
Autonomous Dynamic Grasping with a Robotic Arm: Real-Time Motion

Prediction and Adaptive Control

BY

SIMONE UGHETTO
B.S., Politecnico di Torino, Turin, Italy, 2023

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Chicago, 2025

Chicago, Illinois

Defense Committee:

Piergiorgio L. E. Uslenghi, Chair
Pranav A. Bhounsule, Advisor, Mechanical and Industrial Engineering
Marcello Chiaberge, Politecnico di Torino

ACKNOWLEDGMENTS

I want to express my deepest gratitude to all those who supported me throughout my

academic journey and the completion of my Master’s thesis.

Firstly and most importantly, a debt of gratitude is owed to my advisor, Professor Pranav A.

Bhounsule, for entrusting me with this project. His invaluable support, patience, and guidance

provided me with an exceptional opportunity to delve into the field of robotics and manipulators.

My sincere thanks are also extended to the members of my defense committee, Professor

Marcello Chiaberge and Professor Piergiorgio L. E. Uslenghi for their valuable and constructive

advice and feedback.

I would also like to thank all my lab colleagues for fostering a constructive and collaborative

work environment.

Last but not least, I extend my heartfelt gratitude to my family and girlfriend, who have

been unconditionally encouraging and supportive at any time, allowing me to pursue my dreams.

SU

ii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Dynamic grasping . 1
1.2 Motivations . 2
1.3 Document structure . 4
1.4 Additional notes . 5

2 RELATED WORK . 6
2.1 Static grasping in robotic manipulation 6
2.2 Dynamic grasping: real-time perception, prediction, and control . . 6
2.3 Loco-manipulation: combining locomotion and arm-based manipu-

lation . 8

3 MOTION CONTROL ARCHITECTURE 11
3.1 Kinematic modeling . 11
3.1.1 Robot arm description . 11
3.1.2 Forward kinematics . 13
3.1.3 Inverse kinematics . 18
3.2 Differential kinematics . 27
3.2.1 Geometric Jacobian . 28
3.2.2 Analytic Jacobian . 29
3.2.3 Inverse Jacobian . 32
3.3 Trajectory Planning . 34
3.3.1 Multi-DOF planning with Ruckig . 34
3.3.2 Grasp point estimation . 36
3.3.3 Motion-aware end-effector orientation strategy 36
3.3.4 Main Trajectory . 40
3.3.5 Stop trajectory . 43
3.3.6 Go-to-rest trajectory . 44
3.3.7 Discretization and Conversion of the Trajectory 45
3.4 Gripper Trajectory Planner . 46
3.5 Relative state estimation . 48
3.5.1 Streaming of position data . 48
3.5.2 Velocity estimation of rigid bodies from position data 49
3.5.3 Relative state estimation in the robot’s reference frame 52
3.5.4 End-effector kinematics data . 54
3.6 Grasp-attempt decision logic and state machine 54
3.6.1 Predictive trajectory analysis and grasp triggering conditions 57

iii

TABLE OF CONTENTS (continued)

CHAPTER PAGE

3.6.2 Gripper actuation logic . 64
3.6.3 Direction change detection and grasp plan adaptation 65
3.6.4 Post-grasp reset and reinitialization 66

4 ROS 2 INTEGRATION AND SIMULATION FRAMEWORK . 67
4.1 ROS 2 Humble as middleware backbone 67
4.1.1 Motivation and relevant features . 67
4.1.2 Integration with Interbotix X‑Series ROS 2 packages 69
4.2 Joint-Trajectory Controller as Final Execution Interface 70
4.3 Gazebo environment and simulation setup 72
4.3.1 Gazebo and ROS 2 integration for realistic simulations 72
4.3.2 Simulation scenario for dynamic grasping 74
4.3.3 Insights derived from simulation experiments 76

5 HARDWARE SET-UP AND EXPERIMENTS 79
5.1 Hardware overview . 79
5.1.1 Robotic arm . 79
5.1.2 Objects . 80
5.1.3 Mobile base (UGV) . 82
5.1.4 Motion capture system . 83
5.2 DYNAMIXEL Position Controller PID Tuning 87
5.3 Experiment protocols and evaluation metrics 92
5.3.1 Testing at different speeds . 93
5.3.2 Testing variations in velocity magnitude 98
5.3.3 Testing changes in direction . 100

6 EXPERIMENTAL RESULTS . 104
6.1 Computational performance of the dynamic grasping control system 104
6.2 Performance and accuracy across different relative velocities 104
6.3 Performance and accuracy in dynamic scenarios 122

7 CONCLUSIONS . 127

APPENDICES . 131
Appendix A . 132
Appendix B . 133
Appendix C . 139

CITED LITERATURE . 144

VITA . 147

iv

LIST OF TABLES

TABLE PAGE
I WIDOWX 250 S SERVO MAPPING AND JOINT LIMITS. 12
II WIDOWX 250 S SPECIFICATIONS . 14
III DENAVIT-HARTENBERG PARAMETERS FOR WIDOWX 250 S 16
IV DYNAMIXEL POSITION CONTROLLER GAINS, CONVERSION EQUA-

