
Developing Computationally Efficient Optimization Framework for

Collaborative Routing of UAV-UGV System

BY

SUBRAMANIAN RAMASAMY
B.E. in Mechanical Engineering, Anna University, 2019

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mechanical and Industrial Engineering

in the Graduate College of the
University of Illinois at Chicago, 2025

Chicago, Illinois

Defense Committee:

Pranav A. Bhounsule, Chair and Advisor
James D. Humann, Army Research Laboratory
Sivakumar Rathinam, Mechanical Engineering, Texas A&M University
Bo Zou, Civil and Materials Engineering, UIC
Selvaprabhu Nadarajah, Information and Decision Sciences, UIC

Copyright by

SUBRAMANIAN RAMASAMY

2025

ஆள்விைனயும்ஆன்றஅறBவும் எனஇரண்டின்

நீள்விைனயால் நீளும்குடி.

To my father Ramaswamy, who has been supportive throughout my

life to allow me to pursue my dreams,

To my mother Lavanya, whose encouragement, kindness, and care have

inspired me to strive tirelessly toward achieving my goals,

To my family, friends and well-wishers, who are with me through thick

and thin, and help me to achieve my goals.

iii

ACKNOWLEDGMENTS

I would like to extend my heartfelt gratitude to everyone who has been a part of my doctoral

journey.

First and foremost, I would like to thank my advisor, Dr. Pranav A. Bhounsule, who

entrusted me with this project. He played a pivotal role in inspiring me to pursue a PhD, and I

am truly grateful for the journey thus far and the opportunity to work on this fascinating and

exciting project. His wisdom, guidance, and unwavering belief have left a lasting impact on me

as a researcher. I will carry his mentorship with me as invaluable lessons throughout my career.

To my esteemed committee members, Dr. James D. Humann, Prof. Selvaprabhu Nadarajah,

Prof. Sivakumar Rathinam, and Prof. Bo Zou, I express my deep gratitude. Your guidance

and feedback throughout my thesis journey has been very helpful.

I would also like to extend my sincere gratitude to Dr. James D. Humann from the Army

Research Laboratory for his constant support and valuable feedback throughout my work. Your

assistance has been greatly appreciated.

I would like to express my thanks to Dr. Mamadou Seck and Dr. Keivan Ghoseiri from

Amtrak. Though the work I did at Amtrak is not directly related to my PhD thesis, their

mentorship and guidance during my internship has helped me to gain some insights about how

to address research problems that involve non-technical challenges aside technical ones during

this PhD journey.

iv

ACKNOWLEDGMENTS (Continued)

To my past and present lab mates, my companions on this academic adventure, you have

been a source of great camaraderie and friendship. From Dr. Ernesto Hernandez, Prashanth

and Abhishek to my current lab mates Salvador, Jim, Daniel, Safwan, Chun-Ming and Ragib

its been an honor to walk this path with you.

Finally, I extend my deepest gratitude to my familythe foundation of my lifeincluding my

parents, friends, and loved ones. Your unwavering support and belief in me have brought me

this far. Your companionship and the joyful moments we shared kept my sanity in check and

helped me pass through some challenging times. I owe every success to your encouragement

and presence. I thank you all from the bottom of my heart.

SR

v

PREFACE

This project was funded by the Army Research Laboratory (ARL) grant.

SUBRAMANIAN RAMASAMY
April 4, 2025

vi

CONTRIBUTION OF AUTHORS

Chapter 2: A significant portion of this chapter is reproduced from a published paper

with the following citation: [Ramasamy, S., Reddinger, J. P. F., Dotterweich, J. M., Childers,

M. A., & Bhounsule, P. A. (2022). Coordinated route planning of multiple fuel-constrained

unmanned aerial systems with recharging on an unmanned ground vehicle for mission coverage.

Journal of Intelligent & Robotic Systems, 106(1), 30.] in which Pranav A. Bhounsule, Subrama-

nian Ramasamy, Jean-Paul F. Reddinger, James Dotterweich and Marshal A. Childers equally

contributed to conceiving the idea; Subramanian Ramasamy carried out the data collection,

experimental simulations and wrote the manuscript; Pranav A. Bhounsule and Jean-Paul F.

Reddinger advised and edited it.

Chapter 3: A significant portion of this chapter is reproduced from a published paper

with the following citation: [Ramasamy, S., Mondal, M. S., Reddinger, J. P. F., Dotterweich,

J. M., Humann, J. D., Childers, M. A., & Bhounsule, P. A. (2022, June). Heterogenous vehicle

routing: comparing parameter tuning using genetic algorithm and bayesian optimization. In

2022 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 104-113). IEEE.]

in which Pranav A. Bhounsule, Subramanian Ramasamy, Md Safwan Mondal, Jean-Paul F.

Reddinger, James D. Humann, James Dotterweich and Marshal A. Childers equally contributed

to conceiving the idea; Subramanian Ramasamy and Md Safwan Mondal equally contributed

and carried out the data collection, experimental simulations and wrote the manuscript; Pranav

A. Bhounsule, Jean-Paul F. Reddinger and James D. Humann advised and edited it.

vii

CONTRIBUTION OF AUTHORS (Continued)

Chapter 4: A significant portion of this chapter is reproduced from a published paper

with the following citation: [Ramasamy, S., Mondal, M. S., Reddinger, J. P. F., Dotterweich, J.

M., Humann, J. D., Childers, M. A., & Bhounsule, P. A. (2023, June). Solving Vehicle Rout-

ing Problem for Unmanned Heterogeneous Vehicle Systems using Asynchronous Multi-Agent

Architecture (A-teams). In 2023 International Conference on Unmanned Aircraft Systems

(ICUAS) (pp. 95-102). IEEE.] in which Pranav A. Bhounsule, Subramanian Ramasamy, Md

Safwan Mondal, James D. Humann, Jean-Paul F. Reddinger, James Dotterweich and Marshal

A. Childers equally contributed to conceiving the idea; Subramanian Ramasamy carried out

the data collection, experimental simulations and wrote the manuscript; Pranav A. Bhounsule,

Md Safwan Mondal and James D. Humann advised and edited it.

Chapter 5: A significant portion of this chapter is reproduced from a published paper

with the following citation: [Ramasamy, S., Mondal, M. S., Humann, J. D., Dotterweich, J.

M., Reddinger, J. P. F., Childers, M. A., & Bhounsule, P. A. (2024, August). Computationally

Efficient Multi-Agent Optimization Framework for Online Routing of UAV-UGV System. In

2024 IEEE 20th International Conference on Automation Science and Engineering (CASE)

(pp. 204-211). IEEE.] in which Pranav A. Bhounsule, Subramanian Ramasamy, Md Safwan

Mondal, James D. Humann, James Dotterweich, Jean-Paul F. Reddinger, and Marshal A.

Childers equally contributed to conceiving the idea; Subramanian Ramasamy carried out the

data collection, experimental simulations and wrote the manuscript; Pranav A. Bhounsule, Md

Safwan Mondal and James D. Humann advised and edited it.

viii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1 Expected significance . 2
2 Contributions . 4
2.1 A Bi-level Optimization Algorithm for Solving Collaborative

Heterogeneous Routing Problem 4
2.2 A-Teams: An Optimization Framework to Solve for UGV-

UAV Routing . 5
2.3 Computationally Efficient Framework: Proposed Variant of

A-Teams and its practical applicability 6
2.4 RL-Assisted A-Teams for Adaptive Algorithm Selection in UGV-

UAV Optimization . 7

2 BACKGROUND . 8
1 Vehicle Routing Problem . 8
2 Vehicle Routing Problem for Unmanned Aerial Vehicles . . . 9
3 Multiple Unmanned Aerial Vehicle Routing Problem 10
4 Multiple Unmanned Aerial Vehicle Routing Problem with Un-

manned Ground Vehicle as mobile recharging vehicle 11
5 Solving cooperative UAV-UGV routing as bi-level optimiza-

tion problem . 13
5.1 Formulating and solving UGV Routing 14
5.2 Formulating UAV Routing as Energy-Constrained Vehicle Rout-

ing Problem (E-VRP) and solving using Exact Methods . . . 14

3 HETEROGENEOUS VRP: BI-LEVEL OPTIMIZATION BY PER-
FORMING GENETIC ALGORITHM TUNING FOR UGV ROUT-
ING AND GRAPH LOCAL SEARCH FOR UAV ROUTING . 24
1 INTRODUCTION . 25
2 METHODS . 30
2.1 Problem statement . 30
2.2 Solution approach . 31
2.3 Heuristics for UGV (Outer-loop) 31
2.4 Optimizing UAV route (Inner-loop) 33
2.5 Solution using Constraint Programming (CP) 39
2.6 Optimizing the parameters of the UGV heuristics 42
2.6.1 Genetic Algorithm . 43
2.6.2 Bayesian Optimization . 45

ix

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3 RESULTS . 47
4 DISCUSSION . 50
5 CONCLUSIONS AND FUTURE WORK 52

4 SOLVING VEHICLE ROUTING PROBLEM FOR UNMANNED
HETEROGENEOUS VEHICLE SYSTEMS USING ASYNCHRONOUS
MULTI-AGENT ARCHITECTURE (A-TEAMS) 55
1 INTRODUCTION . 56
2 METHODS . 61
2.1 Conventional Two-level optimization 62
2.2 Description of the proposed architecture - A-Teams 63
2.2.1 Nelder-Mead algorithm . 65
2.3 Heuristics for UGV (Outer-level) 68
2.4 Optimizing UAV route (Inner-level) 68
3 RESULTS . 69
4 DISCUSSION . 74
5 CONCLUSIONS AND FUTURE WORK 77

5 COMPUTATIONALLY EFFICIENT MULTI-AGENT OPTIMIZA-
TION FRAMEWORK FOR ONLINE ROUTING OF UAV-UGV
SYSTEM: VARIANT OF A-TEAMS 81
1 INTRODUCTION . 82
2 RELATED WORK . 83
3 METHODS . 86
3.1 Problem formulation . 86
3.2 Proposed optimization framework 91
3.2.1 Solving outer-level UGV routing using Asynchronous

Teams (A-Teams) framework 91
3.2.2 Solving E-VRP for inner-level UAV routing 92
3.3 Hardware setup . 94
4 RESULTS . 96
4.1 Evaluation of the proposed framework 96
4.2 Hardware re-planning with dynamic changes 101
5 DISCUSSION . 104
6 CONCLUSION . 106

6 REINFORCEMENT LEARNING ASSISTED A-TEAMS FOR
ADAPTIVE ALGORITHM SELECTION IN UAV-UGV OPTI-
MIZATION PROCESS . 108
1 INTRODUCTION . 109
2 RELATED WORK . 109
3 METHODS . 116

x

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3.1 Problem statement . 116
3.2 Method 1: GA at outer-level and Constraint Programming

(CP) at inner-level . 121
3.3 Method 2: Conventional A-Teams at outer-level and CP at

inner-level . 122
3.4 A-Teams with Predictor Agent at outer-level and CP at inner-

level . 123
3.4.1 Solving outer-level UGV routing using Asynchronous

Teams (A-Teams) framework with Predictor Agent . 123
3.5 Reinforcement Learning framework for High-level Decision Mak-

ing . 124
3.5.1 Policy Objective Function . 128
3.5.2 Advantage Estimation . 129
3.5.3 Value Function Loss . 130
3.5.4 Total Objective Function . 130
3.5.5 Neural Network Architecture . 130
3.5.6 Solving E-VRP for inner-level UAV routing 132
4 RESULTS . 134
4.1 Study 1: Comparison of different methods across various task

point distributions with 1 UAV and 1 UGV routing 140
4.2 Study 2: Comparison of different methods across various task

point distributions with multi-UAV and 1 UGV routing . . . 142
4.3 Study 3: Case Study - Bridge Inspection Using Autonomous

Vehicle System . 144
5 DISCUSSION . 153
6 CONCLUSION . 158

7 SOFTWARES USED . 160
1 Optimization method . 160

8 CONCLUSION . 161

APPENDICES . 165
Appendix A . 166
Appendix B . 168
Appendix C . 170
Appendix D . 172

CITED LITERATURE . 174

VITA . 184

xi

LIST OF TABLES

TABLE PAGE
I Constraint Quantity analysis . 22
II Parameter set and their range for GA/BO optimization 48
III Optimal parameters after GA/BO optimization 49
IV Comparison between GA/BO on metrics from the optimal solution. . . 54
V UGV parameters and their ranges (outer loop) 72
VI Comparison of total cost between A-Teams and conventional two-level

optimization for different scenarios . 74
VII Comparison between A-Teams and conventional two-level optimization

on metrics from the optimal solution for different scenarios. These results
are shown for a specific initialization of population by Constructor agent. 80

VIII Optimized solution and computational comparison between proposed
framework and standard meta-heuristics 98

IX Predictor agent: Assessment of classification performance with proposed
Ensemble vs simpler k-NN model . 99

X Comparison across different optimization methods for high-dense task
point distribution with 1 UAV-1 UGV routing. 138

XI Comparison across different optimization methods for moderate-dense
task point distribution with 1 UAV-1 UGV routing. 139

XII Comparison across different optimization methods for sparse-dense task
point distribution with 1 UAV-1 UGV routing. 139

XIII Comparison across different optimization methods for high-dense task
point distribution with 2 UAV-1 UGV routing. 142

XIV Comparison across different optimization methods for moderate-dense
task point distribution with 2 UAV-1 UGV routing. 143

XV Comparison across different optimization methods for sparse-dense task
point distribution with 2 UAV-1 UGV routing. 143

XVI Average value of Average Age period across all nodes across different
vehicle system vs different starting point. 151

xii

LIST OF FIGURES

FIGURE PAGE
1 Scenario description from Maini et. al [1] for Cooperative UAV-UGV

routing . 12
2 Different instances of scattered mission point scenarios with k = 3 clusters 16
3 An example scenario: (a) The mission scenario. Both, the UAV and

UGV start from the same starting location. The range of the UAV is
shown using a blue circle. (b) (c) Two possible solutions for mission
coverage. 27

4 The problem scenario. The UAV and UGV, both start from the recharg-
ing depot. The mission points are shown with black dots. The UAV
range is shown with a blue circle. 28

5 Overview of the algorithm . 30
6 Heuristics for UGV route. The UGV can make two stops on any mission

points such that the first one inside the red ellipse shown with dashed
lines and the second is inside the blue ellipse shown with dash-dotted
lines. At each stop, the UGV can choose a time to wait (e.g., to recharge
the UAV). 32

7 Move operators using in Constraint Programming [2] 40
8 Solution produced by Genetic Algorithm. The plots show the UAV and

UGV route at different time spans. 50
9 Solution produced by Bayesian Optimization. The plots show the UAV

and UGV route at different time spans. 51
10 Overview of the bi-level optimization algorithm. The outer-level block

is run in parallel on multiple cores. 61
11 Implementation of A-Teams architecture for this cooperative routing

problem. 62

xiii

LIST OF FIGURES (Continued)

FIGURE PAGE

12 Graphical representation of the Nelder-Mead algorithm for 2-dimensional
input example. a) The example inputs under consideration. b) Reflec-
tion operation. This operation is performed to make the worst vertex
(x3) of the simplex shape at least better than the second worst vertex
(x2). The reflection is performed to mirror x3 about the centroid of the
simplex shape, and the reflected point is named xr. The xr is found via
the equation in line 8 of the algorithm Algorithm 3. Based upon the
objective function evaluation at xr, either of the following operations
expansion, contraction or shrink is performed accordingly. c) Expan-
sion operation. This operation is performed if the reflected solution xr
is not only better than x2, but also better than the current best solution
x1. If this is the case, then the solution xr is updated into xe by moving
along that reflected vector direction, and now the new worst solution
point will be x2. The xe is found via the equation in line 10 of the
algorithm Algorithm 3. d) Contraction operation. This operation is
performed if the reflected solution xr did not get better than x2 solu-
tion. There are two types of contraction. Outside contraction xoc is
performed at a third-quarter of the distance between x3 and xr and In-
side contraction xic is performed at a quarter of the distance between
x3 and xr. Comparing these two contractions, x3 will get updated to
xic or xoc by picking the better solution between them. The xoc or xic
is found via the equation in line 12 or line 14 of the algorithm Algo-
rithm 3. e) Shrink operation. If none of the above operations improve
the solution x3, then this operation is performed where it updates the
current vertices x2 and x3 to a location as per the equation in line 15 of
the algorithm Algorithm 3. 67

13 Description of different scenarios. The UAV and UGV, both start from
one of the recharging depots. The task locations are shown with black
dots. The UAV range is shown with a blue circle. a) Scenario 1 b)
Scenario 2 c) Scenario 3. 69

14 Description of different scenarios with parameters to be optimized. a)
Scenario 1 b) Scenario 2 c) Scenario 3. 73

15 Solution produced by conventional two-level optimization and A-teams
on Scenario 1 are indistinguishable and are shown here. The different
plot shows the UAV and UGV route at various time-steps. 75

16 Optimal parameter results of respective scenarios obtained using the
A-Teams architecture. (a) Scenario 1 (b) Scenario 2 (c) Scenario 3 . . . 76

xiv

LIST OF FIGURES (Continued)

FIGURE PAGE

17 Persistent surveillance illustration for a collaborative UGV-UAV routing
problem. For a single Persistent Surveillance mission, steps a) through d)
occur sequentially, where ’n’ represents the frame rate. a) A candidate
UGV-UAV task visit points. b), c), d) Execution of the planned/re-
planned route. Steps (c) and (d) are repeated for persistent node visits.
Re-planning is done online if dynamic changes are observed. 83

18 Description of the proposed A-Teams optimization framework used for
UGV-UAV routing. a) This proposed A-Teams has Constructor, Im-
prover, Destroyer and Predictor agents. Agents strategically choose
UGV routes, which are fed into UAV optimization to get collaborative
UGV-UAV route outputs. b) Training of Ensemble model in Predictor
Agent . 87

19 Hardware experimental framework . 95
20 Scenario descriptions containing the UGV free route parameters for the

optimization process. Primary rendezvous location parameter set (or-
ange and blue ellipse) are solved from Minimum Set Cover problem a)
Scenario 1 b) Scenario 2 c) Scenario 3 . 96

21 Comparison of the Predictions made by Ensemble model vs kNN model
for Scenario 2. Left - Ensemble Model; Right - kNN Model 100

22 2D plot of experimental scenario . 100
23 Experiment instance with dynamic changes 102
24 UAV-UGV simulated route plan obtained from the multi-agent opti-

mization framework (A-Teams). Top Row shows the initial planned
route without any dynamic changes. Bottom Row shows re-planned
routes considering the dynamic changes in the scenario. Animation of
simulated routes can be viewed here: http://tiny.cc/mgjkxz 103

25 Hardware vs simulation Time-of-Flight comparison of lab setup experiment 105
26 Persistent surveillance illustration for a collaborative UGV-UAV routing

problem. For a single Persistent Surveillance mission, steps a) through d)
occur sequentially, where ’n’ represents the frame rate. a) A candidate
UGV-UAV task visit points. b), c), d) Execution of the planned/re-
planned route. Steps (c) and (d) are repeated for persistent node visits.
Re-planning is done online if dynamic changes are observed. 110

27 Description of the conventional A-Teams optimization framework used
for UGV-UAV routing. This A-Teams inspired from the works of Taluk-
dar et. al has Constructor, Improver, Destroyer and Predictor agents.
Agents strategically choose UGV routes, which are fed into UAV opti-
mization to get collaborative UGV-UAV route outputs. 117

xv

LIST OF FIGURES (Continued)

FIGURE PAGE

28 Description of the proposed A-Teams optimization framework used for
UGV-UAV routing. a) This proposed A-Teams has Constructor, Im-
prover, Destroyer and Predictor agents. Agents strategically choose
UGV routes, which are fed into UAV optimization to get collaborative
UGV-UAV route outputs. b) Training of Ensemble model in Predictor
Agent . 117

29 Markov Decision Process in this study . 126
30 Action space for DRL based approach . 127
31 RL Training with different Learning Rates 135
32 An instance of training scenario . 136
33 Example of different task point distribution scenario types. a) High

Dense scenario b) Moderate Dense scenario c) Sparse Dense scenario. . 138
34 Computational time comparison across different methods: For 1 UAV -

1 UGV study . 140
35 Route sequence of Scenario 1 of High Dense distribution with 1 UAV -

1 UGV routing . 141
36 Computational time comparison across different methods: For 2 UAV -

1 UGV study . 144
37 Route sequence of Scenario 1 of High Dense distribution with 2 UAV -

1 UGV routing . 145
38 Case Study scenario considered for Bridge inspection. a) Bridge loca-

tions obtained from ArcGIS map b) Aerial view of the Bridge c) Con-
verted coordinates for performing routing as per cartesian coordinates. 147

39 Average age period heatmap. a) For 1 UAV - 1 UGV system. b) For 2
UAV - 1 UGV system. 149

40 Case Study scenario with different starting points. The Green box in
(a) and (b) represents the location from where the UAV-UGV inspection
starts. 151

41 Case Study scenario routing sequence. Black stars on the right plot
represent the dynamic appearance of inspection points to be visited. . . 152

42 Average age period comparison across all the nodes. Top plot represent
the 2 UAV - 1 UGV routing without dynamic changes and bottom plot
represents the 2 UAV - 1 UGV routing with dynamic changes. The
yellow bars represent the additionally added points (Black stars from
Figure Figure 41). 154

43 RL Policy-Driven Optimization Sequence for Agent Selection 155
44 RL Policy-Driven Optimization Sequence for Agent Selection. Here Al-

ternative reward mechanism is shaped to encourage choosing the Pre-
dictor agent as a part of optimization process. 157

xvi

LIST OF ALGORITHMS

ALGORITHM PAGE

1 Genetic Algorithm . 43

2 Bayesian Optimization . 47

3 Nelder-Mead Method . 78

4 A-Teams Architecture . 79

5 PPO Algorithm . 131

xvii

LIST OF ABBREVIATIONS

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

VRP Vehicle Routing Problem

E-VRP Energy-Constrained Vehicle Routing Problem

A-Teams Asynchronous Teams

MIP Mixed Integer Programming

MILP Mixed Integer Linear Programming

RAAT RL-Assisted A-Teams

xviii

SUMMARY

Unmanned Aerial Vehicles (UAVs) are increasingly popular for autonomous tasks such as

surveillance, package delivery, and disaster relief. However, as these applications expand, so

do the challenges of enabling UAVs to perform these tasks over extended durations or on a

larger scale. One solution is to pair UAVs with Unmanned Ground Vehicles (UGVs), which can

serve as carriers to transport UAVs or as mobile recharging stations to extend their operational

range.

To achieve effective performance and coordination between UAVs and UGVs, optimal route

planning is essential. The UAV-UGV routing problem, being an NP-Hard combinatorial opti-

mization challenge, is further complicated by the heterogeneity of these vehicles. Traditional

optimization approaches, including exact methods like Branch and Bound with MILP formu-

lations, as well as standard heuristics and metaheuristics, are often too time-consuming to be

practical due to the dynamic nature of the environment and the autonomous vehicles involved.

Thus, a faster, more adaptive planning method is crucial to address these challenges effectively.

This thesis focuses on solving this collaborative UAV-UGV routing problem in a compu-

tationally efficient manner such that the solutions are obtained quick enough to be feasibly

applied on to the actual UAV-UGV system in a realistic environment. The core concept of

solving such a collaborative routing problem is by formulating them as bi-level optimization

problem, where the outer-level handles the UGV optimization and for each UGV candidate

route, the inner-level handles the UAV optimization. The computational efficiency aspect is

xix

SUMMARY (Continued)

made possible by developing a multi-agent optimization framework, where the agents consist

of different optimization algorithms integrated into it. Those algorithms are complementary

to each other such that the optimization happens to the best of its ability by picking the best

performance out of the algorithms used.

Initial studies concentrated on leveraging the existing multi-agent optimization framework

known as A-Teams, incorporating Nelder-Mead and Genetic Algorithms with complementary

features for outer-level UGV optimization. The framework was tested across various instances

to evaluate its performance compared to using only Genetic Algorithm at the outer level. Each

of these approaches employs local search heuristics at the inner level for UAV optimization.

Subsequently, the existing A-Teams framework is developed to be more smarter by integrat-

ing a newer ’Predictor agent’ into the framework, which imparts slightly better computational

efficiency compared to the original A-Teams framework. This A-Teams variant is novel in the

sense of adding the Predictor agent into the framework.

Finally, an end-to-end autonomous approach is developed to enhance computational effi-

ciency by enabling decision-making during the optimization process. This approach involves

creating a learning-based hyper-heuristic method using Reinforcement Learning (RL) within

the multi-agent framework to deliver computationally efficient, real-time UAV-UGV routing

solutions. This approach increases the autonomy of the framework, requiring minimal user

input.

xx

CHAPTER 1

INTRODUCTION

The world is currently experiencing significant technological advancements, driven by the in-

creasing availability of computational resources. With computing power now accessible at the

palm of our hands, applications that were once considered too complex or difficult to implement

are becoming feasible and increasingly integrated into everyday life. One such realization is the

rapid growth of the usage of Unmanned Aerial Vehicles (UAVs), which are popularly known

as Drones or Quadcopters because of its rapid on-board computing capabilities. Their growing

popularity is largely due to their speed, agility, and compact design, which allows them to navi-

gate through intricate areas and undertake tasks that are hazardous or challenging for humans.

This makes these aerial vehicles ideally suitable for applications such as surveillance, recon-

naissance, package delivery, environment and traffic monitoring, search and rescue amongst

a plethora of other practical usages. However, a key bottleneck of using such UAVs is their

limited battery capacity, which typically restricts them to about 15 20 minutes of flight time

[1]. With this limitation in the flight time, it becomes difficult to exploit the drones in above

applications where it demands either large scale task operations or longer durations. However,

there are solutions to overcome this problem. For instance, the flight time and subsequently

the coverage area of UAVs can be increased by having several recharging depots spread across

the area. But, in non-urban environments such as rural areas or hostile environments, it would

be expensive or tactically impossible to have recharging depots placed in advance [2]. Hence,

1

2

a viable alternative is to have UAVs recharge on Unmanned Ground Vehicles (UGVs). These

UGVs can not only work as a team with UAVs in performing tasks, but also can provide UAV

recharging. That is, when the UAV is low on its battery, it coordinates with the UGV to find

a rendezvous point, lands on the UGV, get recharged and then continue to perform tasks.

Solving this problem could be computationally challenging as it necessitates spatial and

temporal coordination between these two heterogeneous vehicles. UAV is fast and power hungry;

whereas UGV is slow but resourceful. In order to utilize this team to perform tasks as efficient

as possible, an optimization problem has to be solved where the formulation depends upon the

application. In this case, the application is taken to be a surveillance problem where given a

set of task points to visit, number of UAVs and UGVs, the problem is to plan an optimal route

for the UAV-UGV team such that the tasks are performed efficiently and UAVs get recharged

in a timely manner to perform such tasks thereby they never run out of charge. Hence, this

problem falls within the category of advanced Vehicle Routing Problems, a type of combinatorial

optimization problem, where the objective is to minimize an objective function such as cost, time

or energy consumption of the robots while satisfying a set of constraints in their visits. Hence,

additionally this problem falls under the NP-Hard problem category, adding further complexity.

The goal of this thesis is to investigate different possible strategies and develop algorithms that

achieves efficient computation to solve such combinatorial optimization problem.

1 Expected significance

Presently, there is an increasing demand in applications of drones for a wide variety of tasks

ranging from military to civilian applications (put some references for this). Because of this,

3

their operational capabilities should be on par to satisfy the demand of a certain application.

These drones are popular, but they are limited in the duration of tasks that they can perform.

In remote areas, where setting up fixed recharging depots is not practically fesaible, one of

the potential alternatives is to team it up wit other autonomous vehicles such as UGV to

expand their usage for critical tasks like surveillance and disaster relief. However, using multiple

heterogeneous vehicles involves an additional layer of complexity. This is because, apart from

planning an optimal path for these respective mobile robots in order to perform certain tasks,

they also have to be co-operated optimally so that the overall cost is minimized, opening up

an advanced category of Vehicle Routing Problems known as the Cooperative Vehicle Routing

Problem. Solving these problems are NP-Hard, and hence in order to achieve practicality

of using such heterogeneous mobile robots for routing, an optimization approach has been

developed so that it has the capability to solve for optimal solution very quickly so that these

methods can be used on board the robots in real-time. Also, this approach has the capability to

adapt its solution to encounter any dynamic changes in the environment/scenario considered.

Beyond vehicle routing problem, this approach holds promise to be applied to any kind of

combinatorial optimization problems given the right components as per the application to be

considered.

4

2 Contributions

2.1 A Bi-level Optimization Algorithm for Solving Collaborative Heterogeneous

Routing Problem

The first contribution of this thesis lies in developing a novel bi-level optimization method

for solving such co-operative vehicle routing problem. This is because, since the UAV gets

recharged on the UGV, they have this interdependency in their routes where UAVs and UGVs

need to get coordinated make rendezvous at certain points in order for the UAV to get recharged.

Throughout this thesis, ’UGV first, UAV second’ method will be followed. Thus, the outer-

level of the bi-level optimization method constitutes optimizing the UGV routes, and for a

corresponding UGV route, the inner-level constitutes optimizing the UAV routes for that UGV

route. Post UAV-optimization, the combined UAV-UGV route is obtained, which is given as

a feedback to perform UGV optimization. Thus, this bi-level optimization method will be a

closed-loop optimization where the solution quality of the UAV-UGV route will be utilized to

perform the UGV optimization. In this project, heuristic algorithms are utilized to perform the

route optimization at both UGV and UAV levels.

Alternative approaches involve implementing exact solution methods like Mixed Integer

Linear Programming (MILP) to solve for such cooperative routing at both UGV and UAV

levels, but such methods often become intractable with increase in the problem size (cite our

journal paper). This project introduces a novel approach to formulate the UGV route as a set

of free route parameters to be optimized. This enables us to reduce the computational burden

5

of graph search method at the outer-level optimization so that the graph search is just utilized

for UAV routing. These contributions are explored in-depth in Chapter 3.

2.2 A-Teams: An Optimization Framework to Solve for UGV-UAV Routing

The second key contribution of this thesis is to build upon the simpler bi-level optimization

concept to develop a framework that efficiently computes the optimal solution for the coordi-

nated vehicle path planning by utilizing several algorithms as optimizing agents concurrently

to produce an optimal solution faster without compromising on its quality. Although previous

approach of implementing Genetic Algorithm for UGV route optimization help us to achieve

globally optimal solutions, they come at a cost of significant computational time. This is be-

cause, such algorithms perform search over a large space, compromising on their efficiency.

Hence they can be used when the computational time is not critical. But in this problem of

performing route planning for autonomous mobile robots, time is critical to perform realistic

experiments. In contrast to that, local optimization algorithms provide quicker solutions, but

are optimal in a small region of space.

This project introduces a novel approach for solving a bi-level UGV-UAV optimization prob-

lem where the UGV routing is performed using a multi-agent optimization framework called

A-Teams (Asynchronous Teams). The optimization agents in the A-Teams framework is pro-

posed by Sachdev [] where these agents worked together cooperatively to perform optimization

on a given problem. There are three main agents that constitute this framework: Constructor

Agent, Improver Agent and Destroyer Agent. So far the A-Teams in the literature has been

limited to solving basic routing and other combinatorial optimization problems. This novel ap-

6

proach involves solving a heterogeneous vehicle routing problem with implementing A-Teams at

the outer-level UGV routing while the UAV routing at the inner level is solved by formulating

it as Vehicle Routing Problem with charge, time and optional node visit constraints.

Additionally, this novel approach introduces the application of concept of hybrid algorithms

for solving UGV route parameter optimization. Since global optimization algorithm searches

over the entire search space, while local optimization algorithms searches locally, this approach

uses a combination of local and global optimization algorithms as a part of the A-Teams.

Thus, using these hybrid algorithms that are complementary in nature together can solve the

optimization problem more efficiently. This is because, while the global optimizer searches

over the entire UGV route parameter search space, the local optimizer simultaneously tries to

improve the current best candidate UGV route locally thereby the number of overall searches

can be reduced. These contributions are explored in-depth in Chapter 4.

2.3 Computationally Efficient Framework: Proposed Variant of A-Teams and its

practical applicability

So far, the novelty was utilizing the existing A-Teams to perform bi-level optimization for

cooperative UAV-UGV routing. The A-Teams in the existing literature revolves around three

main agents such as Constructor, Improver and Destroyer Agents.

