_{f}\right)}{J x^{2}} \tag{53}
\end{equation*}
$$

With correction

$\operatorname{CASE}\left(T_{4}>0, T_{2}=0, T_{6}>0, v_{0} \neq V, v_{f} \neq V\right)$

Constant Acceleration region removed

Without correction

$$
V=v_{0}+\frac{1}{4} \gamma \cdot J x^{2}=v_{f}-\frac{D^{2}}{\gamma J}+D x
$$

$$
\frac{D\left(v_{f}-V\right)}{4\left(V-v_{0}\right)} x^{2}+\left(v_{0}-V\right) x+2 V T-2 L-\frac{1}{D}\left(v_{f}-V\right)^{2}=0
$$

$$
\begin{equation*}
\gamma=\frac{4\left(V-v_{0}\right)}{J x^{2}} \tag{50}
\end{equation*}
$$

With correction

Non zero initial and final velocities with constant deceleration removed

Constant acceleration and deceleration regions removed

Without correction
$\operatorname{CASE}\left(T_{4}>0, T_{2}=0, T_{6}=0, v_{0} \neq V, v_{f} \neq V\right)$

$$
\begin{gathered}
v=v_{0}+\frac{1}{4} \gamma \cdot J x^{2}=v_{f}+\frac{1}{4} \gamma \cdot J x^{2} \\
\left(\left(v_{0}-V\right)^{2}-\frac{\left(v_{f}-V\right)^{3}}{\left(v_{0}-V\right)}\right) x^{2} \\
-4(L-V T)\left(v_{0}-V\right) x+4(L-V T)^{2}=0 \\
\gamma=\frac{4\left(V-v_{0}\right)}{J x^{2}}
\end{gathered}
$$

Constant velocity region removed

$$
x= \begin{cases}\frac{\left(\frac{A^{2}\left(v_{0}-v_{f}-D T\right)}{D^{2}-A^{2}}+v_{0}+v_{f}\right) T-2 L}{\left(\frac{A^{2}}{D-A}+A\right) T+v_{0}-v_{f}} & , A \neq D \\ \frac{1}{2 A}\left(v_{f}-v_{0}+A T\right) & A=D\end{cases}
$$

Without correction

$$
\gamma= \begin{cases}-\frac{D^{2}-A^{2}}{J\left\{(A+D) x+v_{0}-v_{f}-D T\right\}} & , A \neq \tag{35}\\ \frac{A^{2} T}{J\left\{\left(v_{0}+v_{f}\right) T+\left(v_{0}-v_{f}+A T\right) x-2 L\right\}} & , A=\end{cases}
$$

With correction

Constant velocity, acceleration and deceleration region removed

Time optimal equations t4>0 constant velocity region(red)

$$
\hat{x}=\frac{2 L-\left(v_{0}+V\right) x-\left(V+v_{f}\right) x}{2 V} \geq 0
$$

$\operatorname{CASE}\left(T_{4}>0, T_{2}>0, T_{6}>0\right)$

$$
\begin{align*}
V & =v_{0}-\frac{A^{2}}{J}+A x=v_{f}-\frac{D^{2}}{J}+D x \tag{24}\\
x & =\frac{V-v_{0}}{A}+\frac{A}{J}, x=\frac{V-v_{f}}{D}+\frac{D}{J} \tag{25}
\end{align*}
$$

CASE $\left(T_{1}>0, T_{2}=0, T_{6}>0\right)$

$$
\begin{align*}
& V=v_{0}+\frac{1}{4} J x^{2}=v_{f}-\frac{D^{2}}{J}+D x \tag{26}\\
& x=2 \sqrt{\frac{V-v_{0}}{J}}, x=\frac{V-v_{f}}{D}+\frac{D}{J} \tag{27}
\end{align*}
$$

CASE $\left(T_{4}>0, T_{2}>0, T_{6}=0\right)$

$$
\begin{equation*}
V=v_{0}-\frac{A^{2}}{J}+A x=v_{f}+\frac{1}{4} J x^{2} \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
x=\frac{V-v_{0}}{A}+\frac{A}{J}, x=2 \sqrt{\frac{V-v_{f}}{J}} \tag{29}
\end{equation*}
$$

$$
\begin{align*}
& \text { CASE }\left(T_{4}>0, T_{2}=0, T_{6}=0\right) \\
& \qquad V=v_{0}+\frac{1}{4} \cdot J x^{2}=v_{f}+\frac{1}{4} \cdot J x^{2} \tag{30}\\
& x=2 \sqrt{\frac{V-v_{0}}{J}}, x=2 \sqrt{\frac{V-v_{f}}{J}} \tag{31}
\end{align*}
$$