TIONS, AND RANGES [1][2]. 89
V FIRMWARE AND PHYSICAL CONTROL-LOOP GAINS FOR EACH

JOINT OF WIDOWX 250 S. 91
VI TRACKING ERROR VERSUS RELATIVE SPEED FOR JOINT POSI-

TIONS (rad) AND JOINT VELOCITIES (rad/s). 119
VII TRACKING ERROR VERSUS RELATIVE SPEED FOR END-EFFECTOR

POSITION (m) AND END-EFFECTOR ORIENTATION (QUATERNION
ERROR). 120

v

LIST OF FIGURES

FIGURE PAGE
1 WidowX 250 S with highlighted motors. Adapted from [3]: modifications

by the author. 13
2 WidowX 250 S technical drawing with Denavit-Hartenberg frames. Adapted

from [4]: modifications by the author. 17
3 Wrist-center position vector pwc from the end-effector pose p. 19
4 3D view (a) and top view (b) of the kinematic chain from the base frame

up to the wrist center, with the wrist center position pwc decomposed. . . . 22
5 Geometric analysis of links 1 and 2 to solve joints 2 (Shoulder, q2) and 3

(Elbow, q3) given the wrist center position. 23
6 Example of desired end-effector orientation based on the object’s motion. . 38
7 Main phases of the trajectory to grasp a moving object. 42
8 Simplified finite state machine of the dynamic grasping control system. . . 55
9 Illustration of the key variables involved in the grasp triggering logic in a

typical scenario. 61
10 Overall architecture of the simulated dynamic grasping system. 74
11 Simulation setup in Gazebo, showing all the rigid bodies involved in the

exchange. 75
12 Main phases of the trajectory executed in simulation for dynamic object

grasping. 78
13 WidowX 250 S bolted to an aluminum base, equipped with motion-capture

markers. 80
14 Sample test objects with motion‑capture marker configurations. 81
15 Clearpath Husky A200 UGV supporting the WidowX manipulator and com-

puting platform. 82
16 Integrated loco-manipulation system: WidowX 250 S, Husky A200, and

offboard computer. 84
17 OptiTrack’s Primex 13 motion capture camera. 85
18 Motion capture markers. 85
19 Rigid bodies in Motive software. 86
20 Overview of the complete hardware and software architecture for dynamic

grasping. 87
21 Block diagram of the DYNAMIXEL position controller including internal

PID and feedforward (velocity and acceleration) controllers, anti-windup,
and output limiter [1][2]. 88

22 Sequence illustrating a successful grasp as the Husky–WidowX system moves
linearly at 25 cm/s beside the target object. 94

23 Sequence illustrating a successful grasp at 18 cm/s from the point of view
of the mobile system. 97

vi

LIST OF FIGURES (continued)

FIGURE PAGE

24 WidowX grasping a stationary red cylinder after a sudden stop of Husky. . 99
25 Sequence illustrating a successful grasp after direction changes of the object. 102
26 Ideal (dashed) vs. actual (solid) joint position trajectories for the six arm

joints during dynamic grasping at a relative object speed of 0.25m/s. The
joint-space RMSE is 0.254 rad. 106

27 Ideal (dashed) vs. actual (solid) joint velocity trajectories for the six arm
joints during dynamic grasping at a relative object speed of 0.25 m/s. The
joint-space velocity RMSE is 0.9285 rad. 107

28 Ideal (dashed) vs. actual (solid) end-effector pose trajectories at a relative
object speed of 0.25 m/s. The RMSE is 0.0186 m for position and 0.052
(unitless) for orientation in quaternion space. 108

29 Euclidean distance between the end-effector and the object over time during
a test at a relative object speed of 0.25 m/s. 111

30 Actual trajectories of the end-effector (solid) and the object (dashed) in the
base frame of WidowX 250 S at a relative object speed of 0.25 m/s. 112

31 Ideal (dashed) vs. actual (solid) joint position trajectories for the six arm
joints during dynamic grasping at a relative object speed of 0.35m/s. The
joint-space RMSE is 0.3059 rad. 114

32 Ideal (dashed) vs. actual (solid) joint velocity trajectories for the six arm
joints during dynamic grasping at a relative object speed of 0.35 m/s. The
joint-space velocity RMSE is 1.302 rad. 115

33 Ideal (dashed) vs. actual (solid) end-effector pose trajectories at a relative
object speed of 0.35 m/s. The RMSE is 0.0353 m for position and 0.0441
(unitless) for orientation in quaternion space. 116

34 Euclidean distance between the end-effector and the object over time during
a test at a relative object speed of 0.35 m/s. 117

35 Actual trajectories of the end-effector (solid) and the object (dashed) in the
base frame of WidowX 250 S at a relative object speed of 0.35 m/s. 118

36 Success rate of the dynamic grasping control system as a function of relative
object speed, comparing results obtained in simulation and on hardware. . 121

37 End‐effector (solid) and object (dashed) 3D trajectories in the direction‐change
test performed at a relative speed of 0.10 m/s. 124