The third key contribution of this thesis to impart novelty to the existing A-Teams. In this

approach, a newer agent had been integrated into the framework called ’Predictor Agent’. The

purpose of this agent is to predict the quality of a particular UGV candidate route parameter

before even it gets passed onto UAV optimization. The prediction is made by a trained Machine

7

Learning model that performs supervised learning of mapping several UGV route parameters

to corresponding UGV-UAV solutions. Integrating this agent constitutes the fusion of Machine

Learning into the conventional optimization methods. Thus, the combination of these four

different agents in the proposed variant of A-Teams cooperatively yields optimal solutions more

efficiently without compromising on its optimality.

Additionally, this novel approach enables the overall UGV-UAV optimization to be imple-

mented in practical settings, where the framework extends its potential to perform re-planning

when scenario conditions change. The frameworks capability is validated with an hardware

experiment and these contributions are explained in-depth in Chapter 5.

2.4 RL-Assisted A-Teams for Adaptive Algorithm Selection in UGV-UAV Opti-

mization

The fourth key contribution of this thesis lies in automating the proposed A-Teams variant.

The A-Teams framework comprises multiple agents, each with user-defined parameters. This

approach leverages a Reinforcement Learning (RL) policy as a decision-making system to de-

termine which agents should operate at each step of the optimization process. The RL policy

selectively activates the agents that most effectively contribute to the optimization, thereby

reducing computational time without compromising the quality of the UAV-UGV end solution.

By intelligently managing agent participation, the automated A-Teams framework enhances

both efficiency and performance in achieving optimal routing solutions. The novel framework

is put to test across different cases including multi-UAV routing and dynamic scenario changes.

These contributions are detailed in Chapter 6.

CHAPTER 2

BACKGROUND

1 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a type of combinatorial optimization problem, that

uses integer programming method to solve for the optimal set of routes that a fleet of vehicles

traverse in order to deliver or visit a set of customers. That is, VRP seeks to determine the

optimal routes for each vehicle to minimize total operational costs, which can include factors

such as distance traveled, time spent, and fuel consumption, while adhering to various practical

constraints. These constraints can encompass vehicle capacity limits, delivery time windows,

route length restrictions, and specific service requirements. Solving the VRP efficiently is crit-

ical for optimizing supply chain operations, reducing transportation costs, enhancing customer

satisfaction, and minimizing environmental impact. Given its NP-hard nature, finding exact

solutions is computationally intensive for large instances. Consequently, a variety of heuristic

and metaheuristic algorithms have been developed to provide near-optimal solutions within

reasonable time frames.

Parts of this chapter is taken from the following published journal article:
Ramasamy, S., Reddinger, J. P. F., Dotterweich, J. M., Childers, M. A., & Bhounsule, P. A. (2022).
Coordinated route planning of multiple fuel-constrained unmanned aerial systems with recharging on an
unmanned ground vehicle for mission coverage. Journal of Intelligent & Robotic Systems, 106(1), 30.

8

9

Traditionally, Vehicle Routing Problems (VRPs) have been prevalent in the logistics domain.

In these scenarios, routing for a considerable number of trucks is formulated and optimized to

execute 1-day or 2-day routes while satisfying a set of constraints. These constraints typically

include truckload capacity limitations, as well as requirements for the pickup and delivery of

goods from one location to another. Khuller et al. [3] were one of the first ones to solve vehicle

routing problem with fuel constraints. They considered the problem of finding the cheapest

route for a fuel constrained vehicle with a set of fueling stations, each with a different fuel price.

They used a dynamic programming (DP) formulation to solve the problem.

2 Vehicle Routing Problem for Unmanned Aerial Vehicles

With the advent of the latest technologies and advancements in automation, along with the

rapid rise of Unmanned Aerial Vehicles (UAVs), new possibilities have emerged for optimizing

routing strategies. UAVs offer the capability to visit a set of nodes or waypoints in environments

that are hazardous for manual vehicles to traverse. By leveraging UAVs to perform these visits

automatically, it is possible to enhance efficiency and safety in logistics operations.

Consequently, the application of UAVs to solve routing problems remains a hot topic for

research and exploration. The goal is to achieve (nearly) optimal solutions that are realistically

possible, addressing the unique challenges and opportunities they present. Several works have

been done in the literature regarding the implementation of the Vehicle Routing formulation

for UAV routing. For instance, Kannon et al. [4] considered the problem of finding the route

of a single fuel-constrained aircraft to visit a set of waypoints with a set of aerial recharging

10

way-points. They compared a mixed-integer linear programming (MILP) formulation with a

DP formulation and found that DP outperforms MILP.

3 Multiple Unmanned Aerial Vehicle Routing Problem

While UAVs are fast, agile, and compactmaking them suitable for a wide range of applica-

tionsrouting a single UAV is often not practically feasible, unlike typical vehicle routing for a lo-

gistic vehicle. This limitation arises because UAVs are power-hungry and their battery capacity

is constrained by payload requirements. To overcome these challenges, one effective approach is

to employ a swarm of drones that collaborate to perform tasks cooperatively, thereby achieving

practical and scalable solutions. This strategy necessitates the implementation of the Vehicle

Routing Problem (VRP) for multiple UAVs. To explore this approach, numerous studies in

the literature have focused on optimizing the routes of multi-UAV systems, aiming to enhance

feasibility in various applications. Some of the works are as follows. Levy et al. [5] and Sundar

et al. [6] considered extensions to multiple fuel-constrained Unmanned Aerial Systems (sUASs).

The goal here was to minimize the distance traveled by multiple fuel-constrained sUASs to visit

a set of waypoints once and recharge on ground-based recharging depots. Levy et al. used a

variable neighborhood search based on randomization and variable neighborhood descent based

on the gradient to search for an optimal solution. Sundar et al. formulated several MILP for-

mulations and solved these using an off-the-shelf MILP solvers. Similar to these works, Bung

Duk Song et al. [7] considered a multiple heterogeneous sUAS path planning problem in which

automatic Logistics Service Stations (LSS) are used for sUAS fuel replenishment. Younghoon

Choi et al. [8] implemented a new Coverage Path Planning (CPP) problem for solving the

11

routes of a fleet of sUASs with energy constraints. The authors’ novelty comes in formulating

a column generation approach to deal with non-linear energy consumption, where traditional

arc-based optimization approaches do not accurately estimate such function. Radzki et al. [9]

proposed a robust approach to delivery planning of small Unmanned Aerial Systems (sUAS)

for disaster relief missions. The authors formulated an algorithm for planning of the routes of

sUASs such a way that it ensures the proper execution of a certain delivery mission irrespective

of any change in the weather conditions. Andrew et al. [10] solved a two-tier route optimization

problem of homogeneous sUASs and repair vehicles for network exploration and failure repair.

Their problem first solves for the optimal route of sUASs to explore the potential failure loca-

tions followed by the optimal route of repair vehicles to address the failure regions located by

the sUASs. Andres et al. [11] proposed a novel approach for global path optimization of sUASs

by combining Traveling Salesman Problem and continuous optimal control formulations where

the latter takes the sUAS dynamics and constraints into consideration. Sung et al., addressed

the optimal zoning problem of Unmanned Aerial Vehicles using Genetic Algorithm to optimize

package delivery services.

4 Multiple Unmanned Aerial Vehicle Routing Problem with Unmanned Ground

Vehicle as mobile recharging vehicle

Recent works in literature have started exploring the avenues of coordinating heterogeneous

vehicles by implementing aerial-ground vehicle collaboration in order to harness the potential

of utilizing such a system for large scale and long duration scenarios. Maini et al. [1] considered

the problem of routing a single fuel-constrained sUAS to a set of missions while being recharged

12

Figure 1. Scenario description from Maini et. al [1] for Cooperative UAV-UGV routing

by stopping at a UGV traveling on a road network. They solved the problem using a two-stage

approach. First, using the sUAS range constraints, they found a set of recharging depots.

Second, they formulated a mixed-integer linear program and solved for the path of both the

sUAS and UGV. Manyam et al., [12] solved the problem of cooperative routing of sUAS-UGV to

visit a set of mission points while being within a radius of each other to enable communication.

They cast the resulting problem as a mixed integer programming problem and solved using

a custom-written branch-and-bound algorithm. Petitprez et al., [13] considered deployment

of sUAS and UGV such that the UGVs pick up sUASs that have land on fixed locations after

visiting mission points. The objective was to minimize the operational cost while maximizing the

inspection performance, a contradictory set of objectives that are solved using multi-objective

optimization using genetic algorithms and capacitated arc routing problem. Their problem did

not have a temporal aspect to it. Liu et al., [14] considered the problem of choosing recharge

stations and flight routes for sUAS to visit given mission points. They cast the problem as

13

a binary optimization problem, but solved it using heuristics that first cluster the mission

points and then use local searches to solve for a path. Bard et al. [15] considered the problem

of clustering a set of customers into zones such that a single vehicle can serve all the zones

while meeting delivery and pick-up times. Since the pickup and delivery schedule is random,

a probabilistic traveling salesman problem is formulated and solved using heuristics that break

the problem into two parts, solve them individually, and then connect back to form the complete

solution. Dondo et al., [16] used clustering approach to solve a heterogeneous feet vehicle routing

problem with time windows. Initially, the customers are clustered based upon node locations,

load, and time windows. Then vehicles are assigned to the cluster followed by their sequencing.

Finally, the nodes within the cluster are ordered and arrival times are computed. They used a

standard MILP formulation which was solved using branch and bound.

5 Solving cooperative UAV-UGV routing as bi-level optimization problem

The overall objective is to plan the path of fuel-limited Unmanned Air Vehicles (UAV) to

pre-specified mission points while minimizing the total distance travelled by all UAV. The UAV

may be recharged by docking on Unmanned Ground Vehicles (UGV). The path of the UGV

and UAV-UGV rendezvous locations also needs to be computed.

One of the major challenges in this kind of collaborative Unmanned Aerial-Ground Vehicle

problems is that the vehicles involved are heterogeneous in nature. That is, UAVs, while they

are agile, are power hungry and they need to get recharged from time to time for long range

missions. Meanwhile, UGVs have a greater power capacity but they are slow in their travel.

Because of this, the problem becomes challenging when UGV can provide power to UAVs when

14

they are docked. Since the UAVs can get recharged on UGVs, the UAV routes depend upon

the UGV route. Because, based upon the way the UGV traverse, the flight range of the UAV

needs to be made sure that the UAV can reach the UGV in time. Hence, if the UGV route is

solved first, then the UAV route can be solved based upon the UGV route. This necessitates

to solve the entire collaborative routing as a bi-level optimization problem.

5.1 Formulating and solving UGV Routing

Since the approach ‘UGV first, UAV second’ is considered to solve such cooperative UAV-

UGV routing, the UGV route has to be formulated to solve the UAV routing. The UGV has to

visit the points in such a way that those UGV points would help to achieve the complete radial

coverage of UAVs. Hence, the along the UGV’s travel, they have to wait to accommodate the

UAVs at strategic UGV points such that it ensures that the UAV is within the range (or radial

coverage area) to facilitate feasible landing, recharging and extend the task visits of the UAVs.

So to formulate the UGV routing, strategic placing of UGV points needs to be made and those

are fed to UAV optimization as constraints. Initial studies formulated the UGV optimization

problem as a Traveling Salesman Problem using an integer linear programming approach. More

details about this can be found in [17].

5.2 Formulating UAV Routing as Energy-Constrained Vehicle Routing Problem

(E-VRP) and solving using Exact Methods

Now we have a formulation for the UGV, we assign those strategic UGV points on its path

as possible recharging depots for the UAV-UGV rendezvous. We assume that each of the K

UAVs starts at the same location as the UGV, formulate a vehicle routing problem with capacity

15

constraints to account for fuel limits, time windows to allow for rendezvous with UGV, and

dropped visits to allow the UAVs to visit some of the many vertices on the UGV path.

Initially to put this bi-level optimization with UGV first, UAV second approach to test, a

preliminary analysis was made with different kinds of scattered mission points (Figure 2) with

simple constraints and assumptions as follows: The velocity of the sUAS is fixed and the velocity

of the UGV is bounded. The sUAS battery capacity is fixed, while the UGV has unlimited

fuel. Since the velocity is constant, the battery capacity of the sUAS is assumed to be directly

proportional to the flight time. The sUAS is assumed to dock on a stationary UGV during

recharging and recharge to full battery capacity. Both UGV and sUAS are stationary during

recharging of the sUAS. The recharging time of the sUAS is constant and is independent of the

remaining battery capacity. The mission points are assumed to be distributed in the form of

′k′ clusters spanned across the area considered. Figure 2 gives an example of different instances

with k = 3 number of clusters. Similarly, we considered k = 2 or k = 4 clusters of mission

points and performed the UAV-UGV routing to understand the optimization capability better.

As a preliminary study with example toy scenarios, we constrain the UAV to a fixed speed,

pre-specify the battery capacity and service time as the UAV lands and waits on the UGV.

With this into consideration, the UAV routing is formulated as follows.

The set of all UGV waypoints is denoted by D = {0, 1, 2, ...,m}. There are n − m pre-

specified mission points which belong to the set M = {m + 1, ..., n}. The set of all vertices

is then V = M
∪
D = {0, 1, 2, ...,m,m + 1, ..., n}. The set of all edges denotes all possible

connections between the vertices E = {(i, j)|i, j ∈ V, i ̸= j}.

16

Distance (km)

(b)7.5

6.0

4.5

3.0

1.5

1.5 3.0 4.5 6.0 7.5
0

0

Distance (in km)

7.5

6.0

4.5

3.0

1.5

1.5 3.0 4.5 6.0 7.5
0

0

(a)

Distance (km)

7.5

6.0

4.5

3.0

1.5

1.5 3.0 4.5 6.0 7.5
0

0

(c)
D

is
ta

nc
e

(k
m

)

Distance (km)

7.5

6.0

4.5

3.0

1.5

1.5 3.0 4.5 6.0 7.5
0

0

(d)
D

is
ta

nc
e

(in
 k

m
)

D
is

ta
nc

e
(k

m
)

D
is

ta
nc

e
(k

m
)

Mission points
Cluster Centroid

Mission points
Cluster Centroid

Mission points
Cluster Centroid

Mission points
Cluster Centroid

Figure 2. Different instances of scattered mission point scenarios with k = 3 clusters

Consider an undirected graph G = (V,E) where V is the entire set of vertices V =

{0, 1, 2,,m,m + 1,, n} and E is the set of edges that gives the arc costs between i and j

and E = {(i, j)|i, j ∈ V, i ̸= j}. Let cij be the non-negative arc cost between a particular i and

j. Let xij be the binary variable where the value of xij will be 1 if a vehicle travels from i to

17

j, and 0 otherwise. We formulate the VRP problem with fuel constraints, time windows, and

dropped visits as follows,

min
∑
i∈V

∑
j∈V

cijxij (5.1)

18

s.t.,
∑
i∈V

xij = 1, ∀j ∈M \D (5.2)

∑
j∈V

xij = 1, ∀i ∈M \D (5.3)

∑
i∈V

xij ≤ 1, ∀j ∈ D \ {0} (5.4)

∑
j∈V

xij ≤ 1, ∀i ∈ D \ {0} (5.5)

∑
j∈V

x0j =
∑
i∈V

xim = K, {0,m} ∈ D (5.6)

fj ≤ fi − (cijxij) + L1(1− xij), ∀i ∈ V, j ∈ V \D (5.7)

fj = Q, ∀j ∈ D (5.8)

0 ≤ fj ≤ Q, ∀j ∈ V (5.9)

tj ≥ ti + (si + cijxij)− L2(1− xij), ∀i ∈ V, j ∈ V (5.10)

tlj ≤ tj ≤ tuj , ∀j ∈ V (5.11)

xij = 0, ∀i ∈ D, ∀j ∈ D (5.12)

xij = 1→ fi ≥ cij , ∀i ∈ V \D, ∀j ∈ D (5.13)

xij = 1→ fi = Q, ∀i ∈ D, ∀j ∈ V \D (5.14)

xij = 1→
∑

i∈V \D

xji = 1, ∀j ∈ D, ∀i ∈ V \D (5.15)

xmj = 0, ∀m ∈ D, ∀j ∈ V (5.16)

19

xij ∈ {0, 1}, ∀i, j ∈ V (5.17)

fi > 0, fi ∈ R+, ∀i ∈ V (5.18)

ti > 0, ti ∈ Z, ∀i ∈ V (5.19)

si ≥ 0, si ∈ Z, ∀i ∈ V (5.20)

Q > 0, Q ∈ R+ (5.21)

L1, L2 > 0, L1, L2 ∈ R+ (5.22)

The objective is Eq. Equation 3.10 is to minimize the total distance traveled by the all the

sUASs. Constraints in Eq. Equation 2.3 and Eq. Equation 2.4 represents the flow conservation

where the inflow of a certain sUAS should be equal to the outflow of that sUAS at any vertex

among the mission vertices M . Constraints in Eq. Equation 2.5 and Eq. Equation 2.6 denotes

the optional stops the sUAS can take on the UGV vertices D, i.e., dropped visits. Next,

constraint in Eq. Equation 2.7 also represents the flow conservation but here it is represented

for start and end vertices, where the number of sUASs leaving the start vertex must be equal to

the number of sUASs reaching the end vertex. The start vertex and end vertex correspond to the

first and last vertex of the UGV route. The constraint in Eq. Equation 3.11 is the Miller-Tucker-

Zemlin (MTZ) formulation [18] for sub-tour elimination. This constraint ensures that none of

the sUAS batteries are depleted out while eliminating sub-tours. In this constraint, L1 denotes

a large number. This constraint becomes active only when there is a flow between vertices i

20

and j and subtracts from the sUAS fuel based on distance between the two vertices. The fuel

consumption of sUAS depends upon the distance traveled by them. It is directly proportional

to the distance traveled between two vertices i and j. Constraint Eq. Equation 3.12 states

that if the vertex is a recharging UGV stop, then UGV has to refuel the sUAS to its full

capacity Q. Constraint Eq. Equation 3.13 is the condition that the sUAS’s fuel at any vertex

in V should be between 0 and maximum fuel capacity. Constraint Eq. Equation 3.14 denotes

that the cumulative arrival time at jth node is equal to the sum of cumulative time at the

node i, ti, the service time at the node i, si, and the travel time between nodes i and j,

cijxij . Here L2 denotes a large number which helps to eliminate sub-tour constraints similar to

Eq. Equation 3.11. Constraint Eq. Equation 3.15 is the time window constraint that the vehicle

visits a certain vertex in the specified time window for that node. In this problem, the mission

nodes are not constrained by time as the sUASs have the liberty to visit those mission points

that benefits them according to the travel of UGV. This means that whenever sUAS needs to

get refueled, it would be easier for it to go to the UGV to refuel. Constraints Eq. Equation 2.13

restricts that the two consecutive visits made by the sUASs should not be consecutive UGV

stops. Constraints Eq. Equation 2.14 - Eq. Equation 3.16 represents the indicator constraints

where the constraints to the right side of the arrow should hold if the binary decision variable

xij is equal to 1. If xij is equal to zero, then the constraints to the right side of the arrow may

be violated. The constraint in Eq. Equation 2.14 that if there is travel from any mission vertex

i to the UGV vertex j, then the fuel level at the ith node should be atleast equal to the distance

traveled between them because the fuel consumption in this problem is assumed to be linearly

21

proportional to the distance traveled. Constraint in Eq. Equation 2.15 indicates that if there is

travel from the UGV vertex i to any mission vertex j, then the fuel level at the ith node should

be the maximum fuel capacity of the sUAS as it is recharging to its full capacity at the UGV

stop. The constraint in Eq. Equation 3.16 makes sure that if any sUAS comes to the refuel

vertex to recharge, then there must exist an arc between that refuel node and a mission node

to maintain the flow conservation. Constraint in Eq. Equation 2.17 denotes that there should

not exist any flow once the vehicle has reached the end node m. Eq. Equation 2.18 is a binary

decision variable that is responsible for flow between the edges. Eq. Equation 2.19 represents

the continuous decision variable that monitors the fuel level at any node and has zero as the

lower bound value. Eq. Equation 2.20 represents the integer decision variable that computes

the cumulative time of sUAS’s route and has zero as the lower bound. Eq. Equation 2.21

denotes the service time at the respective nodes, which is a positive integer with a lower bound

equal to zero. Eq. Equation 2.22 represents the maximum fuel capacity of a sUAS Finally, Eq.

Equation 2.23 denotes the large numbers used in the constraints Eq. Equation 3.11 and Eq.

Equation 3.14.

Table I gives an itemized lists the number of constraints in the sUAS problem formulation.

The equation numbers in the table correspond to the equations from the Sec. 5.2. In the table,

the notation V denotes the total number of vertices, including all possible UGV stops and

the mission points, while D denotes only the UGV stops. The grand sum of all constraints

SUM = 6V 2− 2D2 +DV +2V − 2. Thus, the number of constraints scale as the square of the

number of mission points.

22

TABLE I

Constraint Quantity analysis
Equation # Number of constraints Equation # Number of constraints

Equation 2.3 V −D Equation 3.14 V 2

Equation 2.4 V −D Equation 3.15 2× V 2

Equation 2.5 D − 2 Equation 2.13 D2

Equation 2.6 D − 2 Equation 2.14 (V −D)×D

Equation 2.7 2 Equation 2.15 (V −D)×D

Equation 3.11 (V −D)× V Equation 3.16 ((V −D)×D)− (V −D)

Equation 3.12 D × V Equation 2.17 (V −D)

Equation 3.13 (2× (V −D))× V

SUM = 6V 2 − 2D2 +DV + 2V − 2

We utilized the Gurobi Mixed Integer Linear Programming (MILP) optimizer [19], which

employs the Branch and Bound algorithman exact solution methodto find the optimal solution.

Exact methods are designed to rigorously solve optimization problems, ensuring that the global

optimum is obtained. For k = 2 clusters, D = 9 and V = 34 would give a total constraint of

7146 and is solved about 40 sec using Gurobi on a standard desktop (3.7 GHz Intel Core i9

processor with 32 GB RAM on a 64-bit operating system). However, if k = 4 then D = 17

and V = 42 would give constraints of 10802 and is solved in 240 sec using Gurobi. Thus,

Gurobi takes significantly higher time as the number of constraints are increased. Thus, it does

23

not scale very well for a larger number of constraints. Hence, heuristics approaches are via

alternatives in this case to balance the tradeoff between optimality and practical applicability.

Since UAVs are autonomous robotic systems, their routing algorithms must inherently pos-

sess the ability to swiftly adapt to changes in their surroundings. This adaptability ensures

that UAVs can respond in real-time to dynamic environmental conditions, unexpected obsta-

cles, or shifting mission requirements. By striking a balance between both optimality and rapid

responsiveness, the algorithm should be devised in a manner such that the routing solutions

enhance the practical deployment of UAVs, ensuring they operate efficiently and reliably in

ever-changing environments. The following chapters of this thesis will dive deep into research-

ing various heuristic approaches that can be undertaken such that the computational time is

drastically reduced without compromising much on the solution optimality.

CHAPTER 3

HETEROGENEOUS VRP: BI-LEVEL OPTIMIZATION BY

PERFORMING GENETIC ALGORITHM TUNING FOR UGV

ROUTING AND GRAPH LOCAL SEARCH FOR UAV ROUTING

Overview: Heterogeneous vehicles (e.g., unmanned ground vehicle (UGV) and unmanned aerial

vehicle (UAV)) are best suited for surveillance application over large areas. UAVs are fast, but fuel

limited, while, UGVs have a larger fuel capacity, but are relatively slow. When UAVs are combined with

UGVs they can provide larger coverage at a relatively fast speed. The UAV may also be recharged on

the UGV as needed. The resulting route optimization problem is computationally complex, but may

be solved relatively fast using heuristics. In this paper, we solve for a mission route using a two-level

optimization; (1) the UGV route is assigned using heuristics with free parameters, (2) the UAV route

is solved using a vehicle routing problem formulation with capacity constraints, time windows, and

dropped visits. However, this open-loop two-level optimization may yield non-optimal solutions or fail

completely because of poor choice of UGV parameters. Our primary objective is to explore closed loop

optimization where the free parameters of the UGV routes are optimized using Bayesian optimization and

Parts of this chapter is taken from the following published journal article:
Ramasamy, S., Mondal, M. S., Reddinger, J. P. F., Dotterweich, J. M., Humann, J. D., Childers, M.
A., & Bhounsule, P. A. (2022, June). Heterogenous vehicle routing: comparing parameter tuning using
genetic algorithm and bayesian optimization. In 2022 International Conference on Unmanned Aircraft
Systems (ICUAS) (pp. 104-113). IEEE.

24

25

Genetic algorithms. Our results show that both methods produce good quality solutions, but bayesian

optimization is computationally more efficient than genetic algorithm.

Keywords: Write keywords here

1 INTRODUCTION

The availability of simple-to-control and low-cost unmanned aerial vehicles (UAVs) has

opened the possibility of practical surveillance systems [20]. UAVs can provide automated

surveillance for reconnaissance, weather observations, environment and traffic monitoring, search

and rescue, and border patrol [21]. Although UAVs are fast, they are severely limited to rela-

tively small area due their limited battery capacity [22].

To increase their range, UAVs may be combined with unmanned ground vehicles (UGVs).

UGVs move slow and are terrain limited, but are large enough to enable docking and recharging

of aerial vehicles. They may also be used to survey locations that are accessible through the

roads [23]. Thus a system consisting of heterogenous vehicles consisting of UAVs and UGVs are

ideally suited for automated surveillance applications (e.g., [24, 25]).

The use of heterogenous vehicles with different capabilities makes the route selection problem

more challenging [26]. One has to consider the fuel limitations of the UAV and the speed limita-

tions of the UGV to device successful routing paths. In order to push their limits, optimization

of their routes with metrics such as reducing the time and/or the overall fuel consumption are

important. In this paper, we provide a framework for optimizing the routes of heterogenous

vehicles with resource constraints (e.g., fuel, speed) and terrain constraints (mission spread).

26

We illustrate the problem using the mission scenario shown in Figure 3 (a). The mission

points are shown with black dots. The UAV range for a single charge is shown with a blue

circle. The circle indicates that the UAV cannot visit all mission points on a single charge.

Figure 3 (b) and (c) shows two possible solutions. In Figure 3 (b), the UGV and UAV move

together through the path a→ b→ c. The UAV then takes off from the UGV and travels the

path f → g to return to the UGV. Then the UGV and UAV move along d→ e to return to the

starting point. Figure 3 (c) shows an alternate solution. The UGV and UAV move together

along a. Then the UAV takes off and its moves along e → f to return to the starting point.

The UGV moves along b → c → d and returning to the start point. If optimization criteria is

UAV fuel consumption then the strategy in (b) is better because the UAV flies over a shorter

distance. If optimization criteria is the total time taken to complete the missions, then (c) is

better here because unlike in (b), the UGV does not have to wait for the UAV to land back on

it thus (c) takes less time than (b). From this example, we note that the UGV heuristics, the

stop location for the UAV to take-off and the wait time are critical based on the optimization

criteria. In this study, these parameters are optimized by the genetic algorithm and bayesian

optimization.

There has been considerable work on routing of fuel constrained UAVs. Levy et al. [5] and

Sundar et al. [27] considered the routing of multiple fuel-constrained Unmanned Aerial Vehicles

(UAVs) with recharging on fixed depots. Levy et al. used a variable neighborhood search based

on randomization and variable neighborhood descent based on the gradient to search for an

optimal solution. Sundar et al. formulated several mixed-integer linear programming (MILP)

27

���������

���������
���������

���������
���������

���������
���������

���������

Start

UAV range,
single charge

ab

c

UGV
stop

UGV
stop

f

e
d

a

b
c

e

f

(a) (b) (c)

Mission points

d

g

Figure 3. An example scenario: (a) The mission scenario. Both, the UAV and UGV start
from the same starting location. The range of the UAV is shown using a blue circle. (b) (c)

Two possible solutions for mission coverage.

formulations and solved these using an off-the-shelf MILP solvers. Ren et al. [28] considered

a collaborative two-UAV and one-UGV problem where the purpose of UGV as a carrier is to

deploy and retrieve the flying robots on time, and the optimal take-off and landing points was

solved using Particle Swarm Optimization (PSO) algorithm.

Further extensions have considered routing of fuel constrained UAV and recharging on

ground vehicles that are free to move on prescribed paths. This is a challenging problem

because each of these vehicles have different constraints on speed and fuel capacity. Maini et

al. [1] considered the problem of routing a single fuel-constrained UAV to a set of missions

while being recharged by stopping at a UGV traveling on a road network. They solved the

problem using a two-stage approach. First, using the UAV range constraints, they found a set

of recharging depots. Second, they formulated a mixed-integer linear program and solved for

the path of both the UAV and UGV. Mathew N. et al. [29] presented a cooperative rendezvous

28

�
��
��
��
��
��
��
��

�

����������������

Start

Recharging Depot

Mission Points

 Center

Figure 4. The problem scenario. The UAV and UGV, both start from the recharging depot.
The mission points are shown with black dots. The UAV range is shown with a blue circle.

planning of working robots (UAV) and one or more mobile charging robots to recharge UAVs

by formulating a rendezvous scheduling problem as a Multi Generalized Traveling Salesman

Problem (MGTSP) and then transforming it into a TSP for applying heuristic solvers. The

authors then extended this problem for longer planning using receding horizon strategies.

We have considered extension of the problem by considering multiple fuel-constrained UAVs

and a single UGV [30]. We solved the problem in a tiered fashion. First, we use K-mean

clustering to create nodes for UGVs to visit and solved for the UGV path using a traveling

salesman formulation. Second, using the UGV path, we formulated and solved a vehicle routing

problem with capacity constraints, time windows, and dropped visits.

29

One of the issues using heuristics for solving the routing problems is that the heuristics have

parameters that can affect the quality of the solution. Thus, some past work has considered

tuning of the parameters to improve the solution. Huang et. al. [31] solved a capacitated arc

routing problem using hierarchical decomposition to generate feasible solution and then used

local search. A bayesian optimization was used to improve the parameters of the hierarchical

decomposition. Henrio et. al. [32] considered the problem of reducing the time between consec-

utive visits of a series of locations to reduce the uncertainty. They used firefly algorithm which

is based on flashing of fireflies to attract or mate with other fireflies. A bayesian optimization

was used to tune the parameters of the firefly algorithm. Pilat [33] used genetic algorithms to

improve the parameter selection in an ant colony optimization algorithm to solve the traveling

salesman problem.

In this paper, we extend our past work on UAV-UGV routing using heuristics [30]. We

investigate the use of genetic algorithm and bayesian optimization to improve the heuristics.

The novelty of this study lies in the application of the global optimization techniques like Genetic

Algorithm and Bayesian Optimization for parameterizing different heuristics parameters which

can be used for solving combinatorial optimization problems in a shorter period of time.This

study shows that with proper tuning of the routing parameters it is possible to obtain a larger

route coverage for tiered routing of heterogeneous vehicles. The flow of the paper is as follows.

We present details about the optimization method in Sec. 2. The results are in Sec. 4, followed

by the Discussion in Sec. 4. Finally, the conclusion and future work is in Sec. 5

30

Figure 5. Overview of the algorithm

2 METHODS

2.1 Problem statement

Figure 4 shows the problem scenario considered in the paper. The mission points are shown

with black dots. There is a recharging depot shown as a blue circle encompassing the solid black

dot. The UAV can travel on the UGV or fly by itself. The UAV may be charged on the UGV

or the depot. Both, UAV-UGV have to start and end at the depot and have to visit all the

mission points.

The blue circles (radius = fuel capacity/2) of Figure 4 represent the range of the UAV

on a full charge; the distance that the UAV can cover is the diameter of the circle. If the UAV

starts from the center of the circle on a full charge, it can return back to the center of the

circle with an empty charge. We have drawn two circles which are centered approximately at

(1, 12.5) and (5, 12). It can be observed that from the start location, the UAV cannot travel to

the two mission points approximately at (7.5, 17.5). However, if the UAV starts from the point

31

(5, 12) with a full charge, it can cover the two mission points and return back. To enable this

solution, the UAV would need to ride with the UGV till (5, 12), then visit the mission points

and get refueled. This illustrates some of the intricacies of choosing an appropriate path for

the UGV such that the UAV can successfully move to the mission points at the extreme ends

and increase the route coverage. In this problem, we tried to optimally parameterize the UGV

parameters like the rendezvous points and time periods of UAV in the UGV path with the help

of global optimization techniques.

2.2 Solution approach

Figure 5 shows the solution approach that involves an outer- and an inner-level. The outer

level block (light blue) involves heuristics to choose a UGV route. The UGV route heuristics has

a few free parameters. Once these parameters are set, the inner-level block (light orange) is the

UAV route optimization. Thus far, the UAV-UGV route selection is open-loop since the UGV

route has not been optimized. Thus, we run an optimization on the outer loop that optimizes

the free parameters in the UGV heuristics minimizing an appropriate cost, thus closing the

loop. This outer-inner loop optimization proceeds till the maximum iteration limit is reached

or the solution has converged. That is, there is no change in the objective value. We now

describe the details of the inner-loop, the outer-loop, and the closed-loop optimization.