Time optimal equations t4=0 constant velocity region(red)

$\operatorname{CASE}\left(T_{4}=0, T_{2}>0, T_{6}>0\right)$

$$
\begin{gather*}
v_{p}=v_{0}-\frac{A^{2}}{J}+A x=v_{f}-\frac{D^{2}}{J}+D x \tag{11}\\
A\left(\frac{A}{D}+1\right) x^{2}+\frac{1}{J D}(A+D)\left(A D-2 A^{2}+2 v_{0} J\right) x \\
-2 L-\frac{1}{D}\left(v_{0}+v_{f}-\frac{A^{2}}{J}\right)\left(v_{f}-v_{0}+\frac{A^{2}-D^{2}}{J}\right)=0 \\
x \geq \frac{2 A}{J}, x \geq \frac{2 D}{J} \tag{12}
\end{gather*}
$$

$\operatorname{CASE}\left(T_{4}=0, T_{2}=0, T_{6}>0\right)$

$$
\begin{gather*}
v_{p}=v_{0}+\frac{1}{4} J x^{2}=v_{f}-\frac{D^{2}}{J}+D x \tag{14}\\
\frac{J^{2}}{16 D} x^{4}+\frac{1}{4} J x^{3}+\frac{1}{4}\left(2 \frac{J v_{0}}{D}+D\right) x^{2}+ \\
2 v_{0} x-2 L+\frac{1}{D}\left(v_{0}+v_{f}\right)\left(v_{0}-v_{f}+\frac{D^{2}}{J}\right)=0 \tag{15}\\
0 \leq x<\frac{2 A}{J}, x \geq \frac{2 D}{J} \tag{16}
\end{gather*}
$$

$\operatorname{CASE}\left(T_{4}=0, T_{2}>0, T_{6}=0\right)$

$$
\begin{gather*}
v_{p}=v_{0}-\frac{A^{2}}{J}+A x=v_{f}+\frac{1}{4} J x^{2} \tag{17}\\
\frac{J^{2}}{16 A} x^{4}+\frac{1}{4} J x^{3}+\frac{1}{4}\left(2 \frac{J v_{f}}{A}+A\right) x^{2}+ \\
2 v_{f} x-2 L+\frac{1}{A}\left(v_{f}+v_{0}\right)\left(v_{f}-v_{0}+\frac{A^{2}}{J}\right)=0 \tag{18}\\
x \geq \frac{2 A}{J}, 0 \leq x<\frac{2 D}{J} \tag{19}
\end{gather*}
$$

$\operatorname{CASE}\left(T_{4}=0, T_{2}=0, T_{6}=0\right)$

$$
\begin{gather*}
v_{p}=v_{0}+\frac{1}{4} J x^{2}=v_{f}+\frac{1}{4} \cdot J x^{2} \tag{20}\\
\frac{1}{4}\left(v_{f}-v_{0}\right) \cdot J x^{4}+J L x^{3}-\left(v_{f}-v_{0}\right)^{2} x^{2} \\
+8 v_{0} L x-4\left\{L^{2}+\frac{1}{J}\left(v_{0}+v_{f}\right)^{2}\left(v_{f}-v_{0}\right)\right\}=0 \tag{21}\\
0 \leq x<\frac{2 A}{J}, 0 \leq x<\frac{2 D}{J} \tag{22}
\end{gather*}
$$

Time fixed equations t4>0 constant velocity region(red)

$$
\begin{gather*}
\text { CASE }\left(T_{1}>0, T_{2}>0, T_{6}>0, v_{0} \neq V, v_{f} \neq V\right) \\
V=v_{0}-\frac{A^{2}}{\gamma J}+A x=v_{f}-\frac{D^{2}}{\gamma_{\cdot}}+D x \\
\left(v_{0}-V+\frac{D}{A}\left(v_{f}-V\right)\right) x+2 V T-2 L \\
+\frac{1}{D}\left(v_{f}-V\right)\left(\frac{D^{2}}{A^{2}}\left(v_{0}-V\right)-v_{f}+V\right)=0 \tag{47}\\
\gamma=\frac{A^{2}}{J\left(A x+v_{0}-V\right)} \tag{48}
\end{gather*}
$$