38 Euclidean distance between end‐effector and object over time during the
direction‐change test performed at a relative speed of 0.10 m/s. 125

39 Ideal (dashed) vs. actual (solid) joint position trajectories for the six arm
joints during dynamic grasping at a relative object speed of 0.05m/s. The
joint-space RMSE is 0.2112 rad. 134

40 Ideal (dashed) vs. actual (solid) joint velocity trajectories for the six arm
joints during dynamic grasping at a relative object speed of 0.25 m/s. The
joint-space velocity RMSE is 0.9373 rad. 135

vii

LIST OF FIGURES (continued)

FIGURE PAGE

41 Ideal (dashed) vs. actual (solid) end-effector pose trajectories at a relative
object speed of 0.25 m/s. The RMSE is 0.0126 m for position and 0.0282
(unitless) for orientation in quaternion space. 136

42 Euclidean distance between the end-effector and the object over time during
a test at a relative object speed of 0.05 m/s. 137

43 Actual trajectories of the end-effector (solid) and the object (dashed) in the
base frame of WidowX 250 S at a relative object speed of 0.05 m/s. 138

44 End‐effector (solid) and object (dashed) 3D trajectories in a test during
which the relative velocity was lowered from 0.20 m/s to 0.10 m/s. 140

45 Euclidean distance between end‐effector and object over time in a test during
which the relative velocity was lowered from 0.20 m/s to 0.10 m/s. 141

46 End‐effector (solid) and object (dashed) 3D trajectories in a test during
which the relative velocity was dropped to zero. 142

47 Euclidean distance between end‐effector and object over time in a test during
which the relative velocity was dropped to zero. 143

viii

LIST OF ABBREVIATIONS

DOF Degrees of freedom

UGV Unmanned ground vehicle

ROS Robot operating system

RGB Red, green, and blue

RGB-D Red, green, blue, and depth

LSTM Long short-term memory

PID Proportional-integral-derivative

3D Three-dimensional

6D Six-dimensional

MPC Model predictive control

DH Denavit-Hartenberg

URDF Unified robot description format

API Application programming interface

MoCap Motion capture

QoS Quality of state

SDK Software development kit

EE End-effector

ix

SUMMARY

Dynamic grasping of moving objects represents one of the most challenging and actively

researched areas in robotic manipulation. Unlike static grasping, this task requires the inte-

gration of perception, prediction, and control in real-time. Typical approaches involve tracking

the target’s position in real-time using vision-based systems, estimating its velocity, and gener-

ating tailored Cartesian-space trajectories to ensure the robot’s end-effector coincides with the

object’s position at the precise time required for successful grasping.

The presented work addresses the development, optimization, and hardware implementation

of a novel control algorithm for dynamic grasping. The research utilizes the ROS 2 framework

alongside the WidowX 250 S robotic arm, which features six degrees of freedom. This con-

figuration allows for autonomous grasping of objects in motion while dynamically adapting to

alterations in their trajectory, which are not necessarily restricted in space.

To achieve this objective, a motion capture system continuously monitors the target’s po-

sition relative to the manipulator, streaming real-time data to the robot’s controller, which

estimates the relative velocity. Based on these estimates and predefined constraints, the con-

troller intelligently determines the optimal timing to initiate the grasp sequence, predicting the

target’s trajectory and evaluating its transit in the dynamically computed reachable workspace

of the robotic arm, determined at runtime using an efficient analytic inverse kinematics func-

tion tailored to the robot. Additionally, an advanced adaptive trajectory planner generates

detailed trajectories, including position, orientation, velocity, and acceleration for the robot’s

x

SUMMARY (continued)

end-effector, in under a millisecond. These trajectories are then relayed to the motor controllers,

ensuring precise and coordinated motion.

Finally, experimental validation confirms that the developed adaptive dynamic grasping

algorithm performs as expected, demonstrating high repeatability and accuracy, effectively

showcasing its robustness in real-world scenarios.

xi

CHAPTER 1

INTRODUCTION

1.1 Dynamic grasping

Robotic technology has revolutionized industrial automation since its inception in the 1960s,

when robotic arms were first introduced to streamline repetitive manufacturing processes. Ini-

tially adopted primarily in automotive manufacturing, robotic manipulators rapidly expanded

their presence across various industries due to their precision, repeatability, and ability to per-

form tasks under challenging environmental conditions. Today, robotic arms are indispensable

tools in numerous sectors, including manufacturing, logistics, agriculture, and healthcare, sig-

nificantly enhancing productivity and consistency and, at the same time, handling tasks that

could potentially be harmful or wearing for human beings.

One fundamental task robotic arms perform across industries is grasping, which is essen-

tial for pick-and-place operations, assembly tasks, and object sorting. Traditionally, grasping

operations have been conducted in static environments where objects are stationary and their

positions known beforehand. However, increasing demands for efficiency and adaptability in

dynamic environments, such as warehouses with moving conveyors or agricultural fields with

harvesting robots, have propelled research toward dynamic grasping, a challenging but highly

rewarding domain.