2.3 Heuristics for UGV (Outer-loop)

Our heuristics for UGV route are based on maximum fuel range of the UAV described earlier

(range is show as a blue circle in Figure 4). Figure 6 shows the heuristics for the UGV route.

The UGV starts at the depot and travels along the mission points as shown by the arrow. Next,

32

Depot/Start
Stop 1 Location Range

Stop 2 Location Range

Refuel wait time Range = [2 ,60] mins

UGV stop

�����

Figure 6. Heuristics for UGV route. The UGV can make two stops on any mission points such
that the first one inside the red ellipse shown with dashed lines and the second is inside the
blue ellipse shown with dash-dotted lines. At each stop, the UGV can choose a time to wait

(e.g., to recharge the UAV).

the UGV is allowed to stop anywhere in the ellipse with dashed red lines for a prescribed time.

The rationale is that in choosing a stop and wait time is to give the UAV enough time to land

and recharge on the UGV. Next, the UGV moves to to the bottom right side and can take

another stop anywhere inside the blue ellipse with blue dash-dot lines. We have shown two

random stop locations in each ellipse with a blue hollow circle. For the chosen stop locations

and wait times for each stop, the UAV routing problem is formulated and solved as described

in the next section.

33

2.4 Optimizing UAV route (Inner-loop)

We formulate a Vehicle Routing Problem (VRP) with capacity constraints to account for

fuel limits, time windows to allow for rendezvous, and dropped visits to allow the UAV to

visit some of the many vertices on the UGV path. We constrain the UAV to a fixed speed,

pre-specify the battery capacity and service time as the UAV lands and waits on the UGV.

The set of all UGV waypoints is denoted by D = {0, 1, 2, ...,m}. There are n−m pre-specified

mission points which belong to the set M = {m + 1, ..., n}. The set of all vertices is then

V = M
∪

D = {0, 1, 2, ...,m,m+ 1, ..., n}. The set of all edges denotes all possible connections

between the verticesă E = {(i, j)|i, j ∈ V, i ̸= j}. Consider a directed graph G = (V,E) where

V is the entire set of vertices V = {0, 1, 2,,m,m + 1,, n} and E is the set of edges that

gives the arc costs between i and j and E = {(i, j)|i, j ∈ V, i ̸= j}. Let cij be the non-negative

arc cost between a particular i and j. In this problem, the cost will the time traveled between

two nodes i and j. Let xij be the binary variable where the value of xij will be 1 if a vehicle

travels from i to j, and 0 otherwise. We formulate the VRP problem with fuel constraints, time

windows, and dropped visits as follows.

The objective is Eq. Equation 3.10 is to minimize the total time traveled by the all the

UAVs. Constraints in Eq. Equation 2.3 and Eq. Equation 2.4 represents the flow conservation

where the inflow of a certain UAV should be equal to the outflow of that UAV at any vertex

among the mission vertices M . Constraints in Eq. Equation 2.5 and Eq. Equation 2.6

denotes the optional stops the UAV can take on the UGV vertices D, i.e., dropped visits. Next,

constraint in Eq. Equation 2.7 also represents the flow conservation but here it is represented

34

for start and end vertices, where the number of UAVs leaving the start vertex must be equal

to the number of UAVs reaching the end vertex. The start vertex and end vertex correspond

to the first and last vertex of the UGV route. The constraint in Eq. Equation 3.11 is the

Miller-Tucker-Zemlin (MTZ) formulation [18] for sub-tour elimination. MTZ constraint takes

care of the sequential visit of each node by keeping track of values like fuel capacity, travel time

of UAV corresponding to each node. It makes sure that if a node is visited twice, then the

constraint is violated. This constraint enables that the UAV’s energy is not fully drained out

while eliminating loops. In this constraint, L1 denotes a large number. This constraint becomes

active only when there is a flow between vertices i and j and drains the UAV energy based on

time taken from the two vertices. The PUAV in the constraint represents the power profile of

the UAV, which basically tells the power consumption when the UAV travels from one node to

another. In this problem, such a power profile for the UAV is given by the following equation.

PUAV = 0.046v3a − 0.583v2a − 1.876va + 229.6 (2.1)

where va corresponds to the velocity of UAV. In this problem, the velocity of UAV is fixed to

va = 10 m/s.

min
∑
i∈V

∑
j∈V

cijxij such that (2.2)

35

∑
i∈V

xij = 1, ∀j ∈M \D (2.3)

∑
j∈V

xij = 1, ∀i ∈M \D (2.4)

∑
i∈V

xij ≤ 1, ∀j ∈ D \ {0} (2.5)

∑
j∈V

xij ≤ 1, ∀i ∈ D \ {0} (2.6)

∑
j∈V

x0j =
∑
i∈V

xim = 1, {0,m} ∈ D (2.7)

fj ≤ fi − (PUAV cijxij) + L1(1− xij), ∀i ∈ V, j ∈ V \D (2.8)

fj = Q, ∀j ∈ D (2.9)

0 ≤ fj ≤ Q, ∀j ∈ V (2.10)

tj ≥ ti + (si + cijxij)− L2(1− xij), ∀i ∈ V, j ∈ V (2.11)

tlj ≤ tj ≤ tuj , ∀j ∈ V (2.12)

xij = 0, ∀i ∈ D, ∀j ∈ D (2.13)

xij = 1→ fi ≥ PUAV cij , ∀i ∈ V \D, ∀j ∈ D (2.14)

xij = 1→ fi = Q, ∀i ∈ D, ∀j ∈ V \D (2.15)

xij = 1→
∑

i∈V \D

xji = 1, ∀j ∈ D, ∀i ∈ V \D (2.16)

xmj = 0, ∀m ∈ D, ∀j ∈ V (2.17)

36

xij ∈ {0, 1}, ∀i, j ∈ V (2.18)

fi > 0, fi ∈ R+, ∀i ∈ V (2.19)

ti > 0, ti ∈ Z, ∀i ∈ V (2.20)

si ≥ 0, si ∈ Z, ∀i ∈ V (2.21)

Q > 0, Q ∈ R+ (2.22)

L1, L2 > 0, L1, L2 ∈ R+ (2.23)

Constraint Eq. Equation 3.12 states that if the vertex is a recharging UGV stop, then

UGV has to refuel the UAV to its full capacity Q. Constraint Eq. Equation 3.13 is the

condition that the UAV’s fuel at any vertex in V should be between 0 and maximum fuel

capacity. Constraint Eq. Equation 3.14 denotes that the cumulative arrival time at jth node

is equal to the sum of cumulative time at the node i, ti, the service time at the node i, si, and

the travel time between nodes i and j, cijxij . Here L2 denotes a large number which helps to

eliminate sub-tour constraints similar to Eq. Equation 3.11. The si in our problem is a decision

variable in cases when the UAV travels from a refuel node. That is, the service time is basically

the recharging time when it travels from a refuel node. In our problem, the recharging time

depends on the existing charge present in the UAV. That is, if the fuel level is low it will take

more time to recharge. Hence, the profile of the power transfer from UGV to UAV should be

37

taken into account based upon the fuel level present in UAV. A first order approximation of

the battery recharge rate, Pr is given by:

Pr =


310.8; E ≤ 270.4 kJ,

17.9(287.7− E); 270.4 < E ≤ 287.7kJ.

(2.24)

where E represents the existing energy level on the UAV when it docks to recharge. The power

transfer uses constant current until 94% of the battery capacity, with a 3.5C charge rate. After

94% capacity, it switches to a constant voltage charge. And from the existing fuel level on

UAV and computing this battery recharge rate, when the UAV is charged to its maximum

capacity, we would get the recharging time of the UAV. Constraint Eq. Equation 3.15 is the

time window constraint that tells the vehicle to visit a certain vertex in the specified time

window for that node. In this problem, the mission nodes are not constrained by time as the

UAVs have the liberty to visit those mission points that benefits them according to the travel

of UGV. This means that whenever UAV needs to get refueled, it would be easier for it to go

to the UGV to refuel. Constraints Eq. Equation 2.13 restricts that the two consecutive visits

made by the UAVs should not be consecutive UGV stops. Constraints Eq. Equation 2.14 -

Eq. Equation 3.16 represents the indicator constraints where the constraints to the right side

of the arrow should hold if the binary decision variable xij is equal to 1. If xij is equal to

zero, then the constraints to the right side of the arrow may be violated. The constraint in

Eq. Equation 2.14 tells that if there is travel from any mission vertex i to the UGV vertex

j, then fuel level at the ith node should be atleast equal to the energy consumed by the UAV

38

when it travels from i to j. Constraint in Eq. Equation 2.15 tells that if there is travel from

the UGV vertex i to any mission vertex j, then the fuel level at the ith node should be the

maximum fuel capacity of the UAV as it is recharging to its full capacity at the UGV stop.

The constraint in Eq. Equation 3.16 makes sure that if any UAV comes to the refuel vertex to

recharge, then there must exist an arc between that refuel node and a mission node to maintain

the flow conservation. Constraint in Eq. Equation 2.17 denotes that there should not exist

any flow once the vehicle has reached the end node m. Eq. Equation 2.18 is a binary decision

variable that is responsible for flow between the edges. Eq. Equation 2.19 represents the

continuous decision variable that monitors the fuel level at any node and has zero as the lower

bound value. Eq. Equation 2.20 represents the integer decision variable that computes the

cumulative time of UAV’s route and has zero as the lower bound. Eq. Equation 2.21 denotes

the service time at the respective nodes, which is a positive integer with a lower bound equal

to zero. Eq. Equation 2.22 represents the maximum fuel capacity of a UAV Finally, Eq.

Equation 2.23 denotes the large numbers used in the constraints Eq. Equation 3.11 and Eq.

Equation 3.14. The above Mixed Integer Linear Programming (MILP) formulation for UAV

routing can be solved using solvers like Gurobi Optimizer [19]. For each set of UGV routing

parameters, it takes a lot of time to obtain the corresponding optimal UAV routing solution

using this solver. Hence, we resorted with other solving methods that gave quality inner-level

solutions in a shorter period of simulation time.

Apart from UAV, the UGV has has a certain limit on its fuel capacity. The power curve

for the UGV in this work follows the following equation Equation 2.25, where UGV velocity

39

vg is in m/s and power is in watts. And irrespective of the nature of power profiles for UGV

and UAV, this formulation helps to find the appropriate optimal solution for this co-operative

vehicle routing problem. In this study only the kinematics model of the UAV and the UGV

was considered.

PUGV = 464.8vg + 356.3 (2.25)

2.5 Solution using Constraint Programming (CP)

We used Googles OR-Tools™for implementation of the heuristics to generate the results

in this paper [34] mainly for its speed of solution. Whereas Genetic algorithm and Bayesian

optimization were implemented through manual Python programming for optimal tuning of

the heuristics parameters in order to improve the solution quality.OR Tools uses Constrained

Programming (CP) [35,36] to solve TSP and VRP problems. Constraint programming or con-

straint optimization is a tool for solving hard combinatorial optimization problems by searching

for solutions that satisfy a list of constraints.

OR-Tools™uses a search tree, local search, and meta-heuristics to find feasible and, subse-

quently, the most optimal solutions. At the heart of OR-tools™is a CP-SAT solver [34]. The

solver uses DecisionBuilder that has as its input, the decision variables, rules to choose the

next variable to assign a value, rules for choosing the value to assign to the variable. Using the

DecisionBuilder, we use the Path Cheapest Arc strategy to find an initial feasible solution (see

algorithm in [37]). Starting with the “start" node, the decision builder connects the node that

40

B

A

B

A

A
B

A

B

B
A

C B
A

C

A

B

A

B

A

B

A

B

a) 2-opt

b) Or-opt

c) Relocate

d) Exchange

e) Cross

Figure 7. Move operators using in Constraint Programming [2]

has the shortest distance from the previous node and iterating till the end. While doing the

connections, it checks the feasibility of the solution.ă

Then OR-Tools™uses a local search to find the best solution in the neighborhood of the

current solution.ă

41

This local search proceeds by a move operator that rewires the nodes and checks for feasi-

bility and cost. These moves are repeated until a termination criteria, such as no improvement

of the objective. There are 5 move operators. These are listed next and shown in Figure 7 and

is taken from [2].

1. 2-opt interchanges the sub-part of a tour by removing two arcs, and then connects them

interchangeably so that the objective value gets reduced.

2. Or-opt moves the sub-part of a tour if there are a maximum of 3 contiguous visits to

that sub-part of the tour.

3. Relocate connects a visit of one tour to another tour if the reduction in objective value

is seen.

4. Exchange involves swapping two visits between each other from either the same tour or

two different tours.

5. Cross involves exchange of a visit at the end of one to another tour. The difference

between Exchange and Cross is that the Exchange move can be done in any part of

tour/tours, but Cross can be done only to the end portions of two tours.

In order to escape a local optimum solution, OR-Tools™use Guided Local Search (GLS)

meta-heuristics [38].In GLS, we add a penalty term to the objective function O leading to an

42

augmented objective O’ function. The penalty term is dependent on the neighborhood of the

solution x through a set of features F . The augmented objective function is [2]

O′(x) = O(x) + λ
∑
i∈F

fi(x)pici (2.26)

where the indicator function for the corresponding feature i that belongs to F is fi. We define

fi(x) = 1, if the feature i is in solution or 0 otherwise. Also, λ is the penalty factor that can

tune the search for the solutions. For example, a larger λ increases the diversity of the solutions

(also see [39]), pi is the number of times the particular feature i has been penalized, and ci is

the cost for the feature fi. Using the augmented objective O’ increases the cost of the objective

with respect to the neighborhood, thus enabling the solver to get unstuck from a local optimum

solution. Subsequently, a local search is used to continue the search.

2.6 Optimizing the parameters of the UGV heuristics

We have optimized the UAV route for a pre-selected UGV route. It is clear that changing

the UGV route will change the UAV solution and consequently the optimum. In this section, we

are interested in a closed-loop optimization where we would like to optimize both, the UGV and

UAV solutions, thus achieving better solution. We choose 6 parameters in our UGV heuristics;

the x- and y-coordinate of each of the two stop locations and the wait times at the stops. We

use genetic algorithm and bayesian optimization to optimize these 6 parameters.

43

Algorithm 1 Genetic Algorithm
Input: Population size n, Maximum generations MAX
Output: Global best solution

1 Generate initial population of n chromosomes randomly
Set the current generation g ← 0

2 while g < MAX do
3 if g = 0 then
4 Compute the fitness value for each chromosome

Increment the current generation g ← g + 1
5 else
6 Select a pair of chromosomes from the initial or old population based on fitness

Apply crossover operation on selected parents
Apply mutation operation on produced offspring with a mutation probability
Replace initial or old population with newly generated population
Compute the fitness value for each chromosome
Increment the current generation g ← g + 1

2.6.1 Genetic Algorithm

Genetic algorithm is a metaheuristic inspired from the process of natural selection in nature.

It is an effective method to solve for global optimization problems where the objective function

could potential have multiple local optimal solutions [40].

Algorithm 1 describes the workflow of the Genetic algorithm. In our problem, the popula-

tion in each generation basically consists of the parameter set, in which each individual of the

population is a list of parameters that constitute the UGV route and each parameter value in

the parameter list are encoded to form genes. The genes, which are the encoded version of the

parameters, are concatenated together into a single string to form an individual of the popula-

tion. In technical terms, those individuals of the population are called chromosomes. We use

44

binary encoding for gene encoding as it helps in improving the diversity of the solutions. We

use Latin Hypercube Sampling (LHS) to sample the initial population. LHS is a sampling tech-

nique that is not purely based on random sampling, but mimics some structure in randomness.

That is, LHS has a memory of previously sampled points and the same sample points or same

combination of points are not sampled again unlike random sampling, where repeated sampling

of same points can happen. LHS mimics the distribution of the data and provides an efficient

sample [41]. Once the initial population is formed, the fitness function, which is the objective

function is computed for each individual. The individual in the population with better fitness

are carried forward to the next generation. This is called elitism and it ensures that solutions

with better fitness values will be retained. These solutions with then participate in a selection

process to further improve the fitness. Thus process is repeated iteratively to improved the

fitness till there are no more improvements indicating convergence. Selection process is carried

on to select two individuals (parents) from the previous generation to produce offsprings for the

next generation. We use a technique called Tournamentselection for selecting the chromosomes

as it performs better than other techniques in terms of algorithm workflow, convergence rate

and time complexity [42]. In this selection, two individuals to be compared are picked from the

population and the individual with the best solution amongst the two will be chosen as a par-

ent for the crossover operation. In order to extend the possibility of obtaining a global optimal

solution, a variant in tournament selection called unbiasedtournamentselection is introduced

as it eliminates the loss of diversity related to the failure of random sampling for tournament

selection [43]. Instead of picking two individuals at random for comparison, the individuals

45

are picked in a particular order viz., permutation and then compared. The two next steps are

the crossover and mutation operations, help to improve the solution search space which helps

achieve a global optimum. In crossover operation, the selected pair of parents are mated at

a randomly chosen crossover points to produce offsprings. For this problem, 2-point crossover

operator is used to produce two offsprings from the parents. After performing the crossover

operation, the mutation operation is performed in which a random bit of the offspring’s chro-

mosome is flipped or mutated if the probability of the random bit exceeds a certain probability

value to impart diversity in the solution. This diversity enables the solution to escape the local

optima. The probability of the random bit is taken from the uniform distribution. For this

problem, the mutation operator value of the GA is set to be 0.01. The GA algorithm is termi-

nated if there is no improvement in the solution, indicating convergence or when the maximum

iteration limit is reached.

2.6.2 Bayesian Optimization

Bayesian Optimization is a powerful tool for optimizing computationally expensive objec-

tive function. Mathematically, bayesian optimization acts as a global optimizer of a blackbox

function f(x): x∗ = arg min
x∈X

f(x), where X is the region of interest for finding the optimal

solution. Bayesian optimization uses a probabilistic model (surrogate model) f(.) based on

given prior distribution Dn = [(x1, f(x1)), (x2, f(x2)), ...(xn, f(xn))] for analyzing its posterior

belief at the unexplored input regions. The performance of Bayesian Optimization depends sig-

nificantly on the acquisition function which balances between the exploitation and exploration

of the predictive surrogate model f(.) to list out the most promising points x+ in its domain

46

X and evaluates the objective at these points, f(x+). Next (x+, f(x+)) is added to the prior

distribution of the surrogate model f(.) and consequently the posterior distribution is updated.

This process is continued iteratively till the solution converges to its optimum value or when

maximum iteration limit is reached.

Algorithm 2 shows the pseudo code for Bayesian Optimization. Bayesian optimization has

two major blocks, first is the surrogate model g(x) which approximates the objective function

f(x) based on the sampling points Dn and the second, the acquisition function α which helps

to evaluate the important points (xn+1, yn+1) in the posterior. We have used Gaussian prior

as the surrogate model and Expected Improvement (EI) for the acquisition function. Suppose,

GP(f(x̂), s2(x)) is the surrogate model on f(x) and fmin is the minimum value of the objective

functions among [f(x1), f(x2), ...f(xn)] for n given values of [x1, x2, ...xn]. The improvement

I(x) of f(x̃) on unexplored points x̃ is defined as

I(x) = max(fmin − f(x̃), 0) (2.27)

Thus, Expected Improvement (EI) acquisition function is the expectation (average) of the

variable I(x) over f(x) defined as below:

E(I(x)|f(x)) = E[max(fmin − f(x̃), 0)|f(x)]

= (fmin − f(x̂))Φ(
fmin − f(x̂)

s(x)
)

+ s(x)ϕ(
fmin − f(x̂)

s(x)
)

(2.28)

47

Algorithm 2 Bayesian Optimization
Input: Sampling points Dn, Maximum iterations k
Output: Global best solution

7 Make g(x) surrogate model on Dn

8 for k = 1, 2, . . . do
9 Obtain xn+1 by optimizing acquisition function α

xn+1 = arg max α(g(x)), yn+1 = f(xn+1)
Update Dn+1 = [Dn, (xn+1, yn+1)]
Update g(x) on Dn+1

10 Find x∗ = arg min g(x), y∗ = f(x∗)

The point with maximum EI is chosen as the point of interest to update the prior Dn+1

and the surrogate model g(x). The process is continued till the maximum iteration k is reached

when we get the optimal point (x∗, y∗) from the Bayesian Optimization.

3 RESULTS

We present results for the scenario shown in Figure 4. The UAV-UGV have to start and

end at the Depot. The mission points are shown by black dots. All missions point needs to be

covered by either the UAV or the UGV. The UAV can recharge at the Depot or at the UGV.

The UAV and UGV velocities when moving are fixed at 10 m/s and 4 m/s respectively. The

UAV and UGV fuel capacity are 287.7 kJ and 25.01 MJ respectively.

The heuristics for the UGV are depicted in Figure 6. There are 6 free parameters for the

UGV optimization. Four for the x- and y-stop locations (stop 1 and stop 2) of the UGV and 2

wait times. Table V shows the ranges for both these parameters. The objective function is to

minimize the total time to visit all mission points.

48

Parameter Range

UGV stop 1 location (km,km) (6.90,18.04) to (9.80,9.07)

UGV stop 2 location (km,km) (8.64, 9.77) to (16.96,1.45)

UGV stop 1,2 wait times (min) 2 to 60

TABLE II

Parameter set and their range for GA/BO optimization

We used Python 3 for the optimizations (GA/BO/OR-Tools) performed the computations

on a 3.7 GHz Intel Core i9 processor with 32 GB RAM on a 64-bit operating system.

Table III gives the optimal parameter set computed by GA/BO. The UGV 1 stop locations

are slightly different but the wait times are substantially different. The UGV stop 2 locations

and times are identical; the stop 2 corresponds to the far right corner of the missions. These

results are discussed in detail later in this section.

Table IV compares the key metrics between GA and BO optimizations. The objective of the

optimization was to reduce the total time. Both optimization gave similar results with BO being

marginally better than GA by 3 min. GA needed 3 times more local-search optimizations and

took 6 times more computational time than BO. Thus, BO has more computational efficiency

than GA. The UGV results show that GA and BO had similar times, energy consumed, but the

UGV travel more more mission points in GA rather than BO. The UAV results show substantial

49

Parameter GA Values BO Values

UGV stop 1 (km,km) (4.99,11.65) (6.10,10.80)

UGV stop 1 wait time (min) 18 50

UGV stop 2 (km,km) (16.96,1.45) (16.96,1.45)

UGV stop 2 wait time (min) 3 2.45

TABLE III

Optimal parameters after GA/BO optimization

difference between the two methods. The travel time, energy consumed in BO are about 1.5

times higher. This is because the BO travels to 3 more mission points than GA.

Figure 8 and Figure 9 shows the optimum route produced by GA and BO respectively.

The main difference between the two solutions is in the UAV route. In GA, the UAV visits

the missions further away from the intersection of the branches as shown in Figure 8 a), b),

and c) then recharges on the UGV, completes the remaining missions as shown in d) and goes

to the start. In BO, the UAV visits the missions closer to the intersection of the branches as

shown in Figure 9 a), b), then recharges once on the UGV. Then the UAV visits the top most

mission points as shown in c) and d) then recharges a second time on the UGV. Finally, the

UAV completes the remaining missions as shown in e) and f). Thus, it can be observed that

the order of choosing the mission points in BO increases the travel time of UAV. However, since

50

���
���
��������
��������

��������������
������(a)
���
���
��������
��������
�������

�������
������
	�����
(b)
���
���
��������
�������

�������
�����
	�
����
(c)

���
���
��������
��������

���������������
������(d) ���
���
��������

��������������
��

����(e)
���
���
��������
�������

�������
�����
	
�
�����
(f)

Figure 8. Solution produced by Genetic Algorithm. The plots show the UAV and UGV route
at different time spans.

the UGV is the slower of the two vehicles, the travel time of the UGV determines the total

time taken to cover all mission points. Since the UGV travel is almost the same except for the

slightly more wait time for the UAV to return back in the BO solution, the difference in the

objective is only 3 minutes.

4 DISCUSSION

In this paper, we presented a framework for optimizing routes of heterogenous vehicles, a

UGV and UAV, with fuel constraints. The key idea is to solve the problem in a tiered fashion.

51

�����
����

���������
���������

��������������
������(a)

���������

���
���

���������

��������������
�������

�	����

(b) ����������������������

���

���
����
���

�	����

(c)

����������������������
���
���
����
���

�	����

(d) �����������������������
���
�
�
�
�����

�������

(e) ������������������������
���
�
�
�������

	������

(f)

Figure 9. Solution produced by Bayesian Optimization. The plots show the UAV and UGV
route at different time spans.

First, we use heuristics to decide the UGV route. Second, we optimize the UAV route using a

local search. We identify key parameters in the UGV heuristics and optimize them iteratively

with UAV route using genetic algorithm and bayesian optimization. Starting from an infeasible

solution, both algorithms are able to give solutions with similar cost, but different solutions.

Our objective was the time taken to visit all the mission points. Both GA/BO gave almost

the same time. However, the individual UAV solutions were quite different. The UAV for the

BO used more energy and travelled for more time. However, since the total time was dependent

52

on the UGV travel time (as it was the slower vehicle) and the UGV travel route were similar,

the overall cost was the same. If the UAV time, energy, and other metrics are important then

they can be added to the cost function using a weighted sum.

Bayesian optimization was more efficient than Genetic algorithm in the number of function

evaluations and computational time. BO is designed for computationally expensive function

evaluations hence it is ideal in such cases where it takes substantial time to compute a solution

by doing a local search for the UAV route.

One of the main limitations of the work is that UGV heuristics are limited to only 6 pa-

rameters which restricts the solution space. Adding more parameters will potentially make

the search space too large and computationally restrictive. Another limitation is that the pa-

rameters and their range for the UGV heuristic optimization had to be chosen by trial and

error.

5 CONCLUSIONS AND FUTURE WORK

We conclude that a tiered optimization is a feasible method to solve heterogenous vehicles

optimization where the solution of one vehicle needs to be performed before the other one. In

our case, the UGV route needs to be determined first as the UAV route involves refueling on

the UGV. Moreover, by suitably parameterizing the heuristics and optimizing the parameters

with global optimization methods enables exploration of the space and provide good quality

solutions.

Our future work would explore both these optimization methods with different routes, dif-

ferent costs, and different heuristics in order to make broader claims about validity of the

53

proposed approach. And moreover, since this research work addresses a problem-solving based

approach where we focus on solving the problem that is given in hand, the algorithm that was

developed focuses on solving problems with scenario maps that are similar to the scenario used

in this work rather than focusing on comparing this algorithm to benchmark instances in the

literature. Future works will deal with testing this algorithm on various scenarios in order to

ensure the robustness of the algorithm.

54

Metrics Genetic
Algorithm
(GA)

Bayesian
Optimization
(BO)

Total time (min) 225 222

Total local-search optimizations 180 60

Computational time (min) 90 15

UGV results

Travel time (minutes) 225 222

Energy consumed (MJ) 23.13 24.86

Mission visited 37 34

UAV results

Travel time (minutes) 65 103

Energy consumed (kJ) 575.25 804.905

Recharging stops on UGV 1 2

Recharging stops on Depot 0 0

Missions visited 9 12

TABLE IV

Comparison between GA/BO on metrics from the optimal solution.

CHAPTER 4

SOLVING VEHICLE ROUTING PROBLEM FOR UNMANNED

HETEROGENEOUS VEHICLE SYSTEMS USING ASYNCHRONOUS

MULTI-AGENT ARCHITECTURE (A-TEAMS)

Overview: Fast moving but power hungry unmanned aerial vehicles (UAVs) can recharge on

slow-moving unmanned ground vehicles (UGVs) to cooperatively perform tasks over wide areas. Such

a cooperation can be achieved efficiently by solving a path planning problem. On top of solving a path

planning problem, the problem of routing an heterogeneous set of vehicles in an optimal fashion is quite

challenging. In order to solve the computationally expensive path-planning problem in a reasonable

time, we created a two-level optimization approach with heuristics. At the outer level, the UGV route

is parameterized by considering which set of locations to visit in the scenario and the UGV wait times

to recharge UAVs and at the inner level, the UAV route is solved by formulating and solving a vehicle

routing problem with capacity constraints, time windows, and dropped visits. The UGV free parameters

need to be optimized judiciously in order to create high quality solutions. We explore two methods for

tuning the free UGV parameters: (1) a Genetic Algorithm (GA), and (2) Asynchronous Multi-agent

architecture (A-teams). The A-teams uses multiple agents to create, improve, and destroy solutions.

parts of this chapter is taken from the following published journal article:
Ramasamy, S., Mondal, M. S., Reddinger, J. P. F., Dotterweich, J. M., Humann, J. D., Childers, M. A.,
& Bhounsule, P. A. (2023, June). Solving Vehicle Routing Problem for Unmanned Heterogeneous Vehicle
Systems using Asynchronous Multi-Agent Architecture (A-teams). In 2023 International Conference on
Unmanned Aircraft Systems (ICUAS) (pp. 95-102). IEEE.

55

56

The parallel asynchronous architecture enables A-teams to quickly optimize the parameters. Our results

on test cases show that the A-teams produces similar solutions as GA but is 2-3 times faster.

Keywords: Vehicle Routing Problem, Multi-Agent Optimization, Unmanned Systems, Combina-

torial Optimization

1 INTRODUCTION

There has been a considerable increase in the use of the small Unmanned Aerial Vehicles

(UAVs) across diverse fields such as entertainment and logistics [20]. The reason for such

a widespread adaption is because they are agile robots that can navigate at high speeds in

complex environments otherwise inaccessible to humans [44]. Although UAVs are fast, they are

limited by their battery capacity to a relatively small area [22].

To complete tasks over wider areas, UAVs could be provided mobile recharging stations that

are hosted by unmanned ground vehicles (UGV). Such cooperative routing of a team of UAV-

UGVs have been utilized in tasks such as inspection in cluttered environments [45], congested

urban environments [46] and post-disaster relief [47], [48].

The cooperative routing of UAV and mobile recharging stations is complex and computa-

tionally challenging [26]. The formulation of the problem involves minimizing a cost such as

the time or fuel consumption while constraining the fuel capacity and speed limits of the UAV

and UGV and ensuring that they are able to rendezvous efficiently. Although it is relatively

easy to formulate the problem, it is difficulty to solve the formulation using exact methods due

to the combinatorial nature of the problem. However, using suitable heuristics, it is possible to

achieve high quality solutions relatively quickly.

57

There has been a considerable work done in the literature related to solving fuel-constrained

routing of UAVs. Sundar et. al., [6] worked on Fuel-Constrained UAV Routing Problem where

a generalization of the asymmetric Traveling Salesman Problem (TSP) is solved using Approx-

imation algorithm and fast heuristics. A Mixed Integer Programming Problem formulation is

also proposed to obtain optimal solutions. Here, a single UAV is used and gets recharged on

fixed depots. Venkatachalam et. al., [49] modeled a multiple fuel-constrained UAV routing

problem with fixed recharging depots. Here, the authors implemented a two-stage stochastic

optimization problem with uncertainties in the fuel consumption of UAVs. Heuristics are used

to achieve high quality solutions with faster computing time.

Some extensions in the aspect of heterogeneous vehicle routing were also considered in the

literature to overcome some of the limitations existed in such fuel-constrained UAV routing

problem with fixed depots. Subramanian et. al. [30] considered the vehicle routing problem

of multiple fuel-constrained UAVs and a single UGV that acts as a mobile recharging vehicle.

The problem is being solved in a tiered fashion. The authors used K-means clustering and

TSP to solve UGV routing problem, and then implemented Vehicle Routing Problem (VRP)

with fuel, time and optional node constraints. The aforementioned work is extended in [17]

where a more generalized approach is taken to solve several different scenarios and proved the

robustness of the algorithm. The above works allows the UGV to move freely on any paths, but

there are some works in the literature that considers heterogeneous UAV-UGV vehicle routing

with UGV constrained to move on certain prescribed paths. This is a challenging problem

because each of these vehicles have different constraints on speed and fuel capacity. Maini et

58

al. [1] considered the problem of routing a single fuel-constrained UAV to a set of task locations

while being recharged by stopping at a UGV traveling on a road network. They solved the

problem using a two-stage approach. First, using the UAV range constraints, they found a set

of recharging depots. Second, they formulated a mixed-integer linear program and solved for

the path of both the UAV and UGV. Safwan et. al., [50] performs a bi-level optimization on a

road network with prescribed UGV paths and the obtained simulation results are validated by

performing a lab-setup experiment, which asserts the ability to map from simulation setup to

real-time practical deployment. The work in [51] also allows the UGV to move freely only on

prescribed paths and is also followed in this paper.