$\operatorname{CASE}\left(T_{1}>0, T_{2}=0, T_{6}>0, v_{0} \neq V, v_{f} \neq V\right)$

$$
\begin{equation*}
V=v_{0}+\frac{1}{4} \gamma J x^{2}=v_{f}-\frac{D^{2}}{\gamma . J}+D x \tag{49}
\end{equation*}
$$

$$
\begin{gather*}
\frac{D\left(v_{f}-V\right)}{4\left(V-v_{0}\right)} x^{2}+\left(v_{0}-V\right) x+2 V T-2 L-\frac{1}{D}\left(v_{f}-V\right)^{2}=0 \tag{50}\\
\gamma=\frac{4\left(V-v_{0}\right)}{J x^{2}} \tag{51}
\end{gather*}
$$

$\operatorname{CASE}\left(T_{4}>0, T_{2}>0, T_{6}=0, v_{0} \neq V, v_{f} \neq V\right)$

$$
\begin{equation*}
V=v_{0}-\frac{A^{2}}{\gamma J}+A x=v_{f}+\frac{1}{4} \gamma \cdot J x^{2} \tag{52}
\end{equation*}
$$

$$
\frac{A\left(v_{0}-V\right)}{4\left(V-v_{f}\right)} x^{2}+\left(v_{f}-V\right) x+2 V T-2 L-\frac{1}{A}\left(v_{0}-V\right)^{2}=0
$$

$$
\begin{equation*}
\gamma=\frac{4\left(V-v_{f}\right)}{J x^{2}} \tag{53}
\end{equation*}
$$

$$
\mathrm{CASE}\left(T_{4}>0, T_{2}=0, T_{6}=0, v_{0} \neq V, v_{f} \neq V\right)
$$

$$
\begin{equation*}
v=v_{0}+\frac{1}{4} \gamma J x^{2}=v_{f}+\frac{1}{4} \gamma J x^{2} \tag{55}
\end{equation*}
$$

$$
\begin{gather*}
\left(\left(v_{0}-V\right)^{2}-\frac{\left(v_{f}-V\right)^{3}}{\left(v_{0}-V\right)}\right) x^{2} \tag{56}\\
-4(L-V T)\left(v_{0}-V\right) x+4(L-V T)^{2}=0 \\
\gamma=\frac{4\left(V-v_{0}\right)}{J x^{2}} \tag{57}
\end{gather*}
$$

$\operatorname{CASE}\left(T_{4}>0, v_{0}=v_{f}=V\right)$
Since there are no acceleration and deceleration regions, the jerk scaling γ is meaningless, and we have the following

$$
\begin{equation*}
x=x=0, \hat{x}=T \tag{58}
\end{equation*}
$$

CASE ($T_{4}>0, v_{0}=V, v_{f} \neq V$)

Since there is no acceleration region, $x=0$ and x can be found from the displacement condition (6).

$$
\begin{equation*}
x=\frac{2(L-V T)}{V-v_{f}} \tag{59}
\end{equation*}
$$

We find the equations for γ by dividing the cases depending on whether or not constant acceleration region exists.

$$
\gamma= \begin{cases}\frac{4\left(V-v_{f}\right)}{J x^{2}} & , \frac{2\left(V-v_{f}\right)}{J x} \leq \frac{D}{J} \tag{60}\\ \frac{D^{2}}{J\left(D x-V+v_{f}\right)}, & \text { otherwise }\end{cases}
$$

CASE ($\left.T_{4}>0, v_{0} \neq V, v_{f}=V\right)$

With similar reasoning used in the previous case, the following conditions.

$$
x=\frac{2(L-V T)}{V-v_{0}}
$$

$$
\gamma= \begin{cases}\frac{4\left(V-v_{0}\right)}{J x^{2}} & , \frac{2\left(V-v_{0}\right)}{J x} \leq \frac{A}{J} \\ \frac{A^{2}}{J\left(A x-V+v_{0}\right)}, & \text { otherwise }\end{cases}
$$