Dynamic grasping involves accurately identifying, tracking, and capturing objects in motion.

Unlike static grasping, it requires integrating advanced perception techniques, real-time motion

1

2

prediction, and adaptive control algorithms. Successfully implementing dynamic grasping has

the great potential to significantly reduce the cycle time of pick-and-place operations, enhancing

overall operational efficiency and flexibility. In addition, robotic arms capable of grasping mov-

ing targets can be effectively integrated into complex environments, including those involving

mobile robots. This integration combines locomotion and manipulation, thereby facilitating

the execution of tasks while consistently adapting to the dynamic characteristics of the sur-

roundings. As a result, these robotic systems can operate without interrupting their functions

or requiring other robots to alter their original tasks.

1.2 Motivations

The ability to grasp objects at a nonzero relative speed with respect to a robot arm offers

significant advantages over a static framework. First of all, it enables more time-efficient oper-

ations, especially when performed in a sequence with other tasks. At the same time, it could

preserve task continuity in a multi-robot environment, where the action of a subsystem does

not need to pause the motion of other devices and interrupt other processes.

However, despite significant advancements, dynamic grasping remains a challenging and

actively evolving area within robotics. The complexities inherent in real-time perception and

control, uncertainties in object motion, and the necessity for swift and precise robotic responses

contribute to the ongoing research in this field. Addressing these challenges necessitates the

integration of robotic manipulators, advanced vision systems, and mobile robotic platforms.

Such integration holds substantial promise across various sectors, including manufacturing,

warehousing, agriculture, and construction.

3

In automated warehouse environments, efficiency in handling products is paramount. The

deployment of mobile robots equipped with manipulators and integrated vision systems can

facilitate the transfer of items between moving platforms without necessitating halts in their

operation. This capability enables seamless exchanges of products and packages during transit,

thereby enhancing throughput and reducing downtime. Furthermore, quality control processes

can be optimized; for instance, defective items identified by vision systems during transportation

can be selectively removed without rerouting entire consignments, thus preserving the efficiency

of the supply chain.

In the agricultural sector, adopting UGVs equipped with robotic arms presents opportu-

nities to revolutionize harvesting processes. These mobile manipulators can navigate through

orchards and fields, harvesting delicate fruits from trees and bushes without necessitating stops.

Continuous motion harvesting not only increases productivity but also minimizes the physical

stress on crops, preserving their quality.

Similarly, space operations can benefit significantly from advancements in dynamic grasp-

ing. Robotic manipulators mounted on servicing spacecraft can autonomously capture satellites

or space debris that are spinning or tumbling unpredictably. Such autonomous grasping in mi-

crogravity conditions demands precision, real-time motion estimation, and delicate handling

to ensure mission success and to avoid secondary motion disturbances. This capability is cru-

cial for satellite servicing, repair missions, and active debris removal, enhancing safety and

sustainability in space operations.

4

The convergence of mobility, perception, and manipulation in robotic systems is pivotal for

advancing automation across these sectors. By enabling robots to interact dynamically with

their environments, we can address current limitations and unlock new potential in efficiency

and functionality.

1.3 Document structure

This thesis begins with Chapter 1, providing an introduction to dynamic grasping, high-

lighting its significance, and establishing the motivations behind this research. It also briefly

outlines the document structure for clear navigation throughout the dissertation.

Chapter 2 presents related work, exploring foundational and contemporary research in

robotic grasping. It focuses specifically on static grasping, real-time dynamic grasping in-

volving perception, prediction, and control, and introduces loco-manipulation, which combines

locomotion and arm-based manipulation.

Chapter 3 details the methods and software architecture central to the dissertation. This

chapter initially covers the kinematic modeling of the robotic arm, describing both forward and

inverse kinematics and incorporating differential kinematics. It then delves into grasp deci-

sion logic, state machine implementation, and trajectory planning, providing a comprehensive

overview of the theoretical and practical approaches used.

Chapter 4 describes the simulation framework developed to validate the proposed method-

ologies and algorithms.

Chapter 5 presents the experimental results from hardware implementations, showcasing

the practical application and performance of the developed techniques.

5

The results from simulations and experiments are discussed and analyzed in Chapter 6,

ensuring a clear understanding of the achievements and limitations of this research.

Finally, Chapter 7 concludes the thesis, summarizing key findings and providing suggestions

for future research directions.

1.4 Additional notes

Let us now define a brief list of remarks that are relevant for a clearer understanding of the

following chapters:

• Vectors and matrices are consistently represented in boldface type to ensure clarity and

consistency in mathematical notation across all textual content, tabular data, and graph-

ical representations.

• When expanded to show their elements, vectors will be denoted by round brackets and

matrices with square brackets.

CHAPTER 2

RELATED WORK

2.1 Static grasping in robotic manipulation

Initial efforts in robotic grasping targeted static objects within well-defined environments.

These systems generally assumed perfect knowledge of the object’s geometry and location, and

mainly focused on obtaining a good quality and efficient grasp of objects. Planning algorithms

such as those in GraspIt! [5] used 3D object models and sampled candidate grasp poses,

optimized using metrics like grasp quality or wrench space analysis [6].