Since UGV has a fixed route, the heuristics for the UGV could be modeled as a parameter

tuning problem as that would provide a better solution by tuning the heuristic parameters. [31]

applied Bayesian Optimization to tune the hierarchical decomposition algorithm parameters

and thus helped to achieve optimal solutions at a faster rate. Although such algorithms help

us to achieve globally optimal solutions, they come at a cost of significant computational time.

This was seen from the previous work by the authors [51] where GA and Bayesian Optimization

(BO) are implemented for parameter tuning to obtain the UGV route. The results from that

work show that particularly in case of GA, higher computational time of about 180 minutes was

needed to solve that problem. The reason for high computational time is that these algorithms

GA and BO are basically global optimization algorithms. Although such global optimization

algorithms perform search over a larger space, this compromises their efficiency. Hence they

can be used when the computational time is not critical, such as offline optimization [52]. At

59

the same time, local optimization algorithms provide quicker solutions, but are optimal in a

small region of space.

To achieve faster global optimal solutions, Sachdev [53] worked on proposing an architecture

called A-Teams, which was originally developed by Talukdar et. al. [54]. In A-teams, global

optimization methods search over a larger space to find potentially feasible solutions. These are

then improved by the local optimization methods. The author implemented two algorithms,

Stochastic Quadratic Programming (SQP), a local optimization method, and GA, a global op-

timization method, in A-Teams to show how the advantages of local and global optimization

algorithms can be tapped to produce a better result in a computationally efficient manner. Je-

drzejowicz et. al., [55] proposed A-Teams to solve a Resource Constrained Project Scheduling

Problem. The authors perform Reinforcement Learning (RL) along with using other optimiza-

tion algorithms like local search, tabu search to solve the problem using A-Teams. The RL

component in their architecture helps to apply dynamic strategy for interaction between those

different optimization algorithms in an A-Team. Those authors use a middleware called JABAT

(Java Agent DEveleopment-Based A-Teams), to implement the A-Teams architecture. Kazemi

et. al., [56] implemented A-Teams for solving a Production-Distribution Planning Problem

where each agent in their architecture uses a GA sub-module to handle its tasks and conclude

that the combined multi-agent GA system provides better solutions than the individual ones

for their problem. Recent works by Jedrzejowicz et. al., [57] involves implementing this ar-

chitecture to solve a Resource Investment Problem in which different agents use Local search,

60

Lagrangian relaxation, Path relinking algorithms, Crossover operators and cooperate together

to solve such a problem.

The usage of A-Teams is also found amongst the routing problems in the literature. Rabak

et. al. [58] presented the A-Teams framework to optimize the automatic electronic compo-

nent insertion process on an inserting machine. They implemented a combination of Quadratic

Assignment Problem and Traveling Salesman Problem (TSP) in the framework to perform

optimization. The above work shows the framework’s ability to handle multiple algorithms

simultaneously. Such a realization becomes helpful in this work where the A-Teams come in

hand for utilizing the local and global optimization algorithms, whose advantages and disad-

vantages were talked about a few lines before. Barbucha et. al., [59] worked on investigating

the effects and impact of a Team of A-Teams working in parallel to solve difficult combinatorial

optimization problems. In their work, different algorithms cooperate together within an A-

Team, and several similar A-Teams are made to work in parallel. The computational efficiency

of their architecture is demonstrated by solving benchmark instances in different problems like

Euclidean Planar Traveling Salesman Problem (TSP), Vehicle Routing Problem (VRP), Clus-

tering Problem (CP), and Resource Constrained Project Scheduling Problem (RCPSP). Rachlin

et. al., [60] implemented the A-Teams to solve a Traveling Salesman Problem (TSP) by using

Farthest Insertion and Arbitrary Insertion heuristic algorithms in their architecture.

The A-teams has been limited to solving basic routing problems (e.g., TSP). Thus, the

main contribution of this work is that we use the A-teams architecture to solve a heterogeneous

and co-operative vehicle routing problem involving a UAV and a UGV. We also compare the

61

Figure 10. Overview of the bi-level optimization algorithm. The outer-level block is run in
parallel on multiple cores.

A-teams architecture with results obtained using genetic algorithms in several scenarios. The

flow of the paper is as follows. We present details about the optimization method in Sec. 2. The

results are in Sec. 4, followed by the Discussion in Sec. 4. Finally, the conclusion and future

work is in Sec. 5

2 METHODS

The authors developed a two-level optimization framework [51] that uses Genetic Algorithm

and Bayesian optimization and is described in Sec. 2.1. The main contribution of this paper is

the A-teams architecture which uses the two-level optimization framework as its basis and is

described in Sec. 2.2.

62

Feasible?

Yes

No

Nelder-Mead
algorithm

Genetic
algorithm

No
improvement?

Convergence
achieved

Yes

No

Constructor agent

Improver agents

Destroyer
agent:
Destroys infeasible or
redundant solutions
from this algorithm

Destroyer
agent:

Feasible
solutions

Feasible
solutions

Local population

Global population

Sorted
population

Total
evolved
population ->

Sorted
population

Population of
solutions

Initial population

Destroys infeasible or
redundant solutions
from this algorithm

Figure 11. Implementation of A-Teams architecture for this cooperative routing problem.

2.1 Conventional Two-level optimization

The Figure 10 shows the conventional two-level optimization [51]. The outer level block

shown in blue are the heuristics to choose a UGV route. The UGV route heuristics has a few

free parameters. Once these parameters are set, the inner-level block shown in orange performs

the UAV route optimization using Googles OR-Tools™ [34]. The UAV route optimization is

heavily dependent on the free parameters of the UGV route. These parameters are optimized

using a genetic algorithm. The complete block (inner/outer loop) runs several times till the

genetic algorithm can no longer improve the solution or when the maximum iteration limit is

reached.

63

2.2 Description of the proposed architecture - A-Teams

A-Teams is an architecture that uses a team of autonomous agents to perform optimization

on a given problem. The agents have a common set of potential solutions. Each agent works

asynchronously on the potential solutions to find better solutions which are then updated as

the new potential solutions. There are three main agents that constitute this architecture and

are described next.

1. Constructor Agent is used to develop an initial pool of solutions using the user inputs.

2. Improver Agent is used to improve on the pool of solutions using different optimization

methods. It is important to choose complementary optimization methods (e.g., global and local

optimizers) to help improve the quality of the solutions.

3. Destroyer Agent is used to discard non-optimal and bad solutions. It does this by ranking

the solutions based on the cost and constraints satisfaction.

Populations are shared repositories for storing solutions computed and evaluated by different

agents. These are accessible by all agents.

The architecture is modular and distributed which enables each optimizer to work inde-

pendently. However, the architecture also has mechanisms to combine solutions generated

by individual optimization to realize further improvements of the solutions. This makes the

framework very powerful producing optimal solutions in a computationally efficient manner.

Figure 11 shows the implementation of A-Teams to solve this problem. Note that the

A-teams operates over the two-level optimization block shown in Figure 10. The Constructor

agent utilizes a ‘randomized’ initial UGV parameter set to construct an initial population

64

of solutions. The algorithm is used until the feasibility of a solution in the population is

achieved. Every time the constructor agent pulls solution from that initial population, it fills

up a current population, that was initially empty (represented in orange box in Figure 11), until

feasibility. These solutions are usually sub-optimal, but are then passed to the Improver agent.

The Improver agents improve the solutions by using two algorithms: (1) the Nelder-Mead, a

gradient free direct search method, that is good for local optimization and (2) the Genetic

Algorithm that is inspired from natural selection and is good global optimization method.

These two algorithms are complementary in nature; Genetic algorithm searches big regions of

the parameters set (exploration) while Nelder-Mead improves on the solution in the vicinity of

the current solution (exploitation).

We now describe Algorithm 4 used in A-teams. On lines 1 and 2 the constructor agent

role is to generate feasible solutions for the improver agent. A random initial parameter set

for UGV is generated and checked if it leads to a feasible UAV solution. After a sufficient

number of good feasible solutions are generated, the algorithm proceeds to the main while loop

that uses the constructor and destroyer agent. When the constructor agent produces a feasible

solution, the current population which has been updated so far from the initial population is

sorted, and the role is handed over to the Improver agents. The solutions are sorted based

on the cost and the improver agent uses the global optimizer (GA) shown on line 5 or local

optimizer (Nelder-mead) shown on line 6. These improver agents work in parallel. Thus, both,

the exploration and the exploitation happens simultaneously and independently. Next, on line

7, the destroyer agent looks at all the solutions and discards the infeasible solutions and those

65

that are already existing in the pool of solutions. Finally, on line 8, all the good solutions are

pooled together and sorted in order to get ready for the next iteration. This process repeats

until convergence is achieved, i.e., when there is no improvement in the population.

2.2.1 Nelder-Mead algorithm

Nelder-Mead method is a simplex-based numerical method that is used for solving the

unconstrained optimization problem. Being a numerical method, it is a gradient-free direct

search method and it is mainly used to solve problems in which the derivatives of an objective

function are very hard to find. Since this is a simplex-based algorithm, the shape of the simplex

is fixed to have n + 1 vertices where n is the number of input dimensions. The dimension of

the simplex will increase with increase in the number of input dimensions. For example, for

2-dimensional input, the simplex will be a triangle; for 3-dimensional input, the simplex will

be tetrahedron; for 4-dimensional input, the simplex will be pentachoron and so on. Once the

simplex vertices have been sorted as per the objective function evaluation at each initialized

random vertex, vertex x1 will be the best solution and vertex xn+1 be the worst solution. Based

upon this sorting, certain operations are performed for solution improvement. This algorithm

involves four operators: reflection, expansion, contraction, shrink. For each operator, there

is a scalar parameter which allows to perform the improvement of the solutions and the scalar

parameter for those four operators are within a certain bounds that are user-defined. The

description of each of the operators is as follows:

• Reflection: This operation is performed to make the worst vertex (xn+1) of the simplex

shape at least better than the second worst vertex (xn). The reflection is performed to

66

mirror xn+1 about the centroid of the simplex shape, and the reflected point is named

xr. The xr is found via the equation in line 8 of the algorithm Algorithm 3. Based upon

the objective function evaluation at xr, either of the following operations expansion,

contraction or shrink is performed accordingly.

• Expansion: This operation is performed if the reflected solution xr is not only better

than xn, but also better than the current best solution x1. If this is the case, then the

solution xr is updated into xe by moving along that reflected vector direction, and now

the new worst solution point will be xn. The xe is found via the equation in line 10 of

the algorithm Algorithm 3.

• Contraction: This operation is performed if the reflected solution xr did not get better

than xn solution. There are two types of contraction. Outside contraction xoc is

performed at a third-quarter of the distance between xn+1 and xr and Inside contraction

xic is performed at a quarter of the distance between xn+1 and xr. Comparing these two

contractions, xn+1 will get updated to xic or xoc by picking the better solution between

them. The xoc or xic is found via the equation in line 12 or line 14 of the algorithm

Algorithm 3.

• Shrink: If none of the above operations improve the solution xn+1, then this operation

is performed where it updates the current vertices x2 till xn+1 to a location as per the

equation in line 15 of the Algorithm 3.

One thing to keep in mind is that, the first three out of four operations above are performed

on the worst input variable xn+1 by updating this variable values to the ones after performing

67

X

Y

x1

x2

x3

x1

x2

x3

x1

x2

x3

Centroid

xr

x1

x2

x3

Centroid

xr xe

x1

x2

x3

Centroid

xr

xic

xoc

x3
’

x2
’

a) b) c) d) e)A 2-D example Re�ection Expansion Inside/Outside Contraction Shrink

Figure 12. Graphical representation of the Nelder-Mead algorithm for 2-dimensional input
example. a) The example inputs under consideration. b) Reflection operation. This operation

is performed to make the worst vertex (x3) of the simplex shape at least better than the
second worst vertex (x2). The reflection is performed to mirror x3 about the centroid of the

simplex shape, and the reflected point is named xr. The xr is found via the equation in line 8
of the algorithm Algorithm 3. Based upon the objective function evaluation at xr, either of

the following operations expansion, contraction or shrink is performed accordingly. c)
Expansion operation. This operation is performed if the reflected solution xr is not only

better than x2, but also better than the current best solution x1. If this is the case, then the
solution xr is updated into xe by moving along that reflected vector direction, and now the

new worst solution point will be x2. The xe is found via the equation in line 10 of the
algorithm Algorithm 3. d) Contraction operation. This operation is performed if the reflected
solution xr did not get better than x2 solution. There are two types of contraction. Outside

contraction xoc is performed at a third-quarter of the distance between x3 and xr and
Inside contraction xic is performed at a quarter of the distance between x3 and xr.

Comparing these two contractions, x3 will get updated to xic or xoc by picking the better
solution between them. The xoc or xic is found via the equation in line 12 or line 14 of the
algorithm Algorithm 3. e) Shrink operation. If none of the above operations improve the

solution x3, then this operation is performed where it updates the current vertices x2 and x3
to a location as per the equation in line 15 of the algorithm Algorithm 3.

them and the second worst variable xn will be updated as the current worst variable after

that operation. Figure 12 describes the Nelder-Mead algorithm in graphical form for a 2-

input dimension case where f(x1) < f(x2) < f(x3). Since it’s a 2D case, the simplex used

is triangle. where a) represents the reflection operation where variable x3 is updated to xr

and thus x2 becomes x3, b) represents the expansion where x3 is updated to xe based upon

68

the corresponding condition in the algorithm, c) represents the outside and inside contraction

operation and in actual optimization, either one of those two contractions are applied based

upon the function evaluation of the reflected solution, and d) represents the shrink operation.

2.3 Heuristics for UGV (Outer-level)

Our heuristics for UGV route are based on maximum fuel range of the UAV described earlier

(range is shown as a blue circle in Figure 13). Figure 14 shows the heuristics for the UGV

route. The UGV starts at the depot and travels along the task locations. Next, the UGV

is allowed to stop anywhere in the ellipse with dashed red lines for a prescribed time. The

rationale is that in choosing a stop and wait time is to give the UAV enough time to land and

recharge on the UGV. Next, the UGV moves to to the bottom right side and can take another

stop anywhere inside the blue ellipse with blue dash-dot lines. We have shown two random

stop locations in each ellipse with a blue hollow circle. There are 7 parameters for the UGV

heuristics; the starting location of the UGV/UAV, the x- and y-coordinate of each of the two

stop locations, and the wait times at the stops.

2.4 Optimizing UAV route (Inner-level)

We formulate a Vehicle Routing Problem (VRP) with capacity constraints to account for

fuel limits, time windows to allow for rendezvous, and dropped visits to allow the UAV to

visit some of the many vertices on the UGV path. We constrain the UAV to a fixed speed,

pre-specify the battery capacity and service time as the UAV lands and waits on the UGV.

Constrained Programming approach is being used to solve this VRP using OR-Tools solver.

69

The mathematical details are not included here because of space constraint, but can be

found in [51].

3 RESULTS

We used Python 3 for all the computations: a custom-written genetic algorithm and Nelder

Mead from Scipy package for UGV parameter optimization, and OR-tools for UAV optimiza-

tion. All computations were done on a 3.7 GHz Intel Core i9 processor with 32 GB RAM on a

64-bit operating system.

UGV/UAV Depot
Mission Points
UAV Depot

(a)

Depot 1

Depot 2

Depot 3

Center

UGV Path

UGV/UAV Depot
Mission Points
UAV Depot

(b)

Depot 1

Depot 2

Depot 3
Center

UGV Path

UGV/UAV Depot
Mission Points
UAV Depot

(c)

Depot 1

Depot 2

Depot 3Center

UGV Path

Figure 13. Description of different scenarios. The UAV and UGV, both start from one of the
recharging depots. The task locations are shown with black dots. The UAV range is shown

with a blue circle. a) Scenario 1 b) Scenario 2 c) Scenario 3.

Figure 13 shows the problem scenarios considered in this paper. The task locations are

shown with black dots. There are 3 recharging depots shown with a black dot that is bigger

70

than the one used for task locations. The UAV can travel on the UGV or fly by itself. The UAV

may be charged by the UGV or at the depot. Both, UAV-UGV start and end at the depot.

The blue circles represent the range of the UAV on a full charge; the distance that the UAV

can cover is the diameter of the circle. For example, consider Figure 13 (a). If the UAV starts

from the center of the circle on a full charge, it can return back to the center of the circle

with an empty charge if it travels straight out and back. We have drawn two circles which are

centered approximately at (1, 12.5) km and (5, 12) km. It can be observed that from the start

location, the UAV cannot travel to the set of task locations approximately from (7.5, 10) km

to (10, 8) km. However, if the UAV starts from the point (5, 12) km with a full charge, it can

cover those sets of task locations and return back. To enable this solution, the UAV would

need to ride with the UGV along the UGV till (5, 12) km, then visit the task locations within

that radius and get refueled. Meanwhile, the UGV stops at (5, 12) km location and waits for

some time. Although, such a UGV stop helps to cover additional task locations, there are some

task locations along the bottom right region that are left out. Hence, in such case, either the

UGV has to have another stop along that region so that UAV can cover those task locations

and utilize that UGV stop to recharge or the UGV itself should travel along that path to cover

all of those task locations. From this Figure, you can see that all 3 branches intersect at a

common point (6.1, 10.8) km. Other scenarios are considered similar to the distribution of this

scenario where three different branches meet at a point. This illustrates some of the intricacies

of choosing an appropriate path for the UGV such that the UAV can successfully cover the

task locations at the extreme ends. This is an optimization problem where optimal routes are

71

to be found for both UGV and UAV. In case of UGV, its route is modeled as a parameter set

consisting of two UGV stop locations to recharge the UAVs, the wait time of UGV at those

corresponding stops, and the starting or ending point of the entire route plan. The optimal

solution corresponds to a UGV routes parameter set and its subjected UAV route for which the

overall objective function is minimized.

In order to prove the computational efficiency, we present the results on three different

scenarios shown in Figure 13. The scenarios under consideration have three branches that

intersect at a single point. Each scenario has three depots. At each of the these depots, the

UAV or the UGV may be recharged. The UAV may also recharged when it lands on the UGV.

The UGV/UAV start their route execution from one of the three depots. This location is one

of the free UGV parameter. All these scenarios consider the optimization problem for 1 UGV

and 1 UAV. The UAV is a custom quadrotor with a battery capacity of 4000 mAh. The UAV

and UGV velocities when moving are fixed at 10 m/s and 4 m/s respectively. The UAV and

UGV fuel capacity are 287.7 kJ and 25.01 MJ respectively.

Figure 14 shows the UGV parameters for the three scenarios. The black dot on the gray

rectangle represents the depot where both UGV and UAV can recharge. The large black circles

represents the locations where only the UAV can recharge. Either of those depots represent

the potential starting location for the UAV and UGV and is an optimization parameter. The

small black circles represent the task locations that need to be visited either by the UGV or the

UAV. The stopping locations for the UGV can be either in the red ellipse or the blue ellipse. In

each of this ellipse, the x- and y-coordinate is a parameter (2 parameters per ellipse). For each

72

Parameter Range

Scenario 1 Scenario 2 Scenario 3

UGV stop 1 (km,km) (6.02,16.82) to (4.99,
11.65)

(11.36,4.86) to
(14.34, 7.31)

(8.95,9.48) to (9.29,
9.38)

UGV stop 2 (km,km) (14.70, 4.02) to
(16.96,1.45)

(7.72,6.13) to (9.46,
13.02)

(8.61,9.82) to (8.61,
10.07)

UGV wait 1,2 (min) 2 to 50 2 to 50 2 to 50
Starting point 1,2, or 3 1,2, or 3 1,2, or 3

TABLE V

UGV parameters and their ranges (outer loop)

stop location, the wait time is also a free parameter (1 parameter per ellipse). The UAV/UGV

may start at Depot 1, 2, or 3 (1 parameter). Table V shows the UGV parameter range for the

outer level. The objective function is to minimize the time gap between completion of UAV’s

and UGV’s routes after visiting all their task locations in the respective scenario. This kind of

objective function helps to minimize the waiting time between the heterogeneous system after

the route execution cycle.

In order to compare the two methods, an initial population size of 30 was chosen and both

algorithms were run 3 times. Table VI compares the cost and the computational time. It can

be seen that the computational time is reduced by a factor of 2 to 3 by the A-teams architecture

in comparison to two-level optimization, but the cost is within 25%.

Table VII compares the A-teams solution with two-level optimization for the same initial

population for the three different scenarios. From the value of the objective in the table it can

73

UGV/UAV Depot
Mission Points
UAV Depot

(a)

Depot 1

Depot 2

Depot 3

Stop 1 Location range
Stop 2 Location range
UGV stops
Refuel wait time range
= [2, 60] minutes

UGV/UAV Depot
Mission Points
UAV Depot

(b)

Depot 1

Depot 2

Depot 3

Stop 1 Location range
Stop 2 Location range
UGV stops
Refuel wait time range
= [2, 60] minutes

UGV/UAV Depot
Mission Points
UAV Depot

(c)

Depot 1

Depot 2

Depot 3

Stop 1 Location range
Stop 2 Location range
UGV stops
Refuel wait time range
= [2, 60] minutes

Figure 14. Description of different scenarios with parameters to be optimized. a) Scenario 1
b) Scenario 2 c) Scenario 3.

be seen that the results are mixed: A-teams is better than two-level optimization for scenario

1 but not for scenario 2 and 3. However, the difference between the two is not substantially

large. The other metrics such as the UAV/UGV travel time, energy consumed, recharging

stops, locations visited are also shown. There are minor differences between the two.

Figure 15 shows the final solution for scenario 1 at three different time ranges (in min):

1− 35, 36− 65, and 66− 166. Since both two-level and A-teams produce very similar solution,

only one solution, the two-level optimization, is shown here. The total routing time for A-teams

is less than that of the two-level optimization by about 3 min. The UAV/UGV start at Depot

1 then they move together to the first stop location. Here the UAV flies to cover the locations

on the top portion returning to Depot 1 to recharge. Then the UGV travels to all the task

locations and returns back to the Depot 1. Figure 16 shows the coverage of task locations and

the recharging stops used by the UAV-UGV for the A-teams for scenario 1. The task locations

in red are those that are covered by the UAV while those in blue are the ones covered by the

74

Scenario
type

Computational
time (in
minutes)

Objective
(in min-
utes)

A-Teams Two-level
optimization

A-Teams Two-level
optimization

Scenario 1 37± 1 47± 2 163 166
Scenario 2 28± 9 82± 10 12 9
Scenario 3 13± 3 44± 2 18 13

TABLE VI

Comparison of total cost between A-Teams and conventional two-level optimization for
different scenarios

UGV. The red cross shows the stopping locations for the UAV on the UGV for recharging. The

overlaid light blue circles indicate the range of the UAV. It can be seen that the recharging

stops are chosen strategically to enable maximum fuel coverage for the UAV on a single charge.

4 DISCUSSION

This paper presented the A-teams framework for optimizing the routes of a UAV-UGV pair

subject to fuel and speed constraints. The A-teams framework uses asynchronous agents to

create an initial pool of solutions, improve the pool, and then destroy the infeasible solutions.

These agent exploit parallel architecture to produce fast solutions. When compared with con-

ventional optimization method, A-teams produces the solution 2−3 times faster while achieving

similar quality of solutions.

One advantage of A-teams is the use of asynchronous agents to improve the solutions. These

agents work in parallel and hence they can be deployed independent of each other. When the

75

Time range=1 - 35 min (a) (b)Time range=36 - 65 min (c)Time range=66 - 166 min

Figure 15. Solution produced by conventional two-level optimization and A-teams on Scenario
1 are indistinguishable and are shown here. The different plot shows the UAV and UGV route

at various time-steps.

algorithm is deployed either on multiple core or parallel computing machines, they are able to

speed up computations. Apart from that, A-Teams has the capability to scale to multi-cores

where each core could be used for performing specific parallelized A-Teams computation with

threads in that core. This way, a combined effort of searching for the optimal solution can be

made efficiently.

Another advantage of A-teams is that the architecture seamlessly exploits the advantages

of multiple algorithms to improve the solution. In our case, the genetic algorithm is used to

explore the search space while the Nelder-Mead is used to locally improve the solution. Thus,

we have combined a global search with local search to improve the solution quality. However,

genetic algorithm is not sample efficient. One could use a sample efficient method like Bayesian

Optimization if sample efficiency is important [51].

76

UGV/UAV Depot
Mission Points
UAV Depot

(a)

Available recharging spots
Utilized recharging spots

UGV/UAV Depot
Mission Points
UAV Depot

(b)

Available recharging spots
Utilized recharging spots

UGV/UAV Depot
Mission Points
UAV Depot

(c)

Available recharging spots
Utilized recharging spots

Figure 16. Optimal parameter results of respective scenarios obtained using the A-Teams
architecture. (a) Scenario 1 (b) Scenario 2 (c) Scenario 3

The proposed works has some disadvantages. The UGV heuristics, the stop location and

wait times, were manually determined by hand tuning. This may be overcome by using min-

imum set cover algorithm [61]. The quality of the initial pool of solutions created by the

constructor agent is critical to ensure that the improver agent is able to improve the solution.

Thus, we had to play with a few random initial guesses till we got a feasible solution as a

starting base. Our results indicate that the A-teams produce superior solutions for complex

scenarios (Scenario 1), but was unable to produce better solutions that our baseline method

of using genetic algorithms in simple scenarios (Scenario 2 and 3) were able to. This might

indicate that the more complex A-teams architecture might not be ideal for certain scenarios

whose task space distribution is simple, or the number and combination of free parameters

(such as stop locations, waiting times) used for the optimization problem is very large.

77

5 CONCLUSIONS AND FUTURE WORK

We conclude that Asynchronous multi-agent architecture (A-teams) is a competitive tool for

solving the cooperative heterogeneous Vehicle Routing Problem. A-teams is able to produce

good quality solutions with less computation time. It is able to do so by using specialized

agents: agents to create solutions, agents to improve solutions globally and locally, and agents

to destroy bad solutions.

Our future work will explore methods to automate the choosing of UGV parameters, testing

the scalability of the approach by adding more UGV parameters, more UAVS and UGVs, and

testing other algorithms such as Bayesian or reinforcement learning to improve the quality of

the solutions as well as the solution time.

78

Algorithm 3 Nelder-Mead Method
Input: Current best solution of the population x1
Output: Local best solution

11 Fix a simplex shape of n+ 1 vertices for n dimensions
Set the initial simplex vertex points surrounding the current best solution
Choose the scalar parameters α (reflection), β (expansion), γ (contraction), δ (shrink) with
values such that α > 0, β > 1, 0 < γ < 1, 0 < δ < 1 v Evaluate the objective function value
f at each of the vertices

12 while Convergence is not achieved do
13 Sort the vertices based on f at each vertex point

Calculate the centroid x̄ of the shape enclosed within the n best vertices
x̄ = 1

n

∑n
i=1 xi

14 Perform Reflection operation to get xr, where xr = x̄+ α(x̄− xn+1)
if f(x1) ≤ f(xr) < f(xn) then

15 Replace xn+1 with xr

16 else
17 if f(xr) < f(x1) then
18 Perform Expansion operation to get xe, where xe = x̄+ β(xr − x̄)

if f(xe) < f(xr) then
19 Replace xn+1 with xe

20 else
21 Replace xn+1 with xr

22 else if f(xn) ≤ f(xr) < f(xn+1) then
23 Perform Outside Contract operation to get xoc, where xoc = x̄+ γ(xr − x̄)

if f(xoc) ≤ f(xr) then
24 Replace xn+1 with xoc

25 else
26 Perform Shrink operation

27 else if f(xr) ≥ f(xn+1) then
28 Perform Inside Contract operation to get xic, where xic = x̄− γ(xr − x̄)

if f(xic) < f(xn+1) then
29 Replace xn+1 with xic

30 else
31 Perform Shrink operation

32 else
33 Perform Shrink operation to get new xi, where xi = x1 + δ(xi − x1) for

i ∈ {2, . . . , n+ 1}

79

Algorithm 4 A-Teams Architecture
Input: Population size n, Initial population
Output: Global best solution

34 Constructor Agent: Generate random initial population with population size n
35 Constructor Agent: Perform UAV optimization for corresponding UGV parameter set until

feasibility is achieved
36 while Convergence is not achieved do
37 The following two Improver Agents work in parallel:
38 Improver Agent 1: Perform Nelder-Mead optimization for local improvement on the

current best solution
39 Improver Agent 2: Perform Genetic Algorithm optimization for global improvement on

the current population
40 Destroyer Agents 1 and 2: Remove infeasible or duplicate solutions on the fly
41 Replace initial or old population with newly generated population
42 Compute the fitness value for each population member and sort them in ascending order

80

Parameter Optimal parameter values
Scenario 1 Scenario 2 Scenario 3

A-Teams Two-level A-Teams Two-level A-Teams Two-level

UGV stop 1 location
(km,km)

(4.99,11.65) (4.99,11.65) (7.92,6.90) (11.36,4.86) (8.61,10.08) (8.95,9.48)

UGV stop 2 location
(km,km)

(16.96,1.45) (16.96,1.45) (12.36,5.68) (8.30,8.43) (9.29,9.38) (8.61,10.08)

UGV stop 1 wait
time (min)

20 20 50 21 20 22

UGV stop 2 wait
time (min)

20 21 20 21 20 20

Route starting and
ending point

Depot 1 Depot 1 Depot 3 Depot 3 Depot 3 Depot 2

Metrics Scenario 1 Scenario 2 Scenario 3
A-Teams Two-level A-Teams Two-level A-Teams Two-level

Objective function
(min)

163 166 12 9 18 13

Total time (min) 228 231 216 201 145 131

UGV results

Travel time (min-
utes)

228 231 216 201 145 131

Energy consumed
(MJ)

23.16 23.19 19.50 20.89 8.16 6.31

Locations visited 34 34 23 25 17 17

UAV results

Travel time (min-
utes)

65 65 204 192 127 118

Energy consumed
(kJ)

460.65 460.65 1082.92 1301.78 841.72 874.73

Recharging stops on
UGV

1 1 2 3 2 2

Recharging stops on
Depot

0 0 2 2 1 1

Locations visited 10 10 23 21 29 29

TABLE VII. Comparison between A-Teams and conventional two-level optimization on
metrics from the optimal solution for different scenarios. These results are shown for a specific

initialization of population by Constructor agent.

CHAPTER 5

COMPUTATIONALLY EFFICIENT MULTI-AGENT OPTIMIZATION

FRAMEWORK FOR ONLINE ROUTING OF UAV-UGV SYSTEM:

VARIANT OF A-TEAMS

Overview: Unmanned Aerial Vehicles (UAVs) have the ability to monitor vast areas but are

limited in their battery capacity. The collaboration with Unmanned Ground Vehicles (UGVs) can sig-

nificantly enhance the endurance and potential of UAVs by utilizing them as mobile recharging vehicles.

However, such collaboration increases the complexity of planning the routes of the vehicles. For practical

applications, it’s crucial to efficiently develop high-quality UGV-UAV routing solutions within a reason-

able time frame and quickly adapt those routes to changing conditions, if any. In this paper, we propose

an improved method for multi-agent optimization framework that provides computationally efficient

online UGV-UAV route solutions. The effectiveness of the optimization framework is validated with

several scenarios by comparing it across standard meta-heuristic baselines like the Genetic Algorithm

in simulation. The proposed framework produces near-optimal solutions that are computed 40% faster

than the baseline while maintaining the solution quality within 2%. Additionally, the framework’s com-

Parts of this chapter is taken from the followign published journal article:
Ramasamy, S., Mondal, M. S., Humann, J. D., Dotterweich, J. M., Reddinger, J. P. F., Childers, M. A.,
& Bhounsule, P. A. (2024, August). Computationally Efficient Multi-Agent Optimization Framework
for Online Routing of UAV-UGV System. In 2024 IEEE 20th International Conference on Automation
Science and Engineering (CASE) (pp. 204-211). IEEE.

81

82

putational efficiency is validated using hardware (http://tiny.cc/ngjkxz), demonstrating its ability

to do online planning when mission points are dynamically added or removed from the scenario.

Keywords: Write keywords here

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have rapidly evolved across diverse fields such as en-

tertainment, logistics, surveillance, and disaster relief management due to their small size,

relatively low cost, agility, and ease of usage [62]. However, the major limitation of using such

UAVs is their restricted operational time due to limited battery capacity, which does not al-

low them to perform critical tasks such as surveillance and disaster relief that either demand

large-scale usage or longer duration.