Use x or x_line equations from time optimal solution if not specified

Time fixed equations t4=0 constant velocity region(red)

$$
\operatorname{CASE}\left(T_{4}=0, T_{2}>0, T_{6}>0\right)
$$

$$
\begin{gather*}
v_{p}=v_{0}-\frac{A^{2}}{\gamma J}+A x=v_{f}-\frac{D^{2}}{\gamma J}+D x \tag{34}\\
x= \begin{cases}\frac{\left(\frac{A^{2}\left(v_{0}-v_{f}-D T\right)}{D^{2}-A^{2}}+v_{0}+v_{f}\right) T-2 L}{\left(\frac{A^{2}}{D-A}+A\right) T+v_{0}-v_{f}} & , A \neq D \\
\frac{1}{2 A}\left(v_{f}-v_{0}+A T\right) & , A=D\end{cases} \tag{35}
\end{gather*}
$$

$$
\gamma= \begin{cases}-\frac{D^{2}-A^{2}}{J\left\{(A+D) x+v_{0}-v_{f}-D T\right\}} & , A \neq D \tag{36}\\ \frac{A^{2} T}{J\left\{\left(v_{0}+v_{f}\right) T+\left(v_{0}-v_{f}+A T\right) x-2 L\right\}} & , A=D\end{cases}
$$

$\operatorname{CASE}\left(T_{4}=0, T_{2}=0, T_{6}>0\right)$

$$
\begin{equation*}
v_{p}=v_{0}+\frac{1}{4} \gamma J x^{2}=v_{f}-\frac{D^{2}}{\gamma J}+D x \tag{37}
\end{equation*}
$$

$$
\begin{aligned}
C_{2} x^{2} & +C_{1} x+C_{0}=0, \text { where } \\
C_{2} & =\left(v_{0}-v_{f}-\frac{D T}{2}\right)^{2} \\
C_{1} & =-2 v_{f} T\left(D T+2 v_{f}\right)+T\left(v_{0}+v_{f}\right)^{2}+4 L\left(v_{f}-v_{0}\right)+2 L D T \\
C_{0} & =\left\{2 L-\left(v_{0}+v_{f}\right) T\right\}\left\{2 L-T\left(2 v_{f}+D T\right)\right\}
\end{aligned}
$$

$$
\begin{equation*}
\frac{1}{4} J x^{2} \gamma^{2}+\left(v_{0}-v_{f}-D x\right) \gamma+\frac{D^{2}}{J}=0 \tag{39}
\end{equation*}
$$

$$
\operatorname{CASE}\left(T_{4}=0, T_{2}>0, T_{6}=0\right)
$$

$$
\begin{equation*}
v_{p}=v_{0}-\frac{A^{2}}{\gamma J}+A x=v_{f}+\frac{1}{4} \gamma J x^{2} \tag{40}
\end{equation*}
$$

$$
C_{2} x^{2}+C_{1} x+C_{0}=0, \text { where }
$$

$$
C_{2}=\left(v_{f}-v_{0}-\frac{A T}{2}\right)^{2}
$$

$$
C_{1}=-2 v_{0} T\left(A T+2 v_{0}\right)+T\left(v_{0}+v_{f}\right)^{2}+4 L\left(v_{0}-v_{f}\right)+2 L A T
$$

$$
\begin{equation*}
C_{0}=\left\{2 L-\left(v_{0}+v_{f}\right) T\right\}\left\{2 L-T\left(2 v_{0}+A T\right)\right\} \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{4} J_{x}^{2} \gamma^{2}+\left(v_{f}-v_{0}-A x\right) \gamma+\frac{A^{2}}{. J}=0 \tag{42}
\end{equation*}
$$

$\operatorname{CASE}\left(T_{4}=0, T_{2}=0, T_{6}=0\right)$

$$
\begin{gather*}
v_{p}=v_{0}+\frac{1}{4} \gamma J x^{2}=v_{f}+\frac{1}{4} \gamma J x^{2} \tag{43}\\
\left(v_{0}-v_{f}\right) x^{2}+\left\{\left(3 v_{f}+v_{0}\right) T-4 L\right\} x+\left\{2 L-\left(v_{0}+v_{f}\right) T\right\} T=0
\end{gather*}
$$

$$
\gamma= \begin{cases}\frac{4\left(v_{f}-v_{0}\right)}{J\left(x^{2}-x^{2}\right)}, & v_{f} \neq v_{0} \\ \frac{4\left(L / x-2 v_{0}\right)}{J x^{2}}, & v_{f}=v_{0}\end{cases}
$$

(44)

Use x or x_line
(45) equations from time optimal solution if not specified

4 pose animation

C conversion of matlab code

Matlab coder-assigned sizes to all the variable and arrays
Cygwin
Replit to test the generated files

Robot simulation

Generated angles applied on a simulation

Show simulation

Thank You