Analytic solutions to inverse kinematics and pre-computed trajectories were typically suf-

ficient in static scenes. However, these approaches are insufficient under uncertainties or vari-

ations in the targets’ pose. Moreover, their reliance on complete prior models and rigid scene

structure limited their practical deployment in dynamic environments.

2.2 Dynamic grasping: real-time perception, prediction, and control

Compared to the extensive research on grasping stationary objects and relative sub-problems,

fewer studies have tackled the more complex challenges of grasping moving objects, which there-

fore have not been explored to the same extent. One of the first contributions in this area is

the research conducted by Houshangi [7], who developed an adaptive control framework that

allows a robotic manipulator to grasp a moving target using vision-based feedback. Recognizing

that vision systems inherently introduce latency due to image processing, the study proposed a

real-time prediction strategy based on an autoregressive model. This model leveraged past posi-

6

7

tional data to predict the future trajectory of the target, enabling the manipulator’s end-effector

to anticipate the target’s movement and effectively align with its expected future position. The

controller was demonstrated on a Puma 600 robot using a fixed monocular vision system.

Around the same period, Allen et al. [8] proposed a complementary approach focused on

robotic hand-eye systems, which means the camera and manipulator were rigidly connected.

Their method emphasized high-speed visual tracking of moving objects and real-time coordina-

tion between cameras and end-effector. In particular, by embedding the vision system directly

into the manipulator’s structure, the authors significantly reduced latencies and calibration

complexities.

Moving to very recent developments, a noteworthy contribution is the real-time dynamic

grasping system proposed by XiaoYang et al. [9], which integrates an eye-in-hand RGB-D

camera (Intel RealSense D435i) mounted on a UR5 industrial manipulator. Developed in a

ROS framework, their system performs real-time tracking and grasping of objects moving along

a conveyor belt with translational motion only. A fixation approximation-based visual feed-

back control strategy is implemented, which computes end-effector offset via depth sensing and

continuously refines the robot’s trajectory using PID control. Motion planning is handled by

an enhanced RRT-Connect algorithm, allowing smooth, real-time trajectories to be generated.

The system demonstrates good reliability and accuracy, with successful grasps in a controlled

lighting environment and target speeds lower than about 0.15m/s.

A parallel learning-based approach was introduced by Zhang et al. [10], who proposed a

dynamic behavior cloning framework enhanced with temporal feature prediction. Instead of

8

relying uniquely on visual feedback or classical planning, their system learns to determine the

future grasping point and time from historical trajectory data using LSTM-based sequence

modeling. The key innovation over standard techniques is that this method enables the robot

to act proactively rather than reactively, improving grasp success in scenarios with predictable

motion patterns. Their method outperformed standard model-based planners in dynamic object

pickup tasks where trajectory regularity was present.

A related approach was presented by Nguyen et al. [11], who developed a zero-shot grasping

system that combines 6D pose estimation with model-predictive control. Their method uses

FoundationPose, a vision-based pose estimation framework, to estimate the object’s pose and

MP-TrajOpt (Model Predictive Trajectory Optimization) to optimize the end-effector trajec-

tory. The system updates pose estimates at 30 Hz and replans trajectories at 10 Hz, allowing

it to adjust its motion in response to changes in the target’s position. In addition, the frame-

work supports task specification through natural language, which is translated into grasp goals

using a vision-language model. The proposed system operates without requiring retraining for

specific tasks, and the experiments show that it is able to grasp moving objects accurately by

continuously integrating visual feedback into the planning process.

2.3 Loco-manipulation: combining locomotion and arm-based manipulation

While most traditional grasping approaches assume a fixed-base manipulator, many real-

world applications require robots to move through their environment while interacting with

objects. This is where loco-manipulation comes into play. Integrating dynamic grasping into

9

these tasks can significantly boost efficiency and flexibility, especially in cooperative or not

entirely predictable settings where objects are not stationary.

Recent research has made notable progress in enabling quadrupedal robots with arms to

perform complex loco-manipulation behaviors. Sleiman et al. [12] introduced a planning and

control framework based on bilevel trajectory optimization and multicontact reasoning. Their

system was designed for the ANYmal robot and can handle multi-stage tasks like opening doors

or pushing objects, where the robot must coordinate its limbs and base to maintain balance

while interacting with the environment. Instead of relying on predefined motion sequences,

the planner incrementally builds a tree of possible contact and motion combinations, using a

combination of MPC and whole-body tracking to follow the best path. This allows the robot

to switch between different contact modes, like using its legs or arms for pushing, depending

on the situation.

Another example is RoLoMa, proposed by Weerasekera et al. [13], which focuses on making

loco-manipulation more robust in real-world scenarios. The framework uses a hierarchical

planner that combines kinodynamic planning, motion planning that considers both kinematic

and dynamic constraints, and compliant whole-body control, allowing the robot to adapt to

unexpected events like terrain changes or object slippage. One of the key features of RoLoMa

is its ability to adjust grasping strategies on the fly, making it suitable for field tasks such as

clearing debris or turning valves. It prioritizes flexibility over rigid planning, which makes it

especially useful in dynamic or partially known environments.