To perform tasks of high endurance over wider areas, UAVs could be paired up with Un-

manned Ground Vehicles (UGVs) to provide them with mobile recharging platforms [63]. In

this setup, due to their relatively fast speeds and high altitude, UAVs can provide a bird’s eye

view of the ground and return to UGVs for recharging before taking off again. The collaborative

routing of Unmanned Aerial and Unmanned Ground Vehicle Systems is an NP-Hard combi-

natorial optimization problem [26]. The traditional route planning algorithms often struggle

with online planning due to the challenges of combinatorial optimization. Our approach over-

comes these issues by developing an optimization framework that can provide online planning

for UAV-UGV collaborative routing.

83

(b)
Primary rendezvous
UGV task nodes

Primary rendezvous

UAV visited nodes
UGV visited nodes

Mid rendezvous

Start/End
Depot

Mid rendezvous

Start/End
Depot

UAV-UGV route execution

UGV-UAV
rendezvous point

(c)
Primary rendezvous

UAV visited nodes
UGV visited nodes

Mid rendezvous

Start/End
Depot

UGV-UAV
rendezvous point

(d)
Primary rendezvous

UAV visited nodes
UGV visited nodes

Mid rendezvous

Start/End
Depot

Execution of re-planned routes

UGV-UAV
rendezvous point Random point 1

Random point 2

Executing planned route:-
No scenario changes detected

(a)

Mission point
()

Mission point
()

Mission point
() Mission point

()

T = 0 T = n T = 2n T = 3n

Figure 17. Persistent surveillance illustration for a collaborative UGV-UAV routing problem.
For a single Persistent Surveillance mission, steps a) through d) occur sequentially, where ’n’
represents the frame rate. a) A candidate UGV-UAV task visit points. b), c), d) Execution of

the planned/re-planned route. Steps (c) and (d) are repeated for persistent node visits.
Re-planning is done online if dynamic changes are observed.

2 RELATED WORK

Several works in the literature have addressed the cooperative UGV-UAV routing problem.

Liu et. al. [64] solved a cooperative Ground Vehicle(GV)-UAV routing problem for surveillance

and reconnaissance missions. They proposed a method that first created a large UAV route

without considering battery limits. Then, they use a Split Heuristic to split this route into fea-

sible parts connected by GVs to complete the route. Gao et. al. [46] formulated a cooperative

UGV-UAV routing problem for emergency resource delivery during COVID-19, using a system

that accepts operation orders through an intelligent module and plans routes with a Mixed

Integer Linear Programming (MILP) method, followed by an iterative improvement algorithm.

Seyedi et. al. [65] addressed the problem of persistent surveillance by using energy-constrained

84

UAVs and the UGVs. The UGVs acted as mobile recharging stations to recharge UAVs. The

UGVs and UAVs were organized as a set of UGV-UAV teams. The environment was optimally

partitioned into several segments, where each team performed persistent surveillance of task

points in those respective partitions in a cyclic fashion. The task points of each partition were

visited optimally by the UGV-UAV team using the Dantzig-Fulkerson-Johnson (DFJ) linear

programming algorithm. These studies are limited in utilizing specific optimization algorithms

for UGV and UAV routing, missing out on the potential benefits of combining different al-

gorithms. The combination could enhance solution quality and computational efficiency by

leveraging the strengths of each algorithm together. [66].

The proposed research work deals with improving a multi-agent optimization framework

called Asynchronous Teams (A-Teams) [53]. A-Teams is a multi-algorithm framework that

uses a team of optimization agents such as Constructor, Improver, and Destroyer agents to

evolve a solution pool towards near-optimal results. In this context,“agents" refer to the role

of algorithms in the framework. Jedrzejowicz et al. [67] implemented this framework to solve

a Resource Investment Problem in which the Improver agents use different optimization algo-

rithms like Local search, Lagrangian relaxation, Path relinking algorithms, Crossover operators

and cooperate together to solve such a problem. Other multi-agent optimization frameworks

are used across the literature to solve combinatorial optimization problems. For instance, Mi-

lano and Roli et al. [68] introduced MultiAGent Metaheuristic Architecture (MAGMA), an

optimization framework that facilitated cooperation between Memetic algorithms and GRASP

(Greedy Randomized Adaptive Search Procedures). In MAGMA, agents were operated at vari-

85

ous levels: Solution Builder Agents applied constructive heuristic algorithms, Solution Enhancer

Agents carried out local searches, Strategy Agents devised strategies to avoid local optima, and

Coordination Agents oversaw the search process and agent coordination.

On the experimental front, limited work has been done to implement the different routing

and path planning algorithms on the UAV-UGV hardware system. Nigam et al. [69] solved

the persistent surveillance problem of multiple UAVs by developing a optimal control policy

structure to navigate on a gridded target space and validated it on their hardware testbed for

up to 4 UAVs. The policy dictates the UAVs’ action to move front, back, or side based on

the age period of each grid cell. Karapetyan et al. [70] demonstrated an approach to solve a

coverage path planning problem for a UGV-UAV system using a two-step algorithm. Their

two-step algorithm first ignored UAV energy limits to plan the overall coverage path. In the

first step, both UGV and UAV optimal coverage trajectories across an area are planned using

the Boustrophedon Cellular Decomposition (BCD) algorithm. Then, they divided the area into

clusters considering the UAV energy limits, using bipartite graph matching to link UAV and

UGV clusters efficiently. They tested their approach with an outdoor UAV-UGV system to

prove its effectiveness.

Some works in the literature have also considered re-planning UAV-UGV paths owing to

dynamic changes in the environment. Ni et al. [71] introduced a online path planning method

for mixed UAV-UGV systems using a Dragonfly algorithm inspired by nature to optimize move-

ments in 3D space, and tested in 3D simulations. Ma et al. [72] developed a fast re-planning

method for obtaining optimal UAV paths between the start and goal. The work presented an

86

improved A* algorithm to perform real-time path re-planning. Martinez et. al. [73] tackled

a real-time navigation problem for urban firefighting with UAVs and UGVs in GNSS-denied

areas. They used Monte-Carlo localization to accurately determine the robots’ positions in a

pre-mapped environment, a Lazy Theta* algorithm for global path planning, and 3D-LIDAR

mapping to enable the local path planner to quickly adjust plans based on new obstacles or

changes, ensuring efficient navigation. Both UGV and UAV uses the same set of algorithms,

but UGV planning is done in 2D whereas the UAV planning is done in 3D.

In this paper, we propose an enhanced multi-agent optimization framework (A-Teams)

with a new Predictor Agent for achieving computationally efficient, near-optimal solutions.

The Predictor Agent predicts the feasibility of UGV route parameters, reducing unnecessary

computations. We validated the framework on actual hardware, showcasing online planning

amid dynamic changes. Our novel contributions are: 1) A computationally efficient framework

for online heterogeneous UGV-UAV routing. 2) Implementation and testing of autonomous

online route re-planning on hardware under dynamic conditions. 3) A faster approach for the

Dynamic Vehicle Routing Problem (DVRP) applied to a heterogeneous UGV-UAV system.

This approach stands out because it shifts away from the conventional application of DVRP,

which primarily concentrates on logistic trucks and vehicles.

3 METHODS

3.1 Problem formulation

To address the collaborative UGV-UAV routing problem for remote scenarios that are less

accessible to humans, we define a set of task points, M = {m0,m1, . . . ,mn}, located within a

87

Feasible?
Yes

No

Constructor agent

Improver agents

Destroyer agent

Destroyer agent

Nelder-Mead
Algorithm

Convergence
achieved

Initial population

No improvement?
Yes

No

Sorted
population

Improved
population

Predictor
Agent

Genetic
Algorithm
(GA)Potentially

Infeasible
UGV-UAV
routes

Potentially Feasible UGV-UAV routes

Evolved UGV
routes from GA

UAV
optimization

UAV
optimization

Training
data

SVM DT

Logistic Regression
(Meta Classifier)

k-NN

Base
Classifiers

Feasibility predictions
(a) (b)

Test
data

SVM
prediction

DT
prediction

k-NN
prediction

Predictor agent - Ensemble model

Figure 18. Description of the proposed A-Teams optimization framework used for UGV-UAV
routing. a) This proposed A-Teams has Constructor, Improver, Destroyer and Predictor

agents. Agents strategically choose UGV routes, which are fed into UAV optimization to get
collaborative UGV-UAV route outputs. b) Training of Ensemble model in Predictor Agent

guided road network. The UGV and UAV start from the depot D. These points are considered

for persistent surveillance by both UAV and UGV. The UAV can either get recharged on UGV

or at D. The vehicle system is of a heterogeneous nature where the UAV travels with higher

velocity va but is limited in its energy capacity. Thus, it can be paired with a slower-moving

UGV with velocity vg, which has a larger energy capacity Eg to recharge the UAV and power

its components. The operational range of the UAV with full energy Ea is visualized as blue

circles in Figure 17 a), demonstrating that a single UAV cannot adequately cover all task points,

thus substantiating the need for strategic UGV routing to ensure full UAV task coverage and

efficient rendezvous. This interdependence between UAV and UGV routes necessitates a bi-

level optimization approach, where the UGV route is optimized at the outer level, and the UAV

route is optimized at the inner level. This is based on the idea of “UGV first, UAV second"

approach.

88

The optimization of the UGV route is formulated as a set of free parameters, denoting

the rendezvous locations that the UAV makes with the UGV. The complete parameter set

for a candidate UGV route, Xs, is made up of two subsets: primary rendezvous locations

Xp = {x1, x2, . . . , xj} aimed at recharging as well as directing the UAV to new task regions,

and mid-rendezvous locations Xm = {x1, x2, . . . , xk} for UAV recharging in middle of the

UGV’s travel. To identify primary rendezvous points, the Minimum Set Cover (MSC) Problem

is solved using Constrained Programming, as detailed by Mondal et al. [74]. This approach

tackles the NP-Hard nature of the MSC problem, allowing for multiple Xp sets depending

on the scenario’s scale and complexity. Equations Equation 3.1-Equation 3.3 represents the

condition required to obtain a single Xp set such that each location in Xp should have radial

coverage R whose union encompasses all the mission pointsM. R is obtained from half the time

of flight T a
f and velocity va of the UAV. Mid-rendezvous points (Xm), used for UAV recharging,

are randomly selected between each location in Xp. The total number of route parameters

is represented as S = |Xs| = j + k. For each candidate UGV route, the inner-level UAV

optimization is solved for near-optimal UAV routes. The UAV optimization is formulated as

an Energy-constrained Vehicle Routing Problem (E-VRP) subjected to satisfying UGV route

and UAV fuel constraints. The UAV route is given as feedback to the outer level for UGV

optimization. The feedback indicates whether the UAV provides feasible or infeasible results

for a UGV route. The feasibility criteria consider that the UAV should visit all its task points

at least once.

89

min j (3.1)

s.t.,

j∪
i=1

{xi | |xi −mn| ≤ R, xi ∈ Xp}, ∀mn ∈M\xi (3.2)

where

j = |Xp|, k = |Xm| = j + 1, R = 0.5 · T a
f · va (3.3)

The overall objective of this problem is minimizing the total time T to perform persistent

surveillance of UGV-UAV task points subjected to dynamic changes until the UGV runs out

of fuel. For instance, Figure 17 a) through d) shows the UGV-UAV persistent surveillance

nature for a toy scenario. For Figure a), the initial route planning would happen by solving

the optimization problem, and the planned route gets executed as shown in Figure b). When

the UGV and UAV are at an Xp location, the scenario is assessed for any dynamically changed

or newly appeared task points, represented as R = {r0, r1, . . . , rn}. If there’s no dynamic

change, the route gets executed per the initial plan as illustrated in Figure c). If such changes

are identified, the optimizer performs re-planning, and the UGV and UAV then execute the

updated route sequence as illustrated in Figure d). Irrespective of those changes, Figures c) and

d) happen in a loop until the UGV runs out of fuel. Due to the specificity of the problem nature

90

and the scenarios considered, the persistent surveillance is ensured by adding a penalty Pt of at

least one task point in M to be visited more than once to the objective function. If all points

are visited only once or some are not visited, a large penalty Pt = L is added to the objective.

This discourages infeasible or one-time surveillance solutions and encourages solutions with

persistent surveillance of the task points. The objective function for the UGV-UAV routing is

denoted mathematically as follows. Here |v(mn)| denotes the number of visits of a point mn

where, mn ∈M. Once the near-optimal UGV-UAV routes are obtained, the setM gets divided

into Mg for UGV visits, and Ma for UAV visits, such that Mg ∪Ma = M, thus allocating

distinct tasks between UGV and UAV.

min T + Pt (3.4)

where,

P =


0, if |v(mn)| > 1 for atleast one mn,

L, otherwise, where L is a large number
(3.5)

The different optimization levels for UGV and UAV routes are described in the following

subsections.

91

3.2 Proposed optimization framework

3.2.1 Solving outer-level UGV routing using Asynchronous Teams (A-Teams)

framework

Figure 18 a) represents the proposed framework to perform UGV-UAV optimization. A-

Teams is a multi-agent framework that uses a team of algorithms to optimize a given problem.

The agents in the framework possess distinct functionalities and solve a problem through coop-

eration and achieve better solutions than their individual counterparts. There are four agents:

Constructor Agent is used to develop an initial pool of candidate UGV routes through ran-

domization. Improver Agent is used to improve the pool of UGV routes obtained from

constructor agent using different optimization methods. Destroyer Agent is used to discard

non-optimal or infeasible or redundant UGV routes once it gets feedback from UAV optimiza-

tion. Predictor Agent predicts the infeasible UGV routes before being evaluated by UAV

optimization using Machine Learning algorithms. Populations are shared repositories for

storing computed solutions and assessed by different agents. More details about the existing

A-Teams framework can be found in [75].

To solve the collaborative UGV-UAV routing problem, the Constructor Agent initializes

candidate UGV routes using Latin Hypercube Sampling (LHS) with a sample size of N= 40.

These routes are sent to the inner-level block for UAV optimization using OR-Tools. Feed-

back on route feasibility is used by Improver Agents, employing Nelder-Mead and Genetic

Algorithms, to refine the UGV routes until near-optimal solutions are achieved. The novelty

92

involves the inclusion of an additional Predictor agent in the framework. The primary role

of the Predictor agent is to forecast the feasibility of combined UGV-UAV routes, reducing

computational effort and improving efficiency. In the proposed system, the Predictor agent

uses an Ensemble model of several base classifiers such as Support Vector Machines (SVM),

Decision Trees (DT), and k-nearest Neighbors (k-NN) stacked together and uses Logistic Re-

gression as the meta-classifier. Figure 18 b) shows the training process, where base classifiers

are trained first, followed by the meta-classifier. The Constructor Agent randomly initializes

UGV routes, which are then optimized for UAVs, creating a dataset of combined route solutions.

This dataset, with a training batch size of N includes UGV route parameters as input features

and binary feasibility labels 1/0 as output. Feasibility is determined by whether all task points

are visited at least once. The Ensemble model, tested with UGV routes generated by a Genetic

Algorithm, filters out infeasible routes before UAV optimization, thereby enhancing process

efficiency.

3.2.2 Solving E-VRP for inner-level UAV routing

The inner-level UAV route optimization is defined as an Energy-Constrained Vehicle Routing

Problem (E-VRP) to obtain a near-optimal path for the UAV subjected to satisfying its fuel

and time window constraints. The MILP formulation is as follows. Consider a directed graph

G = (V,E) where V is the set of UAV task points V = {0, 1, 2,,m,D} and E is the set of edges

that gives the arc costs between two consecutive nodes i and j and E = {(i, j)|i, j ∈ V, i ̸= j}.

Here D denotes the potential UGV points that UAV could utilize to get recharged. Let cij be

the non-negative arc cost between a particular i and j. Let tij be the time travel cost between

93

a particular i and j. Let xij be the binary variable where the value of xij will be 1 if a vehicle

travels from i to j, and 0 otherwise. We formulate the VRP problem with fuel constraints, time

windows, and dropped visits. The mathematical formulation for EVRP is presented here, but

more details may be found in [51].

Objective:

min
∑
i∈V

∑
j∈V

tijxij (3.6)

Major constraints:

fj ≤ fi − (P atijxij) + L1(1− xij), ∀i ∈ V, j ∈ V \D (3.7)

fj = Q, ∀j ∈ D (3.8)

0 ≤ fj ≤ Q, ∀j ∈ V (3.9)

tj ≥ ti + ((tijxij))− L2(1− xij), ∀i ∈ V, j ∈ V (3.10)

tlj ≤ tj ≤ tuj , ∀j ∈ V (3.11)

xij = 1→
∑

i∈V \D

xji = 1, ∀j ∈ D, ∀i ∈ V \D (3.12)

The objective is Eq. Equation 3.10 is to minimize the time to complete UAV routing. The

constraint in Eq. Equation 3.11 is the Miller-Tucker-Zemlin (MTZ) formulation [18] for sub-tour

elimination which enables that none of the UAVs are fully drained out while eliminating loops.

P a in this equation represents the UAV power consumption curve, which will be provided

in Section 4. Constraint Eq. Equation 3.12 states that if the vertex is a recharging UGV

94

stop, UGV must refuel the UAV to its full capacity Q. Constraint Eq. Equation 3.13 is

the condition that the UAV’s fuel at any vertex in V should be between 0 and maximum fuel

capacity. Constraint Eq. Equation 3.14 denotes that the cumulative arrival time at jth node

is equal to the sum of cumulative time at the node i, ti and the travel time between nodes

i and j, tijxij . Constraint Eq. Equation 3.15 is the time window constraint that tells the

vehicle to visit a certain vertex in the specified time window for that node. The constraint

in Eq. Equation 3.16 ensures that if any UAV comes to the refuel vertex to recharge, an

arc must exist between that refuel node and a task node to maintain the flow conservation.

The above MILP formulation takes significant time to solve with the increased number of task

points, which becomes unrealistic for practical hardware implementation. Ramasamy et al. [17]

conducted research that tested the MILP method on various toy scenarios, finding that solving

a relatively simpler UGV-UAV routing problem involving 25 task points demanded considerable

computational effort, with computation times being up to 30 times slower than the Constrained

Programming (CP) approach while the optimality gap is up to 8% on average. Hence, CP with

local search heuristics is used to solve this E-VRP problem quickly. More details about this

can be found in [17].

3.3 Hardware setup

Figure 19 displays the lab-based architecture used to perform the hardware experiment.

We utilized a DJI Tello drone (80g) and a HiWonder MasterPi robot, controlled via a 2.4GHz

WiFi connection and socket communication, respectively. The central manager, integral to

the hardware framework, uses A-Teams to determine optimized waypoints for UGV-UAV op-

95

Scenario input

Central Manager

UAV control
algorithm

UGV control
algorithm

Multi-
Threading

Heterogeneous
vehicle path

planning framework
(A-Teams)

High-level
control

UAV motion

Motion Capture
System

Feedback Feedback

UGV motion

Coordinated
manuever

Waypoint
visits

Figure 19. Hardware experimental framework

96

erations. It generates route sequences in the form of YAML files for each vehicle, transmits

pre-planned routes in static scenarios, and adapts with re-planning for dynamic changes. This

system allows for parallel processing and online communication with the vehicles. Addition-

ally, a motion capture system monitors the vehicles’ trajectories, providing feedback to ensure

adherence to the designated paths and coordinating UAV rendezvous with the UGV.

4 RESULTS

(a) UGV/UAV Depot
Task Points
Stop 1 Location range
Stop 2 Location range

Primary rendezvous
Mid rendezvous

Mid rendezvous
Location range

(b) UGV/UAV Depot
Task Points
Stop 1 Location range
Stop 2 Location range

Primary rendezvous
Mid rendezvous

Mid rendezvous
Location range

(c) UGV/UAV Depot
Task Points
Stop 1 Location range
Stop 2 Location range

Primary rendezvous
Mid rendezvous

Mid rendezvous
Location range

Figure 20. Scenario descriptions containing the UGV free route parameters for the
optimization process. Primary rendezvous location parameter set (orange and blue ellipse) are

solved from Minimum Set Cover problem a) Scenario 1 b) Scenario 2 c) Scenario 3

4.1 Evaluation of the proposed framework

The proposed framework is evaluated on different scenarios to test its generalizability, fol-

lowed by hardware implementation on one scenario. We used Python 3 for all the compu-

tations: the Ensemble of different classification algorithms (kNN, SVM, Decision Trees) used

97

in the Predictor agent is from the Scikit-learn package, a custom-written Genetic Algorithm,

and Nelder-Mead from the Scipy package for performing UGV free parameter optimization;

and OR-Tools for UAV optimization. All computations are done on a 3.7 GHz Intel Core i9

processor with 32 GB RAM on a 64-bit operating system.

Figure 20 depicts three distinct scenarios for simulation, designed to facilitate comprehen-

sive computational analysis through varied spatial settings. To ensure robustness, the initial

population for simulation is randomized multiple times for each scenario. The scenarios con-

sider a single UAV and UGV, with the UAV having a battery capacity of 4000 mAh (total

energy of Ea = 287.7kJ) and the UGV having an energy capacity of Eg = 25.01MJ . The UAV

and UGV are set to travel at velocities of va = 10m/s and vg = 4.5m/s, respectively. The UAV

follows the power consumption curve of Pa = 0.0461(va)
3 − 0.5834(va)

2 − 1.8761va + 229.6 and

UGV follows Pg = 464.8vg + 356.3 (referred from [76]). For the considered scenarios, a candi-

date UGV route Xs has two primary rendezvous locations (j = 2) and three mid UGV-UAV

rendezvous locations (k = 3), adding up to a total of 5 parameters (S=5) for the UGV route.

The proposed method is compared against existing methods including the standard A-

Teams framework without a Predictor agent and a parallelized version of the traditional GA,

with GA’s stopping condition set at either population convergence or a maximum of G= 20

generations. For A-Teams as well as GA population initialization, the sample size for perform-

ing UGV free parameter optimization is considered to be N= 40, according to [77]. Table VIII

shows the optimization metrics and Table IX shows the Predictor agent’s prediction quality.

The simulation results in Table VIII indicate that A-Teams equipped with the Predictor agent

98

TABLE VIII

Optimized solution and computational comparison between proposed framework and standard
meta-heuristics

Scenario type
A-Teams with

Predictor agent for UGV routing &

CP for UAV routing

A-Teams without

Predictor agent for UGV routing &

CP for UAV routing

Genetic Algorithm for UGV routing &

CP for UAV routing

Objective

value (min.)

Computing

Time (min.)

Objective

value (min.)

Computing

Time (min.)

Objective value

(min.)

Computing

Time (min.)

Scenario 1 212.3 ± 3.8 9 ± 0.6 210.8 ± 3.5 13 ± 0.5 212.3 ± 3.8 47 ± 4.4

Scenario 2 233.3 ± 6.9 8 ± 1.9 233.8 ± 7.2 12 ± 1 228 ± 8.1 39 ± 12

Scenario 3 191 ± 7.8 4 ± 1 190.6 ± 8.1 7 ± 1.5 190 ± 8.4 45 ± 7.5

achieve objective results that are comparable to other methods across scenarios, while reducing

computational time up to 30% compared to conventional A-Teams and by up to 70% compared

to the GA-only meta-heuristics. This demonstrates the framework’s generalizability and com-

putational efficiency without sacrificing solution quality compared to standard meta-heuristics.

Table IX evaluates the prediction quality between two Machine Learning models (proposed

Ensemble vs simpler k-NN model) used in the Predictor agent by comparing them across four

metrics. Eq. Equation 4.1 outlines those metrics. In the equations, True Feasible (TF) rep-

resents the number of accurately predicted feasible UGV routes, while True Infeasible (TI)

correctly identifies the number of infeasible ones. Conversely, False Infeasible (FI) occurs

when feasible routes are mistakenly labeled infeasible, and False Feasible (FF) happens when

infeasible routes are wrongly labeled feasible. The table reveals that the Ensemble model out-

performs k-NN across all the metrics considered, demonstrating the Predictor agent’s capability

to differentiate feasible from infeasible UGV-UAV routes accurately.

99

TABLE IX

Predictor agent: Assessment of classification performance with proposed Ensemble vs simpler
k-NN model

Scenario # Accuracy (%) Precision (%) Recall (%) F-score (%)

Ensemble k-NN Ensemble k-NN Ensemble k-NN Ensemble k-NN

Scenario 1 99.3 ± 0.6 99.3 ± 0.6 100 ± 0 100 ± 0 92 ± 6.9 92 ± 6.9 95 ± 4 95 ± 4

Scenario 2 91 ± 11.4 81 ± 1.53 85 ± 26.5 68.3 ± 11 94 ± 7.2 90 ± 7.4 86.6 ± 15 73.3 ± 2.1

Scenario 3 94.3 ± 2.6 90 ± 5.2 83 ± 11.8 80 ± 14.3 89.8 ± 7.2 73.5 ± 12.5 85.5 ± 11.5 76 ± 8.1

Figure 21 presents a 3D plot of three UGV route parameters, illustrating the classification

comparison between the Ensemble model and the k-NN model for Scenario 2. All coordinate

values are in kilometers. In this plot, green solid dots represent feasible UGV-UAV route

solutions, while red dots indicate infeasible ones. Comparing the two plots reveals that the

Ensemble model achieves better classification performance than the k-NN model, as the k-NN

model struggles to clearly distinguish the boundary between feasible and infeasible solutions.

Accuracy =
TF + TI

TF + TI + FF + FI
(%)

Precision =
TF

TF + FF
(%)

Recall = TF

TF + FI
(%)

F -score = 2 · Precision · Recall
Precision + Recall

(%)

(4.1)

100

Figure 21. Comparison of the Predictions made by Ensemble model vs kNN model for
Scenario 2. Left - Ensemble Model; Right - kNN Model

Distance (in cm)

D
is

ta
nc

e
(in

 c
m

)

UGV/UAV Depot
Task points

Figure 22. 2D plot of experimental scenario

101

4.2 Hardware re-planning with dynamic changes

Figure 22 shows the scaled scenario considered for performing the hardware experiments

with real-time dynamic changes. The chosen scenario for the hardware is scaled down to a

250 × 250 cm area in the lab. The experiments took place in the well-equipped Robotics and

Motion Laboratory at the University of Illinois Chicago, which includes a high-fidelity motion

capture system. To perform the route optimization, the scenario is scaled up to match the

required UAV-UGV power consumption and recharging specifications mentioned in subsection

4.1, as those equations pertain to the large-scale scenarios seen in Figure 20. Once the optimized

route plan is obtained, the UAV and UGV task point visit sequence is scaled down accordingly.

The vehicle speed for UAV hardware is considered to be 0.15 m/s, and for UGV it is 0.4 m/s.

When the UAV lands on UGV, it waits for ‘X’ seconds to model the recharging time.

Multiple trials of the experiment were conducted. The central manager uses the proposed

framework to perform offline route planning in a scenario with no dynamic changes. Once

the pre-planned routes are obtained for the system, those routes are fed as commands to the

UAV and UGV respectively. For the scenario with dynamic changes, a few random dynamic

targets would appear during the middle of the route execution, and the central manager would

re-plan the UGV and UAV routes to accommodate those changes. Figure 23 shows the dy-

namic UAV targets appearing randomly whenever a rendezvous between UAV and UGV is

about to happen. Once the re-planning is done, the updated route commands are fed to the

vehicle system. The experiment takes only about 1.5 minutes to provide optimized routes

for a planning horizon of 8 minutes. More details can be seen from the experimental video

102

Starting
depot

Road Network

Scale: 250 cm

+ Task points

UGV

UAV

Random task point 2

Random task point 1

Figure 23. Experiment instance with dynamic changes

here: http://tiny.cc/ngjkxz. Since the proposed framework delivers near-optimal solutions

quickly, the process of re-planning happens online.

In the lab, we scaled down the UAV’s recharge and flight times by a factor of 60 (e.g.,

recharging time was scaled from 15 minutes to 15 seconds). Also, a buffer time is added to

account for the drone’s takeoff and landing time in the simulation. After multiple trials, the

buffer time to be added in simulation results for takeoff and landing was obtained at 10 and 15

seconds on average. Thus, the maximum flight time for a single charge is replicated to be 50

seconds, denoted as the Maximum endurance limit for a single flight. The time of flight is scaled

103
D

is
ta

nc
e

(in
 c

m
)

Time range=1 - 85 sec

(a)
UGV/UAV Depot

Time range=115 - 200 sec

(b)

Time range= 230 - 360 sec

(c)

Distance (in cm)

D
is

ta
nc

e
(in

 c
m

)

Time range=1 - 100 sec

(a)

Distance (in cm)

Time range=160 - 290 sec

(b)

Random point 2

Random point 1

Distance (in cm)

Time range= 390 - 545 sec

(c) Random
point 3

Random
point 4

UGV/UAV Depot UGV/UAV Depot

UGV/UAV Depot
UGV/UAV DepotUGV/UAV Depot

Figure 24. UAV-UGV simulated route plan obtained from the multi-agent optimization
framework (A-Teams). Top Row shows the initial planned route without any dynamic
changes. Bottom Row shows re-planned routes considering the dynamic changes in the
scenario. Animation of simulated routes can be viewed here: http://tiny.cc/mgjkxz

104

down from 25 minutes to 25 seconds and an additional time of 25 seconds to accommodate the

buffer time for takeoff and landing.

Figure 24 illustrates the simulated route patterns for the case study scenario. The top row

shows the static scenario without dynamic changes, where the UAV and UGV follow pre-planned

routes. The bottom row depicts adaptive routing under dynamic conditions, with updated

route commands adjusting the patterns when changes are detected. For instance, seeing the

Figure 24 c) of the top and bottom row, the UAV’s route includes additional task points, and

the UGV’s route is updated accordingly to meet the objective of the problem. These results are

validated with hardware experiments, and Figure 25 compares UAV flight and rest durations

between simulation and actual hardware. Discrepancies in the figure are noted due to hardware

uncertainties. The positive slope in the figure represents UAV takeoff and flight phases, while

the negative slope indicates the recharging phase. The figure demonstrates that actual landing

and takeoff times may differ from simulations, contributing to overall discrepancies.

5 DISCUSSION

This research work develops a computationally efficient optimization framework that has the

ability to plan the cooperative UGV-UAV routing online. The key to computational efficiency

comes from the algorithms used in the proposed A-Teams framework, where the Predictor agent

used an Ensemble Machine Learning model to discard infeasible route solutions. Compared to

conventional A-Teams, the proposed framework improves computational efficiency by up to

36% while maintaining solution quality within 1%. Against the Genetic Algorithm, it achieves

up to 78% efficiency with solution quality within 2%.

105

Max. Endurance limit

1st landing

2nd landing

3rd landing
4th landing

5th landing

6th landing

7th landing

8th landing

U
AV

 E
nd

ur
an

ce
 (s

)

Experiment progress (s)

Figure 25. Hardware vs simulation Time-of-Flight comparison of lab setup experiment

The A-Teams multi-agent framework enhances solutions by integrating different algorithms,

each with unique strengths. For instance, pairing a global search like Genetic Algorithm with a

local search such as Nelder-Mead, streamlines the search and quickly yields near-optimal solu-

tions, unlike the GA-only method. Also, CP for UAV routing leads to inexpensive optimization

using heuristics, which helps achieve an efficient computation. For the Predictor agent, an En-

semble model that integrates several base classifiers such as k-NN, SVM, and Decision trees is

chosen for making a robust prediction about discarding the UGV-UAV route solutions that are

potentially infeasible. This is because one base classifier might give a contradicting prediction

compared to the other. Hence, the Ensemble meta-classifier tries to make a balanced prediction

with a more accurate output. In Table IX both the Ensemble and k-NN classifiers give the

same prediction results for Scenario 1. This is partly due to the distinct spatial distribution

106

of task points in Scenario 1, with drastically different branch lengths connecting the midpoint.

This distribution made it easier for the classifiers to discern between feasible and infeasible

solutions, resulting in identical predictions.

The proposed work has some limitations. In the context of the optimization framework,

the Predictor agent’s quality depends upon the base classifiers used, which depend on several

hyperparameters. Currently, the Predictor agent uses default hyperparameter settings from

Scikit-Learn, such as the ’number of neighbors’ parameter N in k-NN set to 5, SVM ker-

nel set to Radial Basis Function (RBF), and ’gini’ index for tree splitting in Decision Trees.

Poor Predictor Agent may discard good solutions and result in an optimal solution worse than

conventional A-Teams. Future work would address this by performing hyperparameter opti-

mization to have the classifiers tailored to this UGV-UAV prediction and thus have a better

predictive model. The closeness of hardware results to simulation depends upon the type of

hardware used. Since we performed the experiments with a scaled hardware setup in the lab,

there are considerable discrepancies between the simulation and hardware results regarding

delays in takeoff/landing times of the UAV from/on the UGV. Future efforts will focus on im-

proved hardware, developing a simulation pipeline between routing and hardware deployment,

and outdoor testing where there is a large variability compared to indoor testing.