10

Besides pure legged platforms, wheeled mobile manipulators are also part of the loco-

manipulation landscape. Jiang et al. [14] presented a learning-based whole-body controller

for a hybrid robot with both wheels and legs. Their system is trained to follow 6D end-effector

pose trajectories by coordinating the motion of the arm and the base together. This is par-

ticularly useful when the robot operates in tight or cluttered spaces, as it can adjust its base

position and arm configuration in tandem to maintain reachability and avoid obstacles. The

use of reinforcement learning allows the robot to handle a range of tasks without relying on

hand-crafted behaviors.

Altogether, these approaches demonstrate that dynamic grasping, combined with locomo-

tion, can make robotic systems much more capable of performing manipulation tasks in com-

plex, changing environments. As these platforms continue to evolve, their ability to collaborate,

adapt, and execute tasks smoothly while in motion will be key to deploying robots in real-world

settings

CHAPTER 3

MOTION CONTROL ARCHITECTURE

3.1 Kinematic modeling

3.1.1 Robot arm description

Before deriving the forward and inverse kinematics, we first introduce the physical structure

of the robotic arm under study. The robot model is WidowX 250 S, manufactured by Trossen

Robotics. For brevity, throughout this dissertation, we will often refer to it simply as WidowX.

As shown in Figure 1, the system consists of a 6-degree-of-freedom serial-link manipulator

driven by nine DYNAMIXEL servomotors: seven of the XM430-W350-T units and two of the

XL430-W250-T units. Together, these servomotors actuate the arm’s six joints [15][16]. Each

of the six arm joints is a single-axis revolute joint, providing one degree of rotational freedom

about its axis.

To enhance clarity, all joints are explicitly named following the naming convenition adopted

by Trossen Robotics, as shown in Table I, facilitating consistent referencing throughout this

thesis.

Note that only the Shoulder and Elbow joints employ dual motors. This design choice arises

from the significant torque required to lift the entire downstream kinematic chain, including

subsequent joints, the end-effector, and the carried payload. Given the size and torque con-

straints, a single motor would either fail to reliably meet operational torque requirements or

11

12

TABLE I: WIDOWX 250 S SERVO MAPPING AND JOINT LIMITS.

Joint
Joint limits

Servo ID(s)
Min Max

Waist (Joint 1) −180◦ 180◦ 1

Shoulder (Joint 2) −108◦ 114◦ 2 + 3

Elbow (Joint 3) −123◦ 92◦ 4 + 5

Forearm Roll (Joint 4) −180◦ 180◦ 6

Wrist Angle (Joint 5) −100◦ 123◦ 7

Wrist Rotate (Joint 6) −180◦ 180◦ 8

Gripper 30 mm 74 mm 9

run excessively hot under continuous load. A secondary (”shadow”) servo in parallel effec-

tively doubles available torque at these critical joints, ensuring reliable operation and improved

thermal management.

Additionally, WidowX 250 S includes embedded feedback sensors within each DYNAMIXEL

motor, allowing precise position, velocity, and torque control. This facilitates robust motion

planning, dynamic adaptation during manipulation tasks, and improved overall operational

safety and efficiency.

All the specifications are summarized in the table below [15]:

13

Figure 1: WidowX 250 S with highlighted motors. Adapted from [3]: modifications by the

author.

3.1.2 Forward kinematics

Forward kinematics refers to the computation of the robot’s end-effector pose from a given

set of joint angles q. The pose encompasses both the position and orientation of the end-effector

with respect to a predefined reference frame. In the following, we provide the derivation of the

forward kinematic function for WidowX 250 S, which is an open-chain manipulator, using

Denavit-Hartenberg parameters, which constitute a systematic and conventional method for

kinematic analysis. The end-effector’s pose can be mathematically characterized by specifying

the position vector of its origin along with the unit vectors that define its attached coordinate

14

TABLE II: WIDOWX 250 S SPECIFICATIONS

Degrees of freedom 6 degrees

Reach 650 mm

Span 1300 mm

Repeatability 1 mm

Accuracy 5-8 mm

Servomotors Seven XM430-W350-T, Two XL430-W250-T

Power supply 12 V - 5 A

Weight 2.8 kg

frame, where all quantities are referenced to the coordinate system of the robot’s base. This

complete representation is efficiently encoded using a homogeneous transformation matrix, ex-

pressed as T b
e (q), in which the subscript e denotes the end-effector coordinate frame and the

superscript b designates the base coordinate frame [17]. The Denavit-Hartenberg convention

provides a systematic approach for determining the relative position and orientation between

two consecutive links in a kinematic chain. This method follows a specific set of rules for

defining both the reference frames of the links and the parameters that describe the relative

transformation between them. The four DH parameters are conventionally denoted as follows:

• a: Link length;

15

• α: Link twist;

• d: Link offset;

• θ: Joint angle.