6 CONCLUSION

In this study, a computationally efficient A-Teams framework integrated with a Predictor

Agent has been developed. The developed framework is demonstrated to generate near-optimal

107

solutions faster than the existing methods. Furthermore, it was validated in actual setting by

conducting a hardware experiment on a case study scenario subjected to dynamic changes.

Our future work will focus on improving the Predictor agent’s ensemble model through

hyperparameter optimization. Additionally, we will explore alternative objective functions for

persistent surveillance, such as minimizing the maximum age period, and extend these improve-

ments to outdoor experiments.

CHAPTER 6

REINFORCEMENT LEARNING ASSISTED A-TEAMS FOR ADAPTIVE

ALGORITHM SELECTION IN UAV-UGV OPTIMIZATION PROCESS

Overview: Integrating Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs)

enables effective long-duration surveillance over large areas, especially where real-time adaptability is

essential. However, the increase in their potential also increases the complexity of routing these hetero-

geneous vehicles. Therefore, developing an efficient UGV-UAV routing framework is essential to ensure

real-time adaptability in this autonomous system, enabling it to respond effectively to dynamic changes.

An end-to-end autonomous approach capable of making its own decisions during the optimization process

can significantly enhance computational efficiency. In this paper, we introduce a novel learning-based hy-

perheuristic approach using Reinforcement Learning (RL) within a multi-agent optimization framework

(A-Teams) to deliver computationally efficient, real-time UGV-UAV routing solutions. The RL-assisted

optimization framework is validated through various scenarios and tested for generalizability across dif-

ferent numbers of UAVs by comparing its performance with three alternative methods: (1) an A-Teams

variant, (2) conventional A-Teams, and (3) Genetic Algorithm. The proposed framework is tested on

single UAV-UGV and multi UAV-UGV systems and produces near-optimal solutions that are computed

around 30-70% faster than the other methods while maintaining the solution quality and providing better

solutions in some cases than its counterparts.

Parts of this chapter is taken from published journal article

108

109

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have rapidly gained popularity across fields such as en-

tertainment, logistics, surveillance, and disaster relief, thanks to their compact size, relatively

low cost, agility, and ease of use [62]. Despite these advantages, a primary limitation of UAVs is

their restricted operational time due to limited battery capacity, which constrains their ability

to perform critical tasks, particularly those requiring extensive coverage or prolonged duration,

like surveillance and disaster relief.

To extend operational endurance over larger areas, UAVs can be paired with Unmanned

Ground Vehicles (UGVs), allowing UGVs to serve as mobile recharging stations [63]. In this

cooperative setup, UAVs can leverage their speed and altitude to provide a comprehensive aerial

view, returning to UGVs for recharging as needed. The collaborative routing of UAV-UGV

systems, however, presents an NP-Hard combinatorial optimization challenge [26]. Traditional

route planning algorithms often struggle with real-time planning due to the inherent complexity

of combinatorial optimization. To address this, we propose an RL-policy-based hyperheuristic

method integrated into an existing optimization framework, where the RL policy functions as

a high-level decision maker, enabling end-to-end autonomous planning that is faster and more

efficient for UAV-UGV collaborative routing.

2 RELATED WORK

Several works in the literature have addressed the cooperative UGV-UAV routing problem.

Liu et al. [64] addressed a cooperative Ground Vehicle (GV)-UAV routing problem for surveil-

lance and reconnaissance missions. Their approach initially generates an extensive UAV route

110

(b)
Primary rendezvous
UGV task nodes

Primary rendezvous

UAV visited nodes
UGV visited nodes

Mid rendezvous

Start/End
Depot

Mid rendezvous

Start/End
Depot

UAV-UGV route execution

UGV-UAV
rendezvous point

(c)
Primary rendezvous

UAV visited nodes
UGV visited nodes

Mid rendezvous

Start/End
Depot

UGV-UAV
rendezvous point

(d)
Primary rendezvous

UAV visited nodes
UGV visited nodes

Mid rendezvous

Start/End
Depot

Execution of re-planned routes

UGV-UAV
rendezvous point Random point 1

Random point 2

Executing planned route:-
No scenario changes detected

(a)

Mission point
()

Mission point
()

Mission point
() Mission point

()

T = 0 T = n T = 2n T = 3n

Figure 26. Persistent surveillance illustration for a collaborative UGV-UAV routing problem.
For a single Persistent Surveillance mission, steps a) through d) occur sequentially, where ’n’
represents the frame rate. a) A candidate UGV-UAV task visit points. b), c), d) Execution of

the planned/re-planned route. Steps (c) and (d) are repeated for persistent node visits.
Re-planning is done online if dynamic changes are observed.

without considering battery constraints. A Split Heuristic is then applied to divide this route

into feasible segments, which are linked by GVs with necessary constraints to complete the

mission. Gao et al. [46] formulated a cooperative UGV-UAV routing problem for emergency

resource delivery during COVID-19. Their system processes operation orders via an intelligent

module, plans routes using a Mixed Integer Linear Programming (MILP) approach, and refines

these routes through an iterative improvement algorithm. Seyedi et. al. [65] addressed the

problem of persistent surveillance using energy-constrained UAVs supported by UGVs, which

served as mobile recharging stations. The UGVs and UAVs were organized into separate UGV-

UAV teams, with the environment optimally divided into segments for each team to conduct

cyclic, persistent surveillance of task points. Within each segment, the UGV-UAV team visited

task points optimally, utilizing the Dantzig-Fulkerson-Johnson (DFJ) linear programming al-

gorithm. These studies are limited in using specific optimization algorithms for UGV and UAV

routing, missing out on the potential benefits of combining different algorithms. The combina-

111

tion could enhance solution quality and computational efficiency by leveraging the strengths of

each algorithm together [66].

Some works in the literature have also considered re-planning UAV-UGV paths owing to

dynamic changes in the environment. Ni et al. [71] introduced a online path planning method

for mixed UAV-UGV systems using a Dragonfly algorithm inspired by nature to optimize move-

ments in 3D space, and tested in 3D simulations. Ma et al. [72] developed a fast re-planning

method for obtaining optimal UAV paths between the start and goal. The work presented an

improved A* algorithm to perform real-time path re-planning. Martinez et. al. [73] tackled

a real-time navigation problem for urban firefighting with UAVs and UGVs in GNSS-denied

areas. They used Monte-Carlo localization to accurately determine the robots’ positions in a

pre-mapped environment, a Lazy Theta* algorithm for global path planning, and 3D-LIDAR

mapping to enable the local path planner to quickly adjust plans based on new obstacles or

changes, ensuring efficient navigation. Both UGV and UAV uses the same set of algorithms,

but UGV planning is done in 2D whereas the UAV planning is done in 3D.

Apart from single-method optimization approaches, there are multi-agent and hybrid op-

timization algorithm frameworks studied for these type of Vehicle Routing Problems (VRP)

A-Teams is a multi-algorithm framework that uses a team of optimization agents such as Con-

structor, Improver, and Destroyer agents to evolve a solution pool towards near-optimal re-

sults. In this context, “agents" refer to the role of algorithms in the framework. Jedrzejowicz

et al. [67] implemented this framework to solve a Resource Investment Problem in which the

Improver agents use different optimization algorithms like Local search, Lagrangian relaxation,

112

Path relinking algorithms, Crossover operators and cooperate together to solve such a problem.

Other multi-agent optimization frameworks are used across the literature to solve combinato-

rial optimization problems. For instance, Milano and Roli et al. [68] introduced MultiAGent

Metaheuristic Architecture (MAGMA), an optimization framework that facilitated cooperation

between Memetic algorithms and GRASP (Greedy Randomized Adaptive Search Procedures).

In MAGMA, agents were operated at various levels: Solution Builder Agents applied con-

structive heuristic algorithms, Solution Enhancer Agents carried out local searches, Strategy

Agents devised strategies to avoid local optima, and Coordination Agents oversaw the search

process and agent coordination. In previous work, Ramasamy et al. [78] introduced a variant

of the A-Teams framework by incorporating a new "Predictor Agent" that uses a supervised

machine learning model to predict the feasibility of a solution before it gets evaluated for its

fitness. To the best of our knowledge, incorporating a learning-based model as an agent within

a multi-agent optimization framework was a novel approach that had not been explored.

There are some learning based approaches utilized in other multi-agent optimization frame-

works. In Lotfi and Acan [79], Learning-Based Multi-Agent System(LBMAS) for solving com-

binatorial optimization problems is presented. The LBMAS architecture includes two different

types of Agents: Metaheuristic Agents and System Agents. The Metaheuristic Agents are re-

sponsible for applying their own search strategies and providing discovered solutions. There

are seven metaheuristics implemented by the Metaheuristic Agents. There are four system

agents, each responsible for specific tasks within the multi-agent system. For example, in Sys-

tem Agents, the Manager Agent is responsible for selecting the metaheuristic to be used in the

113

next iteration, based on the Russian roulette selection principle, and evaluating improvement

levels of metaheuristics in the objective function.

In multi-agent systems with multiple algorithms, not all algorithms perform well across all

iterations due to varying problem-specific characteristics. This variability led researchers to

develop a higher-level approach for managing algorithm selection throughout the optimization

process, resulting in the concept of "hyperheuristics," first introduced by Cowling et al. [80].

Some research has been done in exploring the capabilities of hyperheuristics for solving various

combinatorial optimization problems. Cowling et al. [81] investigates a genetic algorithm-based

hyperheuristic (hyper-GA) for scheduling geographically distributed training staff and courses.

The aim of the hyper-GA is to evolve a good-quality heuristic for each given instance of the

problem and use this to find a solution by applying a suitable ordering from a set of low-level

heuristics. The optimization problem addressed in this paper is the trainer scheduling problem

involving the allocation of staff to timeslots and locations. Grobler et al. [82] explores the

concept of heuristic space diversity within a meta-heuristic algorithm in pursuit of improved

performance benefits. The study evaluates various strategies for management of heuristic space

diversity, highlighting the impact it has on hyper-heuristic performance.

In recent years, learning-based methodologies for hyper-heuristics is being implemented for

solving VRP problems as such feature can help in the search process, giving the optimization

agents more autonomy in taking decisions. One of the earliest works in implementing learning-

based hyper-heuristics is from Sabar et al. [83] introduces a new hyper-heuristic framework

called Dynamic Multiarmed Bandit-Gene Expression Programming Hyper-Heuristic, which is

114

a high-level strategy that uses a dynamic multiarmed bandit for Low-level heuristic selection.

The LLH comprises of simple heuristics like swapping the nodes in different configurations such

as 2-opt, 3-opt etc. This framework is applied to the Dynamic VRP (DVRP) and achieved

competitive results.

With the recent advancements in deep learning approaches, researchers have implemented

the Reinforcement Learning (RL) agents for performing heuristic selection in an optimization

process and obtained promising results. Early works deal with performing algorithm selection

using RL methods for other types of computer science problems. Lagoudakis et al. [84] explores

the use of Deep Q-Learning to dynamically select sorting algorithms, such as Bubble Sort,

Merge Sort, Shell Sort, and Quick Sort, during the sorting process. By applying reinforcement

learning to adaptively choose a better sorting algorithm at each step, the approach improves

computational efficiency compared to using a single fixed algorithm. This adaptive decision-

making leverages the strengths of each sorting method based on the size of a list that’s sorted,

resulting in enhanced sorting performance. In Armstrong et al. [85], RL is applied to computa-

tional chemistry simulations of gaseous reactions. A policy gradient agent with epsilon-greedy

selection adaptively chooses between two algorithms, O(n2) and O(n), based on the simulations

current state. This dynamic selection enhances real-time computational efficiency.

There are also some research work that’s been done in implementing RL as hyper-heuristic

agent for heuristic selection. Garrido et al. [86] utilizes a self-adaptive hyper-heuristic to

solve static and dynamic instances of the capacitated vehicle routing problem (CVRP). The

hyper-heuristic manages a generic sequence of constructive and perturbative low-level heuris-

115

tics (LLHs), such as the 2, 3-opt operator, gradually applied to construct or improve partial

routes. This approach has been tested using standard benchmarks and compared with previous

hyper-heuristics and well-known methods proposed in the literature. It has shown the ability

to guide the search for appropriate operators and adapt to dynamic scenarios more naturally

than other methods.

Yao et al. [87] proposes a multi-objective hyper-heuristic (MOHH) framework for walking

route planning in a smart city. The search framework features a set of LLHs to generate new

routes, along with a reinforcement learning mechanism to select good low-level heuristics and

accelerate the search speed. The low-level heuristic deals with different modes of hop transitions

such as 1, 2, 3-hop path sets. This work addresses the multi-objective route planning problem,

where the goal is to provide a safe walking route in addition to distance and time considerations.

Mosedegh et al. [88] introduce a novel Hyper Simulated Annealing (HSA) for the mixed-

model sequencing problem with stochastic processing times in a multi-station assembly line.

The HSA employs a Q-learning algorithm to select appropriate heuristics through its search

process. The heuristics used are swapping (SW), shifting (SH), knowledge sharing (KS), and a

random selection (RA) heuristic. The optimization problem involves minimizing the weighted

sum of expected total work-overload and idleness in the assembly line. The results proved the

competitiveness of HSA method compared to other methods and performs superior over the

simulated annealing algorithms.

While the above methods demonstrate promising results in applying RL within hyper-

heuristic frameworks, existing literature primarily uses simpler heuristics as low-level algorithms

116

and is limited to basic instances of Vehicle Routing Problems. This paper advances these ef-

forts by proposing an RL-Assisted A-Teams (RAAT) framework, which utilizes Reinforcement

Learning as a hyper-heuristic to select one or multiple "metaheuristic" or optimization algo-

rithms at the lower level to address a collaborative UAV-UGV heterogeneous routing problem.

The proposed method is evaluated against various approaches and tested on diverse problem

sizes and distributions, demonstrating its generalizability. To this end, we present the following

novel contibutions:

1. We model the collaborative heterogeneous UAV-UGV routing problem as a bi-level opti-

mization problem and solved using an RL-Assisted A-Teams optimization framework.

2. The RL-agent chooses one or a set of different optimization algorithms in the multi-agent

framework, thereby acting as a high-level decision maker. This imparts autonomy to the

framework.

3. This approach is applied to a heterogeneous UAV-UGV system.

4. We also further extend the capability of existing multi-agent A-Teams framework through

the proposed approach.

3 METHODS

3.1 Problem statement

To address the collaborative UGV-UAV routing problem for surveillance applications, we

define a set of task points,M = {m0,m1, . . . ,mn}, located within a guided road network. This

UGV-UAV system consists of a set of UAVs A = {uai , ∀i = 1, ...,K} and one UGV persistently

117

Feasible?
Yes

No

Constructor agent

Improver agents

Destroyer agent

Destroyer agent

Nelder-Mead
Algorithm

Convergence
achieved

Initial population

No improvement?
Yes

No

Sorted
population

Improved
population

Genetic
Algorithm
(GA)

Evolved UGV
routes from GA

UAV
optimization

UAV
optimization

Figure 27. Description of the conventional A-Teams optimization framework used for
UGV-UAV routing. This A-Teams inspired from the works of Talukdar et. al has

Constructor, Improver, Destroyer and Predictor agents. Agents strategically choose UGV
routes, which are fed into UAV optimization to get collaborative UGV-UAV route outputs.

Feasible?
Yes

No

Constructor agent

Improver agents

Destroyer agent

Destroyer agent

Nelder-Mead
Algorithm

Convergence
achieved

Initial population

No improvement?
Yes

No

Sorted
population

Improved
population

Predictor
Agent

Genetic
Algorithm
(GA)Potentially

Infeasible
UGV-UAV
routes

Potentially Feasible UGV-UAV routes

Evolved UGV
routes from GA

UAV
optimization

UAV
optimization

Training
data

SVM DT

Logistic Regression
(Meta Classifier)

k-NN

Base
Classifiers

Feasibility predictions
(a) (b)

Test
data

SVM
prediction

DT
prediction

k-NN
prediction

Predictor agent - Ensemble model

Figure 28. Description of the proposed A-Teams optimization framework used for UGV-UAV
routing. a) This proposed A-Teams has Constructor, Improver, Destroyer and Predictor

agents. Agents strategically choose UGV routes, which are fed into UAV optimization to get
collaborative UGV-UAV route outputs. b) Training of Ensemble model in Predictor Agent

118

visiting M. The UGV and UAV start from the depot D. As a realistic demonstrative applica-

tion, these points are considered for persistent surveillance by both UAV and UGV. The UAV

can either get recharged on UGV or at D. The vehicle system is of a heterogeneous nature

where the UAV travels with higher velocity va but is limited in its energy capacity Ea. The

approach taken in this study to extend the range of UAV is to pair it with a slower-moving

UGV with velocity vg, which has a larger energy capacity Eg to support UAV recharging and

power its components. The operational range of the UAV with full energy Ea is visualized as

blue circles in Figure 26 a), demonstrating that a single UAV cannot adequately cover all task

points, thus substantiating the necessity for strategic UGV routing to ensure comprehensive

UAV task coverage and efficient rendezvous. This interdependence between the UAV and UGV

routes requires a bi-level optimization approach: the UGV route is optimized at the outer level,

followed by the UAV route at the inner level, implementing a “UGV first, UAV second" strategy.

The UGV route optimization is formulated as a set of free parameters, denoting the ren-

dezvous locations that the UAV makes with the UGV. The complete parameter set for a

candidate UGV route, Xs, is made up of two subsets: primary rendezvous points Xp =

{x1, x2, . . . , xj}, which facilitate UAV recharging and directing towards different task sub-

regions, and mid-rendezvous points Xm = {x1, x2, . . . , xk}, intended for UAV recharging along

the way of UGV’s traversal. This would help minimize the waiting time that the UGV makes

along the road network. Primary rendezvous points are identified by solving the Minimum Set

Cover (MSC) Problem through Constraint Programming, as described by Mondal et al. [74].

This approach effectively addresses the NP-Hard nature of the MSC problem, allowing for mul-

119

tiple Xp sets depending on the scale and complexity of the scenario. Equations Equation 3.1-

Equation 3.3 represents the condition required to obtain a single Xp set such that each location

in Xp should have radial coverage R whose union encompasses all the mission points M. R

is obtained from half the UAV’s flight time T a
f and velocity va of the UAV. Mid-rendezvous

points (Xm), which support UAV recharging during transit, are randomly selected between

each location in Xp. The total number of route parameters is represented as S = |Xs| = j + k.

For each candidate UGV route, the inner-level UAV optimization is solved for near-optimal

UAV routes. This UAV optimization is formulated as an Energy-Constrained Vehicle Routing

Problem (E-VRP), subject to both UGV route constraints and UAV fuel limitations. The UAV

route solution is then fed back to the outer level for UGV optimization, providing feedback on

the feasibility of the UAV route for the given UGV path. Feasibility criteria require that the

UAV visit all task points at least once, ensuring mission criteria satisfaction.

min j (3.1)

s.t.,

j∪
i=1

{xi | |xi −mn| ≤ R, xi ∈ Xp}, ∀mn ∈M\xi (3.2)

where

j = |Xp|, k = |Xm| = j + 1, R = 0.5 · T a
f · va (3.3)

120

To do the persistent surveillance, the task points must be routinely visited by either the UAV

or UGV. This constitutes multiple visits of each task point, with the age period ad = t − tdlast

determining the elapsed time gap between two consecutive visits of node md in minutes. To

avoid a task point not being visited for a while, we keep track of a score metric as:

S =
1

3600

n∑
d=1

l∑
q=1

(
tdq − tdq−1

)2
(3.4)

Here td0, t
d
1, ..., t

d
l are the time instances in ascending order when a task node md is visited

multiple times. The td0 is the time at the beginning of the mission and tdl is the latest time

that the node md was visited during the end of the mission T . The score metric is quadratic

in time, thus punishing nodes with longer visit intervals harshly. Hence, the objective of this

persistent surveillance problem is to minimize this score metric so that all the nodes are visited

frequently with minimal intervals between successive visits.

Figure 26 a) through d) shows the UGV-UAV persistent surveillance nature for a toy sce-

nario. For Figure a), the initial route planning would happen by solving the optimization

problem, and the planned route gets executed as shown in Figure b). When the UGV and UAV

are at an Xp location, the scenario is assessed for any dynamically changed or newly appeared

task points, represented as R = {r0, r1, . . . , rn}. If there’s no dynamic change, the route gets

executed per the initial plan as illustrated in Figure c). If such changes are identified, the opti-

mizer performs re-planning, and the UGV and UAV then execute the updated route sequence

as illustrated in Figure d). This entire process happens persistently until the mission end time

criteria T is met.

121

This research examines four distinct methods, each focusing on different approaches for

optimizing UGV routes while keeping the UAV route fixed as an Energy-Constrained Vehicle

Routing Problem (E-VRP). One of these is the proposed method introduced in this work. Since

the UAV route depends on the UGV route, improving the efficiency of UGV route optimization

reduces the burden on UAV optimization, decreasing overall computational demand and making

the entire process more efficient. The following describes the four methods, each featuring a

unique approach to UGV route optimization.

3.2 Method 1: GA at outer-level and Constraint Programming (CP) at inner-level

Genetic algorithms (GAs) are meta-heuristic techniques inspired by natural selection, ef-

fectively solving global optimization problems that may contain multiple local optima. In this

case, the outer-level block at the top implements GA to choose a UGV route. The UGV

route heuristics is formulated as a set of free parameters depicting candidate UGV routes. For

each UGV route sent, the inner-level block optimizes the UAV route using Google’s OR-Tools

solver [34]. OR-Tools uses local search heuristics and solves using the CP approach. Some of

the constraints, such as time constraints on the UAV, come from the UGV route.UAV route

optimization is closely linked to UGV route optimization, which utilizes genetic algorithms

(GAs) based on the feasibility of the combined UGV-UAV route. A route is deemed feasible

if it covers all mission points during persistent surveillance. The process iterates until the GA

can no longer improve the solution or reaches the maximum iteration limit. The sample size of

the population is considered to be N= 40, which is chosen as per [77]. More details about this

can be found in our previous work [51].

122

3.3 Method 2: Conventional A-Teams at outer-level and CP at inner-level

A-Teams is a multi-agent framework that uses a team of autonomous agents to optimize

a given problem. The agents in the framework possess distinct functionalities, solve problems

through cooperation, and achieve solutions that are better than their individual counterparts.

There are main core agents that constitute this framework: Constructor Agent is used

to develop an initial pool of solutions using the construction algorithms or randomization.

Improver Agent is used to improve the pool of solutions obtained from Constructor Agent

using different optimization methods. Destroyer Agent is used to discard non-optimal, bad,

and redundant solutions. Populations are shared repositories for storing solutions that are

computed and evaluated by different agents. Those solutions are also accessible to all the agents

involved in the framework.

Figure 27 shows the optimization using A-Teams at outer-level UGV routing. For solving

this collaborative UGV-UAV routing problem, our previous work [75] has implemented this

framework for similar kind of scenarios where the Constructor Agent creates an initial popula-

tion by random initialization of candidate UGV routes using Latin Hypercube Sampling (LHS).

The sample size of the Constructor agent is considered to be N= 40. Those UGV route param-

eters are sent to the inner-level block and UAV optimization is solved using OR-Tools. Based

upon sending the feasibility of the obtained UGV-UAV route as feedback, the Improver Agents

improve the UGV route until convergence is obtained, therefore giving an optimal collaborative

route solution. Here, Nelder-Mead and GA are used as Improver agents. For each tuned UGV

123

route parameter given, the UAV optimization is carried in ther inner-level via Constrained

Programming method using OR-Tools solver.

3.4 A-Teams with Predictor Agent at outer-level and CP at inner-level

3.4.1 Solving outer-level UGV routing using Asynchronous Teams (A-Teams)

framework with Predictor Agent

Figure 28 a) represents the proposed framework to perform UGV-UAV optimization. A-

Teams is a multi-agent framework that uses a team of algorithms to optimize a given problem.

The agents in the framework possess distinct functionalities and solve a problem through coop-

eration and achieve better solutions than their individual counterparts. There are four agents:

Constructor Agent is used to develop an initial pool of candidate UGV routes through ran-

domization. Improver Agent is used to improve the pool of UGV routes obtained from

constructor agent using different optimization methods. Destroyer Agent is used to discard

non-optimal or infeasible or redundant UGV routes once it gets feedback from UAV optimiza-

tion. Predictor Agent predicts the infeasible UGV routes before being evaluated by UAV

optimization using Machine Learning algorithms. Populations are shared repositories for

storing computed solutions and assessed by different agents. More details about the existing

A-Teams framework can be found in [75].

To solve the collaborative UGV-UAV routing problem, the Constructor Agent initializes

candidate UGV routes using Latin Hypercube Sampling (LHS) with a sample size of N= 40.

These routes are sent to the inner-level block for UAV optimization using OR-Tools. Feed-

back on route feasibility is used by Improver Agents, employing Nelder-Mead and Genetic

124

Algorithms, to refine the UGV routes until near-optimal solutions are achieved. The novelty

involves the inclusion of an additional Predictor agent in the framework. The primary role

of the Predictor agent is to forecast the feasibility of combined UGV-UAV routes, reducing

computational effort and improving efficiency. In the proposed system, the Predictor agent

uses an Ensemble model of several base classifiers such as Support Vector Machines (SVM),

Decision Trees (DT), and k-nearest Neighbors (k-NN) stacked together and uses Logistic Re-

gression as the meta-classifier. Figure 28 b) shows the training process, where base classifiers

are trained first, followed by the meta-classifier. The Constructor Agent randomly initializes

UGV routes, which are then optimized for UAVs, creating a dataset of combined route solutions.

This dataset, with a training batch size of N includes UGV route parameters as input features

and binary feasibility labels 1/0 as output. Feasibility is determined by whether all task points

are visited at least once. The Ensemble model, tested with UGV routes generated by a Genetic

Algorithm, filters out infeasible routes before UAV optimization, thereby enhancing process

efficiency.

3.5 Reinforcement Learning framework for High-level Decision Making

This section outlines the Deep Reinforcement Learning (DRL) implemented on existing A-

Teams to solve the UAV-UGV cooperative persistent surveillance problem. So far in the current

A-Teams optimization framework, there are several algorithms that performs the optimization

concurrently at each to yield an optimal result. However, it is not always necessary to deploy ev-

ery algorithm in every iteration of the optimization process. In certain steps of the optimization

process, some algorithms of the currently implemented A-Teams, like Nelder-Mead or Genetic

125

Algorithm, may add minimal improvement to the solution despite being used throughout, re-

sulting in unnecessary function evaluations. Hence, in this work, we propose a DRL-based

approach that operates as a high-level decision-making system that dynamically learns an op-

timal policy for selecting algorithms to execute at each stage of the optimization process. As

mentioned in the previous subsections, the A-Teams optimization framework involves Improver

agents containing Nelder-Mead algorithm (Local optimizer) and Genetic algorithm (Global op-

timizer), and Predictor agent containing supervised Ensemble Learning model. During each

iteration of the optimization process, the DRL policy determines a specific action, represented

by a selected combination of these algorithms, to apply in that step.

To implement the DRL, this can be modeled as a sequential decision making problem where

the RL agent sequentially selects the subset of algorithms to take part in each step of the

optimization process. The system can be modeled as Markov Decision Process (MDP) where

its components are defined by the tuple < State, Actions, Reward, Policy >. The flowchart

representation of MDP is defined in Figure 29. The environment in which the DRL agent is

implemented is the A-Teams framework.

1) State space: Since the environment for DRL is the optimization framework, the state

space consists of observation information from the optimization process. The observations

from the environment include the performance status of the algorithms used and the status

of the UAV-UGV rendezvous locations in their routing. For this study, the state space is

considered to have 13 components: Rendezvous points, indicating the optimal UAV-UGV

rendezvous locations for the current iteration’s best solution obtained; Local best, representing

126

Agent

Environment
A-Teams

optimization framework
(Applying the actions into the

framework)

Proximal Policy
Optimization (PPO)

Actions
Algorithm (Optimizer) Subset

and Hyperparameters
for Step ‘t+1’

State
Optimizer Performance
Observations at Step ‘t’

Reward rt
st

at+1st+1

rt+1

Figure 29. Markov Decision Process in this study

the current best solution from the local optimizer; Local best improved flag, representing

the binary variable that becomes 1 when the current local best solution is better than the best

solution of the previous state, else 0. This observation provides an information to the policy

that local optimizer at that state has a good contribution towards finding better solutions;

Global best, representing the current best solution from the global optimizer; Global best

improved flag, representing the binary variable that becomes 1 when the current global best

solution is better than the best solution of previous state, else 0; Current best, representing

the best solution of the current state; Action step, representing the action chosen for this time

step to generate the current observations; Population size, representing the number of UAV-

UGV optimizations performed; Local optimizer size, representing the number of UAV-UGV

optimizations performed by local optimizer; Global optimizer size, representing the number

of UAV-UGV optimizations performed by global optimizer; Predictor accuracy, representing

the accuracy of the ML model used for predictions; Global best without Predictor agent,

representing the best solution of current state from global optimizer without using Ensemble

127

Figure 30. Action space for DRL based approach

learning model. This helps to gauge the quality of the Predictor Agent used in the optimization;

Predictor agent flag, representing the binary variable to see if the Predictor Agent is used

in the current state or not.

2) Action space: The action space is a discrete set of actions, each representing the

algorithm or subset of algorithms to be applied in the next step of the optimization process.

Alongside the algorithms to be selected for optimization, there are some hyperparameters that

can be varied for the optimizers used in A-Teams. In this study, the hyperparameter maximum

function evaluations ‘Max’ for the local optimizer Nelder-Mead algorithm is varied between two

values: 5 and 10. Hence, the 8 discrete set of actions are as follows:

• Action 1: Use the combination of Global and local optimizers with Predictor agent.

• Action 2: Use only the local optimizer.

• Action 3: Use only the global optimizer.

• Action 4: Use the combination of Global and local optimizers without Predictor agent.

The above set of actions are constructed with two different ‘Max’ values thus constituting

to a total set of 8 discrete actions. The graphical illustration of the action space is depicted in

Figure 30.

3) Reward: The reward R is determined using a Hybrid reward mechanism to guide the

agent’s learning process. For the local and global optimizers, a positive reward is granted when

an optimizer improves upon the best solution from the previous cycle; otherwise, no reward is

128

given. The predictor agent is rewarded based on its prediction accuracy, with higher accuracy

resulting in a higher reward. However, if the predictor incorrectly discards a feasible UGV-UAV

solution, mistaking it for infeasible, a penalty is imposed to discourage such errors. Additionally,

rewards account for computational efficiency, with each action evaluated for its computational

time to encourage faster solutions. To prevent overfitting and encourage exploration, action

masking is applied, assigning a significant penalty L for repeated actions in succession. This

approach discourages repetitive actions and promotes broader exploration, helping the agent

converge towards an optimal policy.

4) RL Policy: Proximal Policy Optimization (PPO) is a policy-gradient method

that works on Actor-Critic style which updates policies with a clipped objective function that

helps to balance the exploration and exploitation while preventing larger policy updates. Since

the nature of DRL implementation in this study is compuationally expensive, PPO is utilized

because of its nature of simplicity and sample efficient [89].

3.5.1 Policy Objective Function

The objective in PPO is designed to maximize the expected reward while constraining the

policy update to avoid drastic changes. This is achieved using the clipped surrogate objective,

defined as:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(3.5)

where rt(θ) is the probability ratio between the new and old policies:

129

rt(θ) =
πθ(at|st)
πθold(at|st)

(3.6)

In this equation:

• πθ(at|st) is the probability of action at under the current policy θ given the state st.

• πθold(at|st) is the probability of the same action under the previous policy.

These πθ(at|st) is basically a Neural Network that acts as the function approximation to

provide actions as output for the given current state as input.

The clipping function, clip (rt(θ), 1− ϵ, 1 + ϵ), restricts the value of rt(θ) within the interval

[1 − ϵ, 1 + ϵ], where ϵ is a hyperparameter (0.2 in this study) that controls the extent of the

policy change. The advantage function Ât is used as an estimate of the advantage of taking

action at in state st.

3.5.2 Advantage Estimation

The advantage function Ât is estimated through the temporal difference (TD) error:

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1 (3.7)

where δt = rt+γV (st+1)−V (st), with γ representing the discount factor, and λ a parameter

for balancing bias-variance in advantage estimation through Generalized Advantage Estimation

(GAE).

130

3.5.3 Value Function Loss

PPO uses an additional loss term for the value function to improve the critics accuracy.

The value function loss is typically defined as:

LVF(θ) = Et

[(
Vθ(st)− V target

t

)2
]

(3.8)

where V target
t represents the target value derived from the observed rewards.