These parameters are employed to construct the homogeneous transformation matrix between

two consecutive frames (i− 1 and i), which follows the standard DH structure:

T i−1
i (qi) =



cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1


. (3.1)

It is important to note that each homogeneous transformation matrix from frame i to frame

i − 1 depends only on one of the four parameters, referred to as the joint variable [17]. Since

WidowX manipulator has only revolute joints, the joint variable qi of joint i always corresponds

to the joint angle θi, up to a constant offset. By applying the DH convention and utilizing

WidowX’s specifications and technical drawings, all the DH parameters can be determined and

are summarized in Table III. Note that δ is a constant whose value is atan2(0.25, 0.05) ≈ 78.69◦

(see Figure 3). This constant is introduced based on the robot’s structure to align the joint

variables’ zero position with the motors’ presets. Figure 2 illustrates the chosen link frames

overlaid on the side view of the robot arm’s technical drawing.

16

TABLE III: DENAVIT-HARTENBERG PARAMETERS FOR WIDOWX 250 S

Joint a (m) α (rad) d (m) θ (rad)

1 0 −π
2

0.11025 q1

2 0.25495 0 0 q2 − δ

3 0 −π
2

0 q3 −
(π
2
− δ

)
4 0

π

2
0.250 q4

5 0 −π
2

0 q5

6 0 0 0.15875 q6

The reference frame (frame 0), whose origin position along the z-axis is technically non-

unique according to the DH convention, is chosen to match the default position and orientation

of the base frame in the URDF file of the manipulator, an XML-based model that defines

its physical and kinematic structure, essentially considered the blueprint of the robot used to

simulate, control, and visualize it. This choice allows the subscript 0 to be interchanged with the

superscript b in our notation. To ensure that the end-effector frame is perfectly aligned with the

base frame when the arm is in its home position (where all joint positions equal zero), as shown

17

Figure 2: WidowX 250 S technical drawing with Denavit-Hartenberg frames. Adapted from

[4]: modifications by the author.

in Figure 2, an additional constant homogeneous transformation matrix T 6
e is incorporated into

the matrix multiplication and is given as follows:

T 6
e =



0 0 1 0

0 −1 0 0

1 0 0 0

0 0 0 1


. (3.2)

18

This transformation is essentially a pure rotation that accounts for the desired end-effector

orientation. The complete forward kinematic function is obtained by pre-multiplying all trans-

formation matrices from the base frame to the end-effector frame:

T b
e (q) = T 0

e (q) = T 0
1 (q1)T

1
2 (q2)T

2
3 (q3)T

3
4 (q4)T

4
5 (q5)T

5
6 (q6)T

6
e (3.3)

This equation represents the complete forward kinematic transformation that maps the joint

space configuration q to the end-effector pose in the base frame coordinate system.

3.1.3 Inverse kinematics

Working with relative position between robotic arm and target in the Cartesian space, real-

time grasp planning necessitates evaluating the inverse kinematics mapping the end-effector pose

xe =
(
p⊤
e ,ϕ

⊤
e

)⊤ into the joint position vector q at a very fast rate, to allow operation with

little to no delay. Although iterative numerical methods such as Gauss–Newton or Levenberg–

Marquardt can find solutions, they may result in greater latency overall, indeterminism when

the initial guess is not good enough, and risk converging to undesirable or suboptimal solutions.

WidowX, being a 6-DOF manipulator with a spherical wrist, allows decoupling the inverse

kinematics into a positional component (q1, q2, q3), represented by the wrist center position, and

an orientation component (q4, q5, q6), that represents the end-effector orientation. An analytic

solution therefore exists, delivering deterministic and high-speed computation of the order of a

few milliseconds and circumventing the drawbacks mentioned above.

19

Figure 3: Wrist-center position vector pwc from the end-effector pose p.

In this derivation, the zero position for each joint is chosen to ensure a one-to-one corre-

spondence with the robot’s motor presets.

The analytical inverse kinematics solution begins by computing the wrist center, which is

the point of intersection of the axes of the three joints that form the spherical wrist (Forearm

Roll, Wrist Angle, Wrist Rotate, in the case of WidowX). Given a target end-effector position

pe and attitude ϕe (expressed with a quaternion or Euler angles), the latter is first converted

to rotation matrix form R0
e = [ae, se,ne], then the wrist-center position pwc is computed by

20

offsetting the end-effector position by the known distance d6 from Table III along its approach

vector ae:

pwc = pe − d6ae. (3.4)

Note that, as mentioned above, by design choice, the approach direction of the end-effector is

along the x-axis of its frame. From this result, the ”cylindrical coordinates” of the wrist center

relative to the base frame, visible in Figure 4a, are given by:

rwc = ±
√
p2wc,x + p2wc,y, zwc = pwc,z − d1. (3.5)

They are not technically cylindrical coordinates, since rwc should also assume negative values

to represent all feasible poses accurately. To attach a meaningful sign, the following steps are

performed. First, the horizontal distance of the wrist center from the base z‑axis is evaluated

as the magnitude:

r∗wc =
√
p2wc,x + p2wc,y > 0. (3.6)

Then, the horizontal unit vector is constructed as:

ue =
(pe,x, pe,y, 0)

⊤

∥(pe,x, pe,y, 0)⊤∥
(3.7)

and the following scalar projection is computed:

s = (pwc,x, pwc,y, 0)
⊤ · ue. (3.8)

21

The signed radial distance is then given by:

rwc =


r∗wc if s ≥ 0,

−r∗wc if s < 0.