3.5.4 Total Objective Function

Combining the clipped policy objective and the value function loss, the final objective func-

tion becomes:

L(θ) = Et

[
LCLIP(θ)− c1L

VF(θ) + c2S[πθ](st)
]

(3.9)

where c1 and c2 are coefficients for the value function and entropy regularization terms,

respectively, and S(πθ) represents the entropy of the policy, encouraging exploration by pre-

venting premature convergence.

3.5.5 Neural Network Architecture

The Policy function πθ(at|st) and Value function Vθ(st) are Neural Networks and each of

these Neural Networks are Multi-Layer Perceptron (MLPs) with two hidden layers and each

layer has the size of 64 neurons. The activation function used throughout the network is Tanh.

The input and output layer of the Neural Network depends upon the dimensions of the input

131

and output. In this case, the input layer for policy function would have 13 neurons and output

layer would have 8 neurons.

The algorithm for PPO is described in Algorithm 5

Algorithm 5 PPO Algorithm
for iteration = 1, 2, . . . do

for actor = 1, 2, . . . , N do
Run policy πθold in environment for T timesteps Compute advantage estimates
Â1, . . . , ÂT

Optimize surrogate L with respect to θ, with K epochs and minibatch size M ≤ NT Update
θold ← θ

In this study, the limit for T was kept to be 4 to run the entire optimization cycle up to

4 iterations if the convergence for optimal solution is not reached within the limit, number of

epochs K to be 4, N to be 16 and mini batch size M to be 8.

After each iteration, the policy receives a reward through a hybrid reward mechanism. This

reward is an aggregate based on the individual contributions of each algorithm involved in the

current step of the optimization. By continuously learning from this feedback, the RL-assisted

framework adapts its selection of algorithms to improve optimization efficiency and outcome

quality across iterations. This structured, intelligent decision-making process ensures that the

most appropriate subset of algorithms is chosen to improve the efficiency of the computation.

132

3.5.6 Solving E-VRP for inner-level UAV routing

The inner-level UAV route optimization is defined as an Energy-Constrained Vehicle Routing

Problem (E-VRP) to obtain a near-optimal path for the UAV subjected to satisfying its fuel

and time window constraints. The MILP formulation is as follows. Consider a directed graph

G = (V,E) where V is the set of UAV task points V = {0, 1, 2,,m,D} and E is the set of edges

that gives the arc costs between two consecutive nodes i and j and E = {(i, j)|i, j ∈ V, i ̸= j}.

Here D denotes the potential UGV points that UAV could utilize to get recharged. Let cij be

the non-negative arc cost between a particular i and j. Let tij be the time travel cost between

a particular i and j. Let xij be the binary variable where the value of xij will be 1 if a vehicle

travels from i to j, and 0 otherwise. We formulate the VRP problem with fuel constraints, time

windows, and dropped visits. The mathematical formulation for EVRP is presented here, but

more details may be found in [51].

Objective:

min
∑
i∈V

∑
j∈V

tijxij (3.10)

133

Major constraints:

fj ≤ fi − (P atijxij) + L1(1− xij), ∀i ∈ V, j ∈ V \D (3.11)

fj = Q, ∀j ∈ D (3.12)

0 ≤ fj ≤ Q, ∀j ∈ V (3.13)

tj ≥ ti + ((tijxij))− L2(1− xij), ∀i ∈ V, j ∈ V (3.14)

tlj ≤ tj ≤ tuj , ∀j ∈ V (3.15)

xij = 1→
∑

i∈V \D

xji = 1, ∀j ∈ D, ∀i ∈ V \D (3.16)

The objective is Eq. Equation 3.10 is to minimize the time to complete UAV routing. The

constraint in Eq. Equation 3.11 is the Miller-Tucker-Zemlin (MTZ) formulation [18] for sub-tour

elimination which enables that none of the UAVs are fully drained out while eliminating loops.

P a in this equation represents the UAV power consumption curve, which will be provided

in Section 4. Constraint Eq. Equation 3.12 states that if the vertex is a recharging UGV

stop, UGV must refuel the UAV to its full capacity Q. Constraint Eq. Equation 3.13 is

the condition that the UAV’s fuel at any vertex in V should be between 0 and maximum fuel

capacity. Constraint Eq. Equation 3.14 denotes that the cumulative arrival time at jth node

is equal to the sum of cumulative time at the node i, ti and the travel time between nodes

i and j, tijxij . Constraint Eq. Equation 3.15 is the time window constraint that tells the

vehicle to visit a certain vertex in the specified time window for that node. The constraint

134

in Eq. Equation 3.16 ensures that if any UAV comes to the refuel vertex to recharge, an

arc must exist between that refuel node and a task node to maintain the flow conservation.

The above MILP formulation takes significant time to solve with the increased number of task

points, which becomes unrealistic for practical hardware implementation. Ramasamy et al. [17]

conducted research that tested the MILP method on various toy scenarios, finding that solving

a relatively simpler UGV-UAV routing problem involving 25 task points demanded considerable

computational effort, with computation times being up to 30 times slower than the Constrained

Programming (CP) approach while the optimality gap is up to 8% on average. Hence, CP with

local search heuristics is used to solve this E-VRP problem quickly. More details about this

can be found in [17].

4 RESULTS

We used Python 3 for all the computations: the OpenAI’s Stable Baselines 3 Reinforcement

Learning (RL) package is used for RL agent, the Ensemble of different classification algorithms

(kNN, SVM, Decision Trees) used in the Predictor agent is from the Scikit-learn package, a

custom-written Genetic Algorithm, and Nelder-Mead from the Scipy package for performing

UGV free parameter optimization; and OR-Tools for UAV optimization. All computations are

done on a 3.7 GHz Intel Core i9 processor with 32 GB RAM on a 64-bit operating system.

The scenarios consider a single UAV and UGV, with the UAV having a battery capacity of

4000 mAh (total energy of Ea = 287.7kJ) and the UGV having an energy capacity of Eg =

25.01MJ . The UAV and UGV are set to travel at velocities of va = 10m/s and vg = 4.5m/s,

respectively. The UAV follows the power consumption curve of Pa = 0.0461(va)
3−0.5834(va)2−

135

1.8761va + 229.6 and UGV follows Pg = 464.8vg + 356.3 (referred from [76]). Based upon the

scale of scenarios considered (14 × 14 km), solving the MSC coverage problem results in a

candidate UGV route Xs with two primary rendezvous locations (j = 2) and three mid UGV-

UAV rendezvous locations (k = 3), adding up to a total of 5 parameters (S=5) for the UGV

route.

Trained RL Policy

LR=0.001
LR=0.005

R
ew

ar
d

Episodes

-200

0

200

400

20 40 60 80 100 120 140

Figure 31. RL Training with different Learning Rates

The training for Reinforcement Learning policy is performed for several scenarios sent in

batches. The scenario nature is of several task points situated in a patterned format with three

branches meeting at a junction point. An example training scenario is shown in Figure 32.

Keeping the pattern similar, the RL model is trained with around 200 unique scenarios. Two

136

different Learning Rates LR = 0.005 and LR = 0.001 were considered for training. The policy

training curves for different learning rates can be seen in the Figure 31. When the model was

trained with LR greater than 0.005, it performed poorly due to the higher learning rate causing

unstable learning and hence LR parameter tuning was stopped. After analyzing the training

for different learning rates, the RL model with LR = 0.001 has been chosen for testing. The

training time with LR = 0.001 came out to be around 30 hours due to the inherent complexity

in the learning mechanism of the RL policy. In terms of persistent surveillance, the end time

of the mission T is kept to be 250 minutes.

UGV/UAV Depot
Task Points

Figure 32. An instance of training scenario

137

Extensive simulation analyses have been conducted to demonstrate the generalizability and

efficiency of the proposed Reinforcement Learning-based A-Teams optimization framework.

Various studies were performed to evaluate its performance. The trained RL model was com-

pared against existing optimization frameworks, including an A-Teams variant, the conventional

A-Teams approach, and Genetic Algorithms, to assess both objective value and computational

time. One particular study examined the impact of task point density within a 16 km x 16

km scenario, categorizing the density into three levels: densely spaced, moderately spaced, and

sparsely spaced. In densely spaced scenarios, task points are clustered closely together, while

in moderately spaced scenarios, task points are more spread out. In sparsely spaced scenarios,

the task points are distributed with even greater separation. A graphical representation of

the different task point distribution for testing the optimization model is shown in Figure 33.

This study is made with considering single UAV-UGV and multi UAV-UGV instances and the

results are compared. Another study assess the ability of the proposed method to handle dy-

namic changes in the scenario. A case study scenario is being considered where a certain set

of random points appear suddenly and the optimizer re-plan the UAV-UGV routes considering

the dynamic changes into account.

There are four different methods being compared for the optimality of the solution and the

computational time took to solve. One is the proposed RL-assisted A-Teams, another method

is A-Teams variant, the third method is original A-Teams and the fourth method is Genetic

Algorithm. All these methods varies the way UGV optimization is performed at the outer-

138

UGV/UAV Depot
Task Points

(a) (b) UGV/UAV Depot
Task Points

UGV/UAV Depot
Task Points

(c)

Figure 33. Example of different task point distribution scenario types. a) High Dense scenario
b) Moderate Dense scenario c) Sparse Dense scenario.

TABLE X

Comparison across different optimization methods for high-dense task point distribution with
1 UAV-1 UGV routing.

Scenario # RL assisted A-Teams variant A-Teams variant Original A-Teams Genetic Algorithm

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

1 12 375 18 407 18 407 40 375

2 13 223.5 18 223.5 19 223.5 46 280.97

3 12 333 17 333 19 333 53 333

4 14 223.5 18 223.5 19 223.5 46 280.97

level. At the inner-level, the UAV optimization is performed by solving the E-VRP for all these

methods.

139

TABLE XI

Comparison across different optimization methods for moderate-dense task point distribution
with 1 UAV-1 UGV routing.

Scenario # RL assisted A-Teams variant A-Teams variant Original A-Teams Genetic Algorithm

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

1 9 116.81 10 122.76 12 122.76 27 122.76

2 7 106.07 8 106.07 8 106.07 25 106.07

3 10 113.9 12 119.14 13 117.4 33 101.34

4 8 136.82 10 136.82 11 136.82 26 120.97

TABLE XII

Comparison across different optimization methods for sparse-dense task point distribution
with 1 UAV-1 UGV routing.

Scenario # RL assisted A-Teams variant A-Teams variant Original A-Teams Genetic Algorithm

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

1 6 79.1 5 83.5 5 79.1 23 83.5

2 4 91.5 5 91.5 5 91.5 13 91.5

3 5 84.2 5 84.2 5 84.2 22 84.2

4 4 77.5 4 77.5 4 77.5 23 77.5

140

} } 33%

} }

7%

23%
9%

Figure 34. Computational time comparison across different methods: For 1 UAV - 1 UGV
study

4.1 Study 1: Comparison of different methods across various task point distribu-

tions with 1 UAV and 1 UGV routing

Table X through Table XII represents the computational analysis for various scenarios of 1

UAV - 1 UGV routing across different methods. The results demonstrate that across various

task point distribution scenarios, RL-assisted A-Teams achieved computationally efficient opti-

mization while maintaining the quality of the optimal solutions. Notably, in high-density task

point distributions, the reduction in computational time was significantly greater compared to

other methods. This is because the outer-level optimization focuses on optimizing UGV route

parameters, which include the primary and mid-rendezvous locations along the branches of the

task points. In high-density scenarios, the larger number of task points results in a greater

number of UGV route parameter combinations, expanding the search space. Consequently, the

RL policy has more opportunities to enhance optimization, leading to improved computational

141

efficiency. Conversely, in low-density task point distributions, where fewer task points exist,

the number of potential UGV route parameter combinations is reduced, which limits the abil-

ity of the RL-assisted A-Teams to significantly contribute to optimization improvements. The

route sequence visualization of one of the scenarios with 1 UAV - 1 UGV routing is shown in

Figure 35. Also from Figure 34, it can be seen that the proposed A-Teams with RL policy de-

cision maker performs well computationally as compared to other A-Teams approaches, which

demonstrates the capability of using RL based hyperheuristics for solving this collaborative

UAV-UGV routing.

UGV/UAV Depot
Task Points

(a) UGV/UAV Depot
Task Points

(b) UGV/UAV Depot
Task Points

(c)

UGV
UAV 1
UAV 2

UGV
UAV 1
UAV 2

UGV
UAV 1
UAV 2

Time range = 1 to 95 mins. Time range = 96 to 123 mins. Time range = 124 to 195 mins.

Figure 35. Route sequence of Scenario 1 of High Dense distribution with 1 UAV - 1 UGV
routing

142

TABLE XIII

Comparison across different optimization methods for high-dense task point distribution with
2 UAV-1 UGV routing.

Scenario # RL assisted A-Teams variant A-Teams variant Original A-Teams Genetic Algorithm

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

1 13 281.2 19 281.2 22 212.9 45 231.6

2 16 231.4 24 231.4 26 231.4 62 209.8

3 13 268.6 15 268.6 20 254.6 44 254.6

4 13 281 15 281 20 281 46 281

4.2 Study 2: Comparison of different methods across various task point distribu-

tions with multi-UAV and 1 UGV routing

In order to study the generalizability, these methods are extended to perform persistent

surveillance for multi-UAV UGV system. Specifically in this study, the 2 UAV - 1 UGV system

is considered across the various task point distributions. In case of multi-UAV UGV routing,

it is assumed that both the UAVs would start and land at the same location along the UGV’s

travel where the UGV waits to collect the UAVs for recharging.

Similar to the Study 1, optimality of the solution and the computational time took to solve

are compared against the 4 methods implemented. These details are found from the Table XIII

through Table XV.

From the results it can be seen that the trend is similar to the 1 UAV - 1 UGV routing

problem, but the 2-UAV UGV routing results have a higher reduction in computational time

when the proposed method is implemented against the existing methods. Moreover, comparing

the overall results between 1 UAV-UGV system and 2 UAV-UGV system, it can be seen that

143

TABLE XIV

Comparison across different optimization methods for moderate-dense task point distribution
with 2 UAV-1 UGV routing.

Scenario # RL assisted A-Teams variant A-Teams variant Original A-Teams Genetic Algorithm

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

1 11 107.3 15 107.3 17 107.3 30 104.3

2 11 84.3 13 102.5 15 84.28 29 101.2

3 11 91.9 14 91.9 17 94.23 40 91.9

4 8 101.5 9 101.5 11 101.5 30 101.5

TABLE XV

Comparison across different optimization methods for sparse-dense task point distribution
with 2 UAV-1 UGV routing.

Scenario # RL assisted A-Teams variant A-Teams variant Original A-Teams Genetic Algorithm

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

Optimal

Objective

Computational

time (min.)

1 7 69.7 7 69.7 7 69.7 25 69.7

2 7 78.8 7 78.8 7 78.8 28 78.8

3 8 80.5 8 80.5 8 80.5 27 80.5

4 5 48.5 6 48.5 5 48.5 26 48.5

144

}

} 38%

} }

17%

32%
15%

Figure 36. Computational time comparison across different methods: For 2 UAV - 1 UGV
study

the latter system leads to reduction in the objective function value for that corresponding

Persistent surveillance mission time. This is because using multiple UAVs can help in visiting

the task points more frequently, and hence, there is a greater reduction in the age period

between visits. The route sequence visualization of one of the scenarios with 2 UAV - 1 UGV

routing is shown in Figure 37. Also from Figure 36, it can be seen that the proposed A-Teams

with RL policy decision maker performs well computationally as compared to other A-Teams

approaches, which demonstrates the capability of using RL based hyperheuristics for solving

this collaborative UAV-UGV routing generalized to multi-UAV UGV systems.

4.3 Study 3: Case Study - Bridge Inspection Using Autonomous Vehicle System

From the above results, it is shown that the proposed Reinforcement Learning method solves

the cooperative UAV-UGV routing problem with more computational efficiency as opposed to

other methods. This opens up the potential for applying this method in a realistic environment.

145

UGV/UAV Depot
Task Points

(a) UGV/UAV Depot
Task Points

(b) UGV/UAV Depot
Task Points

(c)

UGV
UAV 1
UAV 2

Time range = 1 to 98 mins. Time range = 99 to 160 mins. Time range = 161 to 220 mins.

UGV
UAV 1
UAV 2

UGV
UAV 1
UAV 2

Figure 37. Route sequence of Scenario 1 of High Dense distribution with 2 UAV - 1 UGV
routing

To evaluate the real-world applicability of the proposed optimization method and harness the

potential of implementing autonomous UAV-UGV vehicle team on a civilian application, the

trained RL-Assisted A-Teams framework is implemented on a case study based on Bridge In-

spection. Bridge inspection is a critical task to ensure structural safety and prevent catastrophic

failures. Traditional inspection methods are often time-consuming, costly, and hazardous for

inspectors. Autonomous vehicles offer a safer, faster, and more cost-effective alternative for

infrastructure monitoring. Some of the works in the literature by Chan et al. [?] and Koch et

al. [?] highlight the advantages of drone-based inspection over conventional methods, includ-

ing cost reduction, faster inspection, and lesser traffic inconvenience to travelers. Typically, in

these applications, drones are used for visual inspections by taking photos of the intersection

point between the bridge deck and the columns. Notably, Omar et al. [?] investigate the use of

drones equipped with infrared thermography for detecting subsurface delamination in concrete

bridge decks, offering a non-contact and non-disruptive inspection method. Unlike traditional

approaches that rely solely on visual assessment, drones equipped with thermal cameras can

146

identify hidden structural defects by capturing temperature variations across the deck surface.

This shows that the drones are also capable of performing over-the-deck inspection. Other

applications include combining drones with manually operated vehicles for bridge inspection.

In this approach, drones inspect the intersection points of the deck and columns, while a car

or truck equipped with Ground Penetrating Radar (GPR) conducts surface and subsurface

inspections of the deck.

By implementing a UAV-UGV team, our study enables a fully autonomous bridge inspection

with minimal human intervention. This approach enhances efficiency, reduces inspection time,

and improves safety throughout the process.

For this case study, a bridge section near Chicago, Illinois, US has been selected. This

section spans approximately 8 kilometers and comprises three interconnected bridges: Long

Run Creek, Des Plaines River Valley, and I-355 bridges. Fig. represents the bridge section

under study. Initially, the bridge data is acquired from the ArcGIS map, providing essential

information such as bridge details, latitude, and longitude. This data is then converted into

Cartesian (x, y) coordinates, with the bottom-most point as the origin for reference. Fig.

Figure 38 gives the graphical description of the Case Study scenario. Fig. a) represents the

bridge locations obtained from the ArcGIS map. The blue points on the Fig. a) represents the

bridges situated at those respective locations. Fig. b) represents the photo of the actual bridge.

Fig. c) represents the converted plot of bridge locations into cartesian coordinates. The blue

points are the points where UGV traverse to perform over-the-bridge inspection, and the red

points are the points adjacent to the bridge deck where UAV flies to visit. These points are

147

(a) (b) (c)

Starting point

Case Study Scenario

8

6

4

2

0

-3 -2 -1 0 1

1

Figure 38. Case Study scenario considered for Bridge inspection. a) Bridge locations obtained
from ArcGIS map b) Aerial view of the Bridge c) Converted coordinates for performing

routing as per cartesian coordinates.

148

simulated to be the intersection points of the bridge deck and the bridge column to perform

visual inspection. In order to form a road network, some additional points are added in the

middle to represent the UGV points.

To set up a realistic simulation, the specifications of the UAV and UGV are as follows: UAV

speed is kept to be 10 m/s based upon the work [?] and the UGV speed is kept to be 2.5 m/s

to simulate the GPR traversal speed as per the reference here [?]. And typically, the visual

inspection or the infrared inspection will take between 30 to 60 seconds at a particular point,

and hence the inspection duration is considered to be 60 seconds in this study.

It is shown that the proposed RL-Assisted A-Teams method is better than the existing

approaches, this method is used to perform the UAV-UGV routing. Persistent surveillance is

performed for 150 minutes by the vehicle system. The UAVs are assumed to have both RGB

camera and IR camera, hence they can do both thermal and visual inspection of the bridge.

This enhances the generalizability of utilizing it for autonomous inspection.

To show the impact of using the autonomous vehicle team, the team configuration is varied

across different UAVs. That is, a comparison analysis is performed between 1 UAV - 1 UGV

system and 2 UAV - 1 UGV system where the respective system was implemented for performing

the persistent surveillance for 150 minutes. The Age period of the task points to be visited is

considered as the metric for the comparison. Fig. Figure 39 represents the age period heatmap

of the points visited by the respective team. From the results, it can be seen that the 2 UAV - 1

UGV system performs better as it has lesser age period across the nodes compared to the 1 UAV

- 1 UGV system. One of our previous research work shows the appropriate team configuration

149

10

20

30

40

50

Av
er

ag
e A

ge
 P

er
io

d
(m

in
.)

8

6

4

2

0

0-3 -2 -1 1
0

10

20

30

40

50

Av
er

ag
e A

ge
 P

er
io

d
(m

in
.)

8

6

4

2

0

0-3 -2 -1 1
0

(a) (b)

Figure 39. Average age period heatmap. a) For 1 UAV - 1 UGV system. b) For 2 UAV - 1
UGV system.

150

needed to have an overall better routing. The work shows that with a configuration ratio of

number of vehicles being 2:1 for UAV:UGV system, the system performs better than others.

Likewise, our configuration of 2 UAV - 1 UGV system is 2:1 and hence it performs better

inspection than 1 UAV - 1 UGV system.

To test the UGV-UAV routing across different starting points to see the effect of routing,

we have varied the starting to two different places: One case is starting the vehicle system

from the bottom point, and the other case is starting them from the middle of the bridge.

Figure Figure 40 a) and b) shows the different starting points. The routing comparison is done

between these two cases for 1 UAV-UGV and 2 UAV-1UAV systems. Table Table XVI shows

the average value of the average age period of across all the nodes for the respective vehicle

system and different starting point. From the table it can be seen that, while the multi UAV-

UGV system reduces the age period overall with more than 7 minutes reduction on average,

the cases with bottom starting point performs better for both the vehicle system than starting

from the middle.

To further investigate the potential of faster optimization capability of the proposed method,

dynamic planning was considered for performing persistent surveillance, particularly when new

mission points emerge randomly during the routing process. This dynamic planning was consid-

ered for 2 UAV - 1 UGV system. These new inspection points appearing randomly is assumed

to be located outside the road network as those points are assumed to appear for the unex-

pected visual inspection of bridge columns by the UAVs. A critical assumption is that the UAV

will come to know about the dynamic change information during their rendezvous with the

151

4

1

(a) (b)

Starting point Starting point

Case Study Scenario Case Study Scenario

Figure 40. Case Study scenario with different starting points. The Green box in (a) and (b)
represents the location from where the UAV-UGV inspection starts.

TABLE XVI

Average value of Average Age period across all nodes across different vehicle system vs
different starting point.

UAV-UGV
system #

Bottom-
start rout-
ing (in
mins.)

Mid-start
routing (in
mins.)

1 UAV - 1
UGV

37 39

2 UAV - 1
UGV

30 33

152

Depot
UGV
UAV 1
UAV 2

Depot
UGV
UAV 1
UAV 2

Time: 0 - 52 mins. Time: 53 - 120 mins.

Figure 41. Case Study scenario routing sequence. Black stars on the right plot represent the
dynamic appearance of inspection points to be visited.

153

UGV as UGV is the vehicle that is assumed to communicate such changes when it has made

contact with the UAV. Fig. Figure 41 represents the route plan with dynamic changes. The

star represents the dynamic points appeared during the timestamp between (enter the appro-

priate timestamp here), which is fed to the UAVs during their rendezvous with the UGV. And

during the recharging time duration, the proposed optimization method re-plans the route and

send the updated route to the UAVs before they takeoff after recharging. The re-optimization

time was found to be 3 minutes on average, which is significantly faster than the recharging

time of 15 minutes, showcasing the practical applicability of re-planning with dynamic changes.

Figure Figure 42 represent the average age period of each node in the scenario for 2 UAV - 1

UGV system. The top plot represent the scenario routing without dynamic changes and the

bottom plot represents the routing with dynamic changes. The influence of adding dynamic

points increases the overall average age periods of each node because of the additional visits

the UAV-UGV system needs to undergo.

5 DISCUSSION

This research work develops a Reinforcement Learning assisted A-Teams optimization frame-

work that is computationally efficient to solve for optimal UAV-UGV routes quickly. The ca-

pability is also demonstrated by considering different test scenarios with 1 UAV-UGV system,

2 UAV-UGV system and scenario with dyamic changes. The key to computational efficiency

from implementing the RL policy as a decision maker in strategically selecting which algo-

rithms to take part in what step of the optimization process. This strategic selection helps to

impart computational efficiency because, in each step of the optimization process, the RL pol-

154

Figure 42. Average age period comparison across all the nodes. Top plot represent the 2 UAV
- 1 UGV routing without dynamic changes and bottom plot represents the 2 UAV - 1 UGV

routing with dynamic changes. The yellow bars represent the additionally added points
(Black stars from Figure Figure 41).

155

icy chooses the action (in this case, the optimization algorithm) that maximizes the expected

reward, which in this case, if the computational time is significantly less, then those action

sequences are encouraged. The proposed method achieves a computational efficiency of 33% at

the most for 1 UAV - 1 UGV system, while it achieves a computational efficiency of 38% at the

most for 2 UAV - 1 UGV system.

Destroyer agent

Destroyer agent

Nelder-Mead
Algorithm

Improver
Agent

Improver
Agent

Predictor
Agent

Genetic
Algorithm
(GA)

Potentially Feasible UGV-UAV routes

Evolved UGV
routes from GA

UAV
optimization

UAV
optimization

Destroyer agent

Destroyer agent

Nelder-Mead
Algorithm

Improver
Agent

Improver
Agent

Predictor
Agent

Genetic
Algorithm
(GA)

Potentially Feasible UGV-UAV routes

Evolved UGV
routes from GA

UAV
optimization

UAV
optimization

Genetic
Algorithm
(GA)

Destroyer agent

Destroyer agent

Nelder-Mead
Algorithm

Improver
Agent

Improver
Agent

Predictor
Agent

Genetic
Algorithm
(GA)Evolved UGV

routes from GA

UAV
optimization

UAV
optimization

Optimization step 1: Optimization step 2: Optimization step 3:

Objective value: 140.46 Objective value: 113.91 Objective value: 113.91

Figure 43. RL Policy-Driven Optimization Sequence for Agent Selection

The A-Teams multi-agent framework enhances solution quality by integrating algorithms

with complementary strengths, allowing for a streamlined optimization process. For instance,

pairing a global search algorithm like Genetic Algorithm (GA) with a local search method such

as Nelder-Mead accelerates the search for near-optimal solutions, outperforming GA alone.

Constraint Programming (CP) for UAV routing further contributes to computational efficiency

156

by leveraging heuristic-based optimization. Additionally, the Predictor Agent employs an en-

semble model (k-NN, SVM, Decision Trees) to assess the feasibility of UGV-UAV routes, making

balanced predictions from multiple classifiers to discard potentially infeasible solutions.

Within this framework, the RL policy acts as a high-level decision-maker, selecting the most

suitable algorithm at each step to maximize the expected reward, where actions correspond to

the available optimization algorithms. By strategically choosing algorithms, the RL agent en-

sures that UGV route parameters are optimized in a way that minimizes unnecessary UAV

evaluations. This targeted selection minimizes the search time while maintaining solution qual-

ity, as the RL policy carefully selects the choice of algorithms to achieve efficient computation

throughout the optimization process.

The key to obtaining an effective RL policy in this framework lies in reward shaping. Given

that the environment is a multi-agent optimization framework, a hybrid reward mechanism is

crucial, as it guides the policy training to align with the optimization goal. When computational

efficiency is prioritized, actions with lower computation times are weighted more heavily in the

reward structure. This approach is illustrated in Figure 43, which shows an optimization

scenario using the RL-Assisted A-Teams method for a moderate-density task point distribution

(Scenario 3) with a 1 UAV - 1 UGV system.

In this example, the policy initially selects only the local optimizer to refine the current best

solution generated by the constructor. In the following step, it combines both the local (Nelder-

Mead) and global optimizers (GA) without the Predictor Agent to drive further improvement.

After the solution improves, the policy reverts to the local optimizer alone in the third step to

157

determine whether the enhanced solution can be further refined. The process terminates when

no further improvement is found.

The policy could choose this sequence because, in this study’s framework, the local optimizer

requires fewer function evaluations than the global optimizer. By focusing on local improvement,

it can quickly identify when no further gains are achievable, thus terminating faster than the

Genetic Algorithm, which explores the broader search space. This selective use of optimization

algorithms minimizes unnecessary evaluations and enhances computational efficiency.

Destroyer agent

Destroyer agent

Nelder-Mead
Algorithm

Improver
Agent

Improver
Agent

Predictor
Agent

Genetic
Algorithm
(GA)

Potentially Feasible UGV-UAV routes

Evolved UGV
routes from GA

UAV
optimization

UAV
optimization

Destroyer agent

Destroyer agent

Nelder-Mead
Algorithm

Improver
Agent

Improver
Agent

Predictor
Agent

Genetic
Algorithm
(GA)

Potentially Feasible UGV-UAV routes

Evolved UGV
routes from GA

UAV
optimization

UAV
optimization

Destroyer agent

Destroyer agent

Nelder-Mead
Algorithm

Improver
Agent

Improver
Agent

Predictor
Agent

Genetic
Algorithm
(GA)Evolved UGV

routes from GA

UAV
optimization

UAV
optimization

Optimization step 1: Optimization step 2: Optimization step 3:

Objective value: 384.6 Objective value: 303.5 Objective value: 303.5

Figure 44. RL Policy-Driven Optimization Sequence for Agent Selection. Here Alternative
reward mechanism is shaped to encourage choosing the Predictor agent as a part of

optimization process.

If the optimization deems to prioritize the inclusion of the Predictor Agent in the optimiza-

tion process, the policy learns to find an optimization sequence that minimizes computational

158

time while preserving solution quality, specifically by encouraging the selection of actions that

involve the Predictor Agent. Figure 44 shows an optimization sequence where the RL policy is

trained using an alternative reward mechanism that gives more weightage to choosing an ac-

tion by utilizing the Predictor Agent as a part of the optimization process by encouraging that

action. The computational time took to solve through this method was 16 minutes. Referring

to the Table X in the 4th row, it can be seen that it performs fairly competitive with other

methods whilst retaining the quality of the solution.

This example highlights the pivotal role of reward shaping in training an effective RL policy,

allowing adjustments based on specific optimization objectives.

The proposed method comes with some limitations. Since RL policy used in this work

is a learning-based hyperheuristics, it only acts at the higher level. And relatively, the lower-

level optimization process of performing the UAV optimization computationally expensive when

compared to the typical training speed. Hence, the training process takes a lot of time despite

using PPO method that is sample efficient. Also, with the involvement of several optimization

agents in the framework, the reward shaping needs to be done critically in order to guide the

policy’s decision-making accordingly.

6 CONCLUSION

This study introduces a Reinforcement Learning-based hyperheuristic as a decision-maker

for efficient optimization within the multi-agent A-Teams framework, benchmarking its perfor-

mance against various A-Teams variants and a traditional Genetic Algorithm. The proposed

method demonstrates the ability to produce near-optimal solutions more quickly than the com-

159

parison methods. Additionally, the framework’s effectiveness was validated across different

scenario instances.

Future work will focus on incorporating Large Language Models (LLMs) into the framework

to automate action space selection, allowing the language model to choose actions based on

text-based feedback provided by the framework.

CHAPTER 7

SOFTWARES USED

1 Optimization method

A significant portion of this work involves using Python Programming Language to develop

the optimization method, with hardware testing also conducted through a Python-based API.

160

CHAPTER 8

CONCLUSION

Starting with the implementation of a simple optimization model and advancing to the

development of a complex multi-agent optimization framework, this thesis explores the poten-

tial for creating an optimization method for collaborative UAV-UGV routing. The developed

method showcases the potential of applying it on actual hardware system because of its ability

to solve quickly.

Chapter 2 lays the premise for formulating the collaborative UAV-UGV routing problem

as a Mixed Integer Linear Programming (MILP) bi-level optimization problem. This problem

was approached using exact method algorithms. Exact methods, such as Branch and Bound,

aim to find the true optimal solution; however, the complexity of these algorithms increases

significantly with the size of the problem. Initial studies in this thesis revealed the substantial

time and computational constraints involved in solving the problem using these exact methods.

Chapter 3 develops a method to solve the problem at a relatively faster pace. Since the

exact solution methods are computationally expensive, it is not advisable to implement in

practical scenarios dealing with such autonomous mobile robots. Hence, this thesis eventually

directs towards implementing metaheuristic methods to solve the problem. This chapter of the

thesis focuses on implementing a bi-level optimization approach, utilizing Genetic Algorithms

and Bayesian Optimization for the outer-level UGV optimization and comparing these two

methods, while employing local search heuristics for the inner-level UAV optimization. The

161

162

UGV route needs to be determined first as the UAV route involves recharging on the UGV. By

suitably parameterizing the heuristics and optimizing the UGV route parameters with global

optimization methods enables exploration of the space and provide good quality solutions.

Chapter 4 presents a method designed to efficiently solve the complex bi-level optimiza-

tion problem by effectively leveraging the available computational resources. An optimization

framework was developed for solving the UAV-UGV routing problem. The outer-level UGV

optimization is dealt with developing a multi-agent optimization method that facilitates the ca-

pability to perform concurrent optimization with different set of agents that are complementary

in nature. This multi-agent optimization framework is called A-Teams (Asynchronous Teams).

The agents, containing optimization algorithms, are autonomous, modular and distributed in

the framework. The study shows that the A-teams is able to produce good quality solutions

with less computation time. It is able to do so by using specialized agents: agents to create

solutions, agents to improve solutions globally and locally, and agents to destroy bad solutions.

Chapter 5 imparts the novelty in the existing A-Teams used, which improves the A-Teams

optimization framework in terms of making it computationally efficient. By integrating a new

component called the Predictor Agent, the framework incorporates machine learning capabilities

into the route optimization process, thereby advancing its overall performance and effectiveness.

The Predictor Agent implements a supervised Ensemble learning model with k-Nearest Neigh-

bors, Support Vector Machines and Decision Trees. The developed framework is demonstrated

to generate near-optimal solutions faster than the existing methods. This computational effi-

ciency opens up the capabilities of this multi-agent optimization framework to be applied on

163

autonomous mobile robots operating in dynamically changing environments. Hence, it was vali-

dated in actual setting by conducting a hardware experiment on a case study scenario subjected

to dynamic changes and the test was successful.

Chapter 6 explores strategies to achieve end-to-end autonomy in the optimization frame-

work. It focuses on implementing a Reinforcement Learning (RL) policy as a high-level hyper-

heuristic that autonomously selects algorithms and their corresponding hyperparameters through-

out the optimization process. This approach enhances computational efficiency and ensures the

entire system operates independently. This RL-Assisted A-Teams method is put to test on a

variety of problem instances and UAV-UGV team configuration and demonstrated the ability

to produce near-optimal solutions more quickly than the previously developed methods. The

proposed method demonstrates the significant impact of integrating Artificial Intelligence to

perform efficient and autonomous optimization.

This approach can be further enhanced by integrating Large Language Models (LLMs)

into the framework. LLMs can analyze performance metrics and historical data from the

optimization algorithms to generate recommendations for optimal hyperparameter settings. By

providing these intelligent suggestions, LLMs help reduce the decision-making burden on the

RL policy, effectively distributing the tasks and improving the overall efficiency and autonomy

of the optimization process.

Chapter 7 gives the information about the software used for the most of the thesis. Python

is primarily utilized for accessing APIs, managing packages, and running custom scripts, while

MATLAB and Python are employed to create plots and figures.

164

The project files can be found in my GitHub page: https://github.com/Subram0212/Dissertation

APPENDICES

165

166

Appendix A

COPYRIGHT PERMISSIONS

In this appendix, we present the copyright permissions for the articles, whose contents were

used in this thesis.

167

Appendix A (Continued)

168

Appendix B

COPYRIGHT PERMISSIONS

In this appendix, we present the copyright permissions for the articles, whose contents were

used in this thesis.

169

Appendix B (Continued)

170

Appendix C

COPYRIGHT PERMISSIONS

In this appendix, we present the copyright permissions for the articles, whose contents were

used in this thesis.

171

Appendix C (Continued)

172

Appendix D

COPYRIGHT PERMISSIONS

In this appendix, we present the copyright permissions for the articles, whose contents were

used in this thesis.

173

Appendix D (Continued)

CITED LITERATURE

1. Maini, P., Sundar, K., Rathinam, S., and Sujit, P.: Cooperative planning for fuel-
constrained aerial vehicles and ground-based refueling vehicles for large-scale cov-
erage. arXiv preprint arXiv:1805.04417, 2018.

2. De Backer, B., Furnon, V., Shaw, P., Kilby, P., and Prosser, P.: Solving vehicle routing
problems using constraint programming and metaheuristics. Journal of Heuristics,
6(4):501–523, 2000.

3. Khuller, S., Malekian, A., and Mestre, J.: To fill or not to fill: The gas station problem.
ACM Transactions on Algorithms (TALG), 7(3):1–16, 2011.

4. Kannon, T. E., Nurre, S. G., Lunday, B. J., and Hill, R. R.: The aircraft routing problem
with refueling. Optimization Letters, 9(8):1609–1624, 2015.

5. Levy, D., Sundar, K., and Rathinam, S.: Heuristics for routing heterogeneous unmanned
vehicles with fuel constraints. Mathematical Problems in Engineering, 2014, 2014.

6. Sundar, K. and Rathinam, S.: Algorithms for routing an unmanned aerial vehicle in
the presence of refueling depots. IEEE Transactions on Automation Science and
Engineering, 11(1):287–294, 2013.

7. Song, B. D., Kim, J., and Morrison, J. R.: Rolling horizon path planning of an autonomous
system of uavs for persistent cooperative service: Milp formulation and efficient
heuristics. Journal of Intelligent & Robotic Systems, 84(1-4):241–258, 2016.

8. Younghoon, C., Youngjun, C., Briceno, S., and Mavris, D. N.: Energy-constrained multi-
uav coverage path planning for an aerial imagery mission using column generation.
Journal of Intelligent & Robotic Systems, 97(1):125–139, 2020.

9. Radzki, G., Golinska-Dawson, P., Bocewicz, G., and Banaszak, Z.: Modelling robust
delivery scenarios for a fleet of unmanned aerial vehicles in disaster relief missions.
Journal of Intelligent & Robotic Systems, 103(4):1–18, 2021.

174

175

10. Lee, A. C., Dahan, M., Weinert, A. J., and Amin, S.: Leveraging suas for infrastructure
network exploration and failure isolation. Journal of Intelligent & Robotic Systems,
93(1-2):385–413, 2019.

11. Albert, A. and Imsland, L.: Combined optimal control and combinatorial optimization for
searching and tracking using an unmanned aerial vehicle. Journal of Intelligent &
Robotic Systems, 95(2):691–706, 2019.

12. Manyam, S. G., Casbeer, D. W., and Sundar, K.: Path planning for cooperative routing
of air-ground vehicles. In 2016 American Control Conference (ACC), pages 4630–
4635, 2016.

13. Petitprez, E., Georges, F., Raballand, N., and Bertrand, S.: Deployment optimization of a
fleet of drones for routine inspection of networks of linear infrastructures. In 2021
International Conference on Unmanned Aircraft Systems (ICUAS), pages 303–310,
2021.

14. Liu, Y., Liu, Z., Shi, J., Wu, G., and Chen, C.: Optimization of base location and pa-
trol routes for unmanned aerial vehicles in border intelligence, surveillance, and
reconnaissance. Journal of Advanced Transportation, 2019, 2019.

15. Bard, J. F., Jarrah, A. I., and Zan, J.: Validating vehicle routing zone construction using
monte carlo simulation. European Journal of Operational Research, 206(1):73–85,
2010.

16. Dondo, R. and Cerdá, J.: A cluster-based optimization approach for the multi-depot
heterogeneous fleet vehicle routing problem with time windows. European journal
of operational research, 176(3):1478–1507, 2007.

17. Ramasamy, S., Reddinger, J.-P. F., Dotterweich, J. M., Childers, M. A., and Bhounsule,
P. A.: Coordinated route planning of multiple fuel-constrained unmanned aerial sys-
tems with recharging on an unmanned ground vehicle for mission coverage. Journal
of Intelligent & Robotic Systems, 106(1):1–18, 2022.

18. Miller, C. E., Tucker, A., and Zemlin, R. A.: Integer programming formulation of traveling
salesman problems. J. ACM, 7:326–329, 1960.

19. Gurobi: Gurobi Optimization LLC. https://www.gurobi.com/, 2021. Online; accessed
Sep 19, 2021.

https://www.gurobi.com/

176

20. Altshuler, Y., Pentland, A., and Bruckstein, A. M.: Optimal dynamic coverage infras-
tructure for large-scale fleets of reconnaissance UAVs. In Swarms and Network
Intelligence in Search, pages 207–238. Springer, 2018.

21. Griffiths, S. R.: Remote terrain navigation for unmanned air vehicles. 2006.

22. Theile, M., Bayerlein, H., Nai, R., Gesbert, D., and Caccamo, M.: UAV coverage path
planning under varying power constraints using deep reinforcement learning. arXiv
preprint arXiv:2003.02609, 2020.

23. Grocholsky, B., Keller, J., Kumar, V., and Pappas, G.: Cooperative air and ground
surveillance. IEEE Robotics & Automation Magazine, 13(3):16–25, 2006.

24. Ghamry, K. A., Kamel, M. A., and Zhang, Y.: Cooperative forest monitoring and fire de-
tection using a team of uavs-ugvs. In 2016 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 1206–1211. IEEE, 2016.

25. Wu, Y., Wu, S., and Hu, X.: Cooperative path planning of uavs & ugvs for a persis-
tent surveillance task in urban environments. IEEE Internet of Things Journal,
8(6):4906–4919, 2020.

26. Baldacci, R., Battarra, M., and Vigo, D.: Routing a heterogeneous fleet of vehicles. In The
vehicle routing problem: latest advances and new challenges, pages 3–27. Springer,
2008.

27. Sundar, K., Venkatachalam, S., and Rathinam, S.: Formulations and algorithms for
the multiple depot, fuel-constrained, multiple vehicle routing problem. In 2016
American Control Conference (ACC), pages 6489–6494. IEEE, 2016.

28. Ren, S., Chen, Y., Xiong, L., Chen, Z., and Chen, M.: Path planning for the marsupial
double-uavs system in air-ground collaborative application. In 2018 37th Chinese
Control Conference (CCC), pages 5420–5425. IEEE, 2018.

29. Mathew, N., Smith, S. L., and Waslander, S. L.: Multirobot rendezvous planning
for recharging in persistent tasks. IEEE Transactions on Robotics, 31(1):128–142,
2015.

30. Ramasamy, S., Reddinger, J.-P. F., Dotterweich, J. M., Childers, M. A., and Bhounsule,
P. A.: Cooperative route planning of multiple fuel-constrained unmanned aerial

177

vehicles with recharging on an unmanned ground vehicle. In 2021 International
Conference on Unmanned Aircraft Systems (ICUAS), pages 155–164. IEEE, 2021.

31. Huang, C., Yuan, B., Li, Y., and Yao, X.: Automatic parameter tuning using bayesian op-
timization method. In 2019 IEEE Congress on Evolutionary Computation (CEC),
pages 2090–2097. IEEE, 2019.

32. Henrio, J., Deligne, T., Nakashima, T., and Watanabe, T.: Route planning for multiple
surveillance autonomous drones using a discrete firefly algorithm and a bayesian
optimization method. Artificial Life and Robotics, 24(1):100–105, 2019.

33. Pilat, M. L. and White, T.: Using genetic algorithms to optimize acs-tsp. In International
workshop on ant algorithms, pages 282–287. Springer, 2002.

34. Google: Google OR-tools. https://developers.google.com/optimization, 2021. On-
line; accessed Feb 2, 2021.

35. Rossi, F., Van Beek, P., and Walsh, T.: Handbook of constraint programming. Elsevier,
2006.

36. Shaw, P., Furnon, V., and De Backer, B.: A constraint programming toolkit for local
search. In Optimization software class libraries, pages 219–261. Springer, 2003.

37. Tatsch, C. A. A.: Route Planning for Long-Term Robotics Missions. West Virginia Uni-
versity, 2020.

38. Voudouris, C. and Tsang, E. P.: Guided local search. In Handbook of metaheuristics, pages
185–218. Springer, 2003.

39. Voudouris, C., Tsang, E. P., and Alsheddy, A.: Guided local search. In Handbook of
metaheuristics, pages 321–361. Springer, 2010.

40. Wang, Q.: Using genetic algorithms to optimise model parameters. Environmental
Modelling & Software, 12(1):27–34, 1997.

41. McKay, M. D., Beckman, R. J., and Conover, W. J.: A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics, 42(1):55–61, 2000.

https://developers.google.com/optimization

178

42. Shukla, A., Pandey, H. M., and Mehrotra, D.: Comparative review of selection tech-
niques in genetic algorithm. In 2015 international conference on futuristic trends on
computational analysis and knowledge management (ABLAZE), pages 515–519.

IEEE, 2015.

43. Sokolov, A. and Whitley, D.: Unbiased tournament selection. In Proceedings of the
7th annual conference on Genetic and evolutionary computation, pages 1131–1138,
2005.

44. Song, Y. and Scaramuzza, D.: Policy search for model predictive control with application
to agile drone flight. IEEE Transactions on Robotics, 2022.

45. Hu, D., Gan, V. J., Wang, T., and Ma, L.: Multi-agent robotic system (mars) for uav-
ugv path planning and automatic sensory data collection in cluttered environments.
Building and Environment, 221:109349, 2022.

46. Gao, W., Luo, J., Zhang, W., Yuan, W., and Liao, Z.: Commanding cooperative ugv-uav
with nested vehicle routing for emergency resource delivery. IEEE Access, 8:215691–
215704, 2020.

47. Lakas, A., Belkhouche, B., Benkraouda, O., Shuaib, A., and Alasmawi, H. J.: A
framework for a cooperative uav-ugv system for path discovery and planning.
In 2018 International Conference on Innovations in Information Technology (IIT),
pages 42–46. IEEE, 2018.

48. Girma, A., Bahadori, N., Sarkar, M., Tadewos, T. G., Behnia, M. R., Mahmoud, M. N., Ka-
rimoddini, A., and Homaifar, A.: Iot-enabled autonomous system collaboration for
disaster-area management. IEEE/CAA Journal of Automatica Sinica, 7(5):1249–
1262, 2020.

49. Venkatachalam, S., Sundar, K., and Rathinam, S.: A two-stage approach for routing multi-
ple unmanned aerial vehicles with stochastic fuel consumption. Sensors, 18(11):3756,
2018.

50. Mondal, M. S., Ramasamy, S., and Bhounsule, P.: A bilevel optimization framework for
fuel-constrained uav-ugv cooperative routing: Planning and experimental valida-
tion. arXiv preprint arXiv:2303.02315, 2023.

51. Ramasamy, S., Mondal, M. S., Reddinger, J.-P. F., Dotterweich, J. M., Humann, J. D.,
Childers, M. A., and Bhounsule, P. A.: Heterogenous vehicle routing: compar-

179

ing parameter tuning using genetic algorithm and bayesian optimization. In 2022
International Conference on Unmanned Aircraft Systems (ICUAS), pages 104–113.
IEEE, 2022.

52. Boyd, S., Boyd, S. P., and Vandenberghe, L.: Convex optimization. Cambridge university
press, 2004.

53. Sachdev, S.: Explorations in asynchronous teams. Doctoral dissertation, Carnegie Mellon
University, 1998.

54. Talukdar, S., Ramesh, V., et al.: Cooperative methods for security planning. 1992.

55. Jkedrzejowicz, P. and Ratajczak-Ropel, E.: Reinforcement learning strategy for solv-
ing the resource-constrained project scheduling problem by a team of a-teams.
In Asian Conference on Intelligent Information and Database Systems, pages 197–
206. Springer, 2014.

56. Kazemi, A., Fazel Zarandi, M., and Moattar Husseini, S.: A multi-agent system to
solve the production–distribution planning problem for a supply chain: a ge-
netic algorithm approach. The International Journal of Advanced Manufacturing
Technology, 44(1):180–193, 2009.

57. Jedrzejowicz, P. and Ratajczak-Ropel, E.: Experimental evaluation of a-teams solving
resource availability cost problem. In Intelligent Decision Technologies 2019, pages
213–223. Springer, 2020.

58. Rabak, C. S. and Sichman, J. S.: Using a-teams to optimize automatic insertion of electronic
components. Advanced Engineering Informatics, 17(2):95–106, 2003.

59. Barbucha, D., Czarnowski, I., Jkedrzejowicz, P., Ratajczak-Ropel, E., and Wierzbowska, I.:
Team of a-teams-a study of the cooperation between program agents solving diffi-
cult optimization problems. In Agent-based optimization, pages 123–141. Springer,
2013.

60. Rachlin, J., Goodwin, R., Murthy, S., Akkiraju, R., Wu, F., Kumaran, S.,
and Das, R.: A-teams: An agent architecture for optimization and
decision-support. In International Workshop on Agent Theories, Architectures,
and Languages, pages 261–276. Springer, 1999.

180

61. Maini, P., Sundar, K., Singh, M., Rathinam, S., and Sujit, P.: Cooperative aerial–
ground vehicle route planning with fuel constraints for coverage applications. IEEE
Transactions on Aerospace and Electronic Systems, 55(6):3016–3028, 2019.

62. Tokekar, P., Vander Hook, J., Mulla, D., and Isler, V.: Sensor planning for a symbi-
otic uav and ugv system for precision agriculture. IEEE transactions on robotics,
32(6):1498–1511, 2016.

63. Zhang, M., Liang, H., and Zhou, P.: Cooperative route planning for fuel-constrained ugv-
uav exploration. In 2022 IEEE International Conference on Unmanned Systems
(ICUS), pages 1047–1052. IEEE, 2022.

64. Liu, Y., Luo, Z., Liu, Z., Shi, J., and Cheng, G.: Cooperative routing problem for ground
vehicle and unmanned aerial vehicle: The application on intelligence, surveillance,
and reconnaissance missions. IEEE Access, 7:63504–63518, 2019.

65. Seyedi, S., Yazicioğlu, Y., and Aksaray, D.: Persistent surveillance with energy-constrained
uavs and mobile charging stations. IFAC-PapersOnLine, 52(20):193–198, 2019.

66. Blum, C., Puchinger, J., Raidl, G. R., and Roli, A.: Hybrid metaheuristics in combinatorial
optimization: A survey. Applied Soft Computing, 11(6):4135–4151, 2011.

67. Jedrzejowicz, P. and Ratajczak-Ropel, E.: Experimental evaluation of a-teams solving
resource availability cost problem. In Intelligent Decision Technologies 2019:
Proceedings of the 11th KES International Conference on Intelligent Decision

Technologies (KES-IDT 2019), Volume 1, pages 213–223. Springer, 2019.

68. Milano, M. and Roli, A.: Magma: a multiagent architecture for metaheuristics. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(2):925–
941, 2004.

69. Nigam, N., Bieniawski, S., Kroo, I., and Vian, J.: Control of multiple uavs
for persistent surveillance: Algorithm description and hardware demonstra-
tion. In AIAA Infotech@ Aerospace Conference and AIAA Unmanned... Unlimited
Conference, page 1852, 2009.

70. Karapetyan, N., Asghar, A. B., Bhaskar, A., Shi, G., Manocha, D., and Tokekar, P.: Ag-
cvg: Coverage planning with a mobile recharging ugv and an energy-constrained
uav. arXiv preprint arXiv:2310.07621, 2023.

181

71. Ni, J., Wang, X., Tang, M., Cao, W., Shi, P., and Yang, S. X.: An improved real-time
path planning method based on dragonfly algorithm for heterogeneous multi-robot
system. IEEE Access, 8:140558–140568, 2020.

72. Ma, N., Cao, Y., Wang, X., Wang, Z., and Sun, H.: A fast path re-planning method
for uav based on improved a* algorithm. In 2020 3rd International Conference on
Unmanned Systems (ICUS), pages 462–467, 2020.

73. Martínez-Rozas, S., Rey, R., Alejo, D., Acedo, D., Cobano, J. A., Rodríguez-Ramos, A.,
Campoy, P., Merino, L., and Caballero, F.: An aerial/ground robot team for
autonomous firefighting in urban gnss-denied scenarios. 2022.

74. Mondal, M. S., Ramasamy, S., Humann, J. D., Reddinger, J.-P. F., Dotterweich, J. M.,
Childers, M. A., and Bhounsule, P. A.: Cooperative multi-agent planning framework
for fuel constrained uav-ugv routing problem, 2023.

75. Ramasamy, S., Mondal, M. S., Reddinger, J.-P. F., Dotterweich, J. M., Humann, J. D.,
Childers, M. A., and Bhounsule, P. A.: Solving vehicle routing problem for un-
manned heterogeneous vehicle systems using asynchronous multi-agent architec-
ture (a-teams). In 2023 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 95–102. IEEE, 2023.

76. Hurwitz, A. M., Dotterweich, J. M., and Rocks, T. A.: Mobile robot battery life estima-
tion: battery energy use of an unmanned ground vehicle. In Energy Harvesting
and Storage: Materials, Devices, and Applications XI, volume 11722, pages 24–40.
SPIE, 2021.

77. Mullen, K., Ardia, D., Gil, D. L., Windover, D., and Cline, J.: Deoptim: An r package
for global optimization by differential evolution. Journal of Statistical Software,
40(6):1–26, 2011.

78. Ramasamy, S., Mondal, M. S., Humann, J. D., Dotterweich, J. M., Reddinger, J.-P. F.,
Childers, M. A., and Bhounsule, P. A.: Computationally efficient multi-agent op-
timization framework for online routing of uav-ugv system. In 2024 IEEE 20th
International Conference on Automation Science and Engineering (CASE), pages

204–211. IEEE, 2024.

79. Lotfi, N. and Acan, A.: Learning-based multi-agent system for solving combinatorial
optimization problems: A new architecture. In Hybrid Artificial Intelligent

182

Systems: 10th International Conference, HAIS 2015, Bilbao, Spain, June 22-24,
2015, Proceedings 10, pages 319–332. Springer, 2015.

80. Cowling, P., Kendall, G., and Soubeiga, E.: A hyperheuristic approach to scheduling
a sales summit. In Practice and Theory of Automated Timetabling III: Third
International Conference, PATAT 2000 Konstanz, Germany, August 16–18, 2000
Selected Papers 3, pages 176–190. Springer, 2001.

81. Cowling, P., Kendall, G., and Han, L.: An investigation of a hyperheuristic genetic
algorithm applied to a trainer scheduling problem. In Proceedings of the 2002
Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), volume 2,
pages 1185–1190. IEEE, 2002.

82. Grobler, J., Engelbrecht, A. P., Kendall, G., and Yadavalli, V. S.: Heuristic space diver-
sity control for improved meta-hyper-heuristic performance. Information Sciences,
300:49–62, 2015.

83. Sabar, N. R., Ayob, M., Kendall, G., and Qu, R.: A dynamic multiarmed bandit-gene
expression programming hyper-heuristic for combinatorial optimization problems.
IEEE Transactions on Cybernetics, 45(2):306–315, 2015.

84. Lagoudakis, M. G., Littman, M. L., et al.: Algorithm selection using reinforcement learning.
In ICML, pages 511–518, 2000.

85. Armstrong, W., Christen, P., McCreath, E., and Rendell, A. P.: Dynamic algorithm selec-
tion using reinforcement learning. In 2006 international workshop on integrating ai
and data mining, pages 18–25. IEEE, 2006.

86. Garrido-Castro, R., Turke, A., and van Woensel, T.: A flexible and adaptive hyper-heuristic
approach for (dynamic) capacitated vehicle routing problems. European Journal of
Operational Research, 222(1):111–122, 2012.

87. Yao, Y., Peng, Z., and Xiao, B.: Parallel hyper-heuristic algorithm for multi-objective
route planning in a smart city. IEEE Transactions on Vehicular Technology,
67(11):10307–10318, 2018.

88. Mosadegh, H., Ghomi, S. F., and Süer, G. A.: Stochastic mixed-model assembly line se-
quencing problem: Mathematical modeling and q-learning based simulated anneal-
ing hyper-heuristics. European Journal of Operational Research, 282(2):530–544,
2020.

183

89. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

VITA

SUBRAMANIAN RAMASAMY

EDUCATION Ph.D., Mechanical Engineering, University of Illinois at Chicago,
Chicago, IL, 2025.
B.E., Mechanical Engineering, Sri Sivasubramaniya Nadar College
of Engineering, Anna University, Chennai, TN, India, 2019.

RESEARCH Research Assistant, University of Illinois at Chicago
Jan. 2025 – Apr. 2025

TEACHING Teaching Assistant, University of Illinois at Chicago
Aug. 2024 – Dec. 2024

RESEARCH Research Assistant, University of Illinois at Chicago
Jan. 2023 – Aug. 2024

EXPERIENCE Operations Research Intern, Amtrak
May. 2022 – Dec. 2022

RESEARCH Research Assistant, University of Illinois at Chicago
Oct. 2020 – Apr. 2022

PUBLICATIONS Journal Publications
Ramasamy, S., Reddinger, J.-P. F., Dotterweich, J. M., Childers,
M. A., and Bhounsule, P. A.: Coordinated route planning of mul-
tiple fuel-constrained unmanned aerial systems with recharging on
an unmanned ground vehicle for mission coverage. Journal of In-
telligent & Robotic Systems, 106(1):118, 2022.
Mondal, M. S., Ramasamy, S., Humann, J. D., Reddinger, J.-
P. F., Dotterweich, J. M., Childers, M. A., and Bhounsule, P. A.:
Cooperative multi-agent planning framework for fuel constrained
uav-ugv routing problem, 2023.

Conference Publications
Ramasamy, S., Reddinger, J.-P. F., Dotterweich, J. M., Childers,
M. A., and Bhounsule, P. A.: Cooperative route planning of mul-
tiple fuel-constrained unmanned aerial vehicles with recharging on
an unmanned ground vehicle. In 2021 International Conference on
Unmanned Aircraft Systems (ICUAS), pages 155164. IEEE, 2021.

184

185

Ramasamy, S., Mondal, M. S., Reddinger, J.-P. F., Dotterwe-
ich, J. M., Humann, J. D., Childers, M. A., and Bhounsule, P.
A.: Heterogenous vehicle routing: comparing parameter tuning
using genetic algorithm and bayesian optimization. In 2022 In-
ternational Conference on Unmanned Aircraft Systems (ICUAS),
pages 104113. IEEE, 2022.
Ramasamy, S., Mondal, M. S., Reddinger, J.-P. F., Dotterwe-
ich, J. M., Humann, J. D., Childers, M. A., and Bhounsule, P. A.:
Solving vehicle routing problem for unmanned heterogeneous vehi-
cle systems using asynchronous multi-agent architecture (a-teams).
In 2023 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 95102. IEEE, 2023.

Ramasamy, S., Mondal, M. S., Humann, J. D., Dotterweich, J.
M., Reddinger, J.-P. F., Childers, M. A., and Bhounsule, P. A.:
Optimizing routes of heterogenous unmanned systems using super-
vised learning in a multi-agent framework: A computational study.
In 2024 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 286294. IEEE, 2024.

Ramasamy, S., Mondal, M. S., Humann, J. D., Dotterweich, J.
M., Reddinger, J.-P. F., Childers, M. A., and Bhounsule, P. A.:
Computationally efficient multi-agent optimization framework for
online routing of uav-ugv system. In 2024 IEEE 20th International
Conference on Automation Science and Engineering (CASE), pages
204211. IEEE, 2024.

Mondal, M. S., Ramasamy, S., and Bhounsule, P.: A bilevel
optimization framework for fuel-constrained uav-ugv cooperative
routing: Planning and experimental validation. arXiv preprint
arXiv:2303.02315, 2023.

Mondal, M. S., Ramasamy, S., Humann, J. D., Reddinger, J.-
P. F., Dotterweich, J. M., Childers, M. A., and Bhounsule, P.:
Optimizing fuel-constrained uav-ugv routes for large scale coverage:
Bilevel planning in heterogeneous multi-agent systems.

186

Mondal, M. S., Ramasamy, S., Humann, J. D., Dotterweich, J.
M., Reddinger, J.- P. F., Childers, M. A., and Bhounsule, P.: A
robust uav-ugv collaborative framework for persistent surveillance
in disaster management applications. In 2024 International Con-
ference on Unmanned Aircraft Systems (ICUAS), pages 12391246.
IEEE, 2024.

Mondal, M. S., Ramasamy, S., and Bhounsule, P.: An Attention-
aware Deep Reinforcement Learning Framework for UAV-UGV
Collaborative Route Planning. In 2024 International Conference on
Intelligent Robots and Systems (IROS), pages 13687-13694. IEEE,
2024.

PRESENTATIONS Conference Presentations

2024 IEEE International Conference on Automation Science and
Engineering (CASE 2024)
2024 IEEE International Conference on Unmanned Aircraft Sys-
tems (ICUAS 2024)
2023 IEEE International Conference on Unmanned Aircraft Sys-
tems (ICUAS 2023)
2022 IEEE International Conference on Unmanned Aircraft Sys-
tems (ICUAS 2022)
2021 IEEE International Conference on Unmanned Aircraft Sys-
tems (ICUAS 2021)

Poster Presentations
2024 Midwest Robotics Workshop (MWRW 2024)

MEMBERSHIPS IEEE Student Member

	to1 Introduction
	Expected significance
	Contributions
	A Bi-level Optimization Algorithm for Solving Collaborative Heterogeneous Routing Problem
	A-Teams: An Optimization Framework to Solve for UGV-UAV Routing
	Computationally Efficient Framework: Proposed Variant of A-Teams and its practical applicability
	RL-Assisted A-Teams for Adaptive Algorithm Selection in UGV-UAV Optimization

	to2 BACKGROUND
	Vehicle Routing Problem
	Vehicle Routing Problem for Unmanned Aerial Vehicles
	Multiple Unmanned Aerial Vehicle Routing Problem
	Multiple Unmanned Aerial Vehicle Routing Problem with Unmanned Ground Vehicle as mobile recharging vehicle
	Solving cooperative UAV-UGV routing as bi-level optimization problem
	Formulating and solving UGV Routing
	Formulating UAV Routing as Energy-Constrained Vehicle Routing Problem (E-VRP) and solving using Exact Methods

	to3 Heterogeneous VRP: Bi-Level Optimization by performing Genetic Algorithm Tuning for UGV Routing and Graph Local Search for UAV Routing
	INTRODUCTION
	METHODS
	Problem statement
	Solution approach
	Heuristics for UGV (Outer-loop)
	Optimizing UAV route (Inner-loop)
	Solution using Constraint Programming (CP)
	Optimizing the parameters of the UGV heuristics
	Genetic Algorithm
	Bayesian Optimization

	RESULTS
	DISCUSSION
	CONCLUSIONS AND FUTURE WORK

	to4 Solving Vehicle Routing Problem for Unmanned Heterogeneous Vehicle Systems using Asynchronous Multi-Agent Architecture (A-Teams)
	INTRODUCTION
	METHODS
	Conventional Two-level optimization
	Description of the proposed architecture - A-Teams
	Nelder-Mead algorithm

	Heuristics for UGV (Outer-level)
	Optimizing UAV route (Inner-level)

	RESULTS
	DISCUSSION
	CONCLUSIONS AND FUTURE WORK

	to5 Computationally Efficient Multi-Agent Optimization Framework for Online Routing of UAV-UGV System: Variant of A-Teams
	INTRODUCTION
	RELATED WORK
	METHODS
	Problem formulation
	Proposed optimization framework
	Solving outer-level UGV routing using Asynchronous Teams (A-Teams) framework
	Solving E-VRP for inner-level UAV routing

	Hardware setup

	RESULTS
	Evaluation of the proposed framework
	Hardware re-planning with dynamic changes

	DISCUSSION
	CONCLUSION

	to6 Reinforcement Learning Assisted A-Teams for Adaptive Algorithm Selection in UAV-UGV Optimization Process
	INTRODUCTION
	RELATED WORK
	METHODS
	Problem statement
	Method 1: GA at outer-level and Constraint Programming (CP) at inner-level
	Method 2: Conventional A-Teams at outer-level and CP at inner-level
	A-Teams with Predictor Agent at outer-level and CP at inner-level
	Solving outer-level UGV routing using Asynchronous Teams (A-Teams) framework with Predictor Agent

	Reinforcement Learning framework for High-level Decision Making
	Policy Objective Function
	Advantage Estimation
	Value Function Loss
	Total Objective Function
	Neural Network Architecture
	Solving E-VRP for inner-level UAV routing

	RESULTS
	Study 1: Comparison of different methods across various task point distributions with 1 UAV and 1 UGV routing
	Study 2: Comparison of different methods across various task point distributions with multi-UAV and 1 UGV routing
	Study 3: Case Study - Bridge Inspection Using Autonomous Vehicle System

	DISCUSSION
	CONCLUSION

	to7 Softwares Used
	Optimization method

	to8 Conclusion
	to APPENDICES
	to Appendix A
	to Appendix B
	to Appendix C
	to Appendix D
	to CITED LITERATURE
	to VITA