(3.9)

A negative value of rwc signals that the wrist center lies on the opposite side of the z‑axis of

the base frame with respect to the center of the end-effector (also known as the tool center

point). This single sign flip lets the subsequent formulas for q1, q2, and q3 yield the correct

configuration without extra branching.

At this point, the first joint angle can be obtained by applying simple trigonometry (see

Figure 4b) and is directly computed as:

q1 = atan2(pwc,y, pwc,x), (3.10)

with a predetermined fallback approach if rwc → 0 to handle shoulder singularities robustly

(Figure 4). The use of atan2, together with the signed values of pwc,y and pwc,x guarantees a

solution in (−π, π), which also corresponds to the range of feasible positions for the Waist joint.

Now that joint 1 is solved, the position of joints 2 and 3 can be determined by geometrically

analyzing links 1 and 2 on the xy-plane of frame 1. Although the same wrist center position

yields two possible inverse kinematic solutions, commonly referred to as the elbow-up and elbow-

down configurations, the following analysis will focus exclusively on the elbow-up solution, as

it is the only configuration relevant to the application at hand. Figure 5 shows an example

22

(a) (b)

Figure 4: 3D view (a) and top view (b) of the kinematic chain from the base frame up to the

wrist center, with the wrist center position pwc decomposed.

configuration and all the geometric entities involved. In this figure, both q2 and q3 are inwards,

hence positive when clockwise. Moreover, the position of the links for which their value is zero

is indicated by a thin blue line: following the adopted convention, the image then shows a

configuration for which q3 is negative. Given the lengths a2 and d4 from the DH parameters of

Table III, the distance ∥p′
wc∥ between shoulder and wrist center is:

∥∥p′
wc

∥∥ =
√
r2wc + z2wc. (3.11)

23

Figure 5: Geometric analysis of links 1 and 2 to solve joints 2 (Shoulder, q2) and 3 (Elbow, q3)

given the wrist center position.

Applying the law of cosines (Figure 5):

cos(π − α) = cos(δ + q3) = − cos(α) =
∥p′

wc∥
2 − a22 − d24
2a2d4

(3.12)

The joint angles q2 and q3 are then computed as:

q2 = δ − (β + γ), (3.13)

q3 = π − α− δ, (3.14)

24

where δ = atan2(0.25, 0.05) ≈ 1.373 rad is the same angle present in Table III and shown in

Figure 3, and angles β, γ can be obtained as:

β = atan2(zwc, rwc), (3.15)

γ = atan2(d4 sin(π − α), a2 + d4 cos(π − α)). (3.16)

Note that the quantity cos(π − α) also has another fundamental role: it determines whether

the analyzed Cartesian pose actually has a feasible solution in the joint space. In fact, if

∣∣∣∣∣∥p′
wc∥

2 − a22 − d24
2a2d4

∣∣∣∣∣ > 1 =⇒ |cos(π − α)| > 1, (3.17)

the inverse kinematics problem admits no solution, and the target pose is out of reach. This is

a key feature that will be later recalled, as it is employed in the logic that determines whether

to start the grasp sequence.

Once the first three joint variables are determined, we can proceed to solve for the wrist

joints. By utilizing the same matrix construction method and DH parameters as in the forward

kinematics function, we can compute the homogeneous transformation matrix T b
3 (q1, q2, q3).

From this matrix, we can isolate Rb
3 and calculate the residual orientation R3

6 as follows:

R3
6 = (Rb

3)
⊤Rb

6, with Rb
6 = Rb

e(R
6
e)

⊤. (3.18)

25

Note that in order to work with the standard rotation matrix for spherical wrists (in our case

R3
6), it is necessary to ”remove” the extra transformation from frame 6 to the end-effector

frame (R6
e). Cartesian positions of the gripper will be based on the end-effector-specific frame

described in the analysis of the forward kinematics. The rotation matrix for the WidowX

spherical wrist, expressed with respect to the DH frames of Figure 2, expands to:

R3
6(q4, q5, q6) = R3

4(q4)R
4
5(q5)R

5
6(q6) (3.19)

=


c4 0 s4

s4 0 −c4

0 1 0




c5 0 −s5

s5 0 c5

0 −1 0




c6 −s6 0

s6 c6 0

0 0 1

 (3.20)

=


c4c5c6 − s4s6 −c4c5s6 − s4c6 −c4s5

s4c5c6 + c4s6 −s4c5s6 + c4c6 −s4s5

s5c6 −s5s6 c5

 , (3.21)

with the shorthands ci = cos qi and si = sin qi. From this matrix:

s5 = ±
√(

R3
6(1,3)

)2
+
(
R3

6(2,3)

)2
, (3.22)

c5 = R3
6(3,3)

. (3.23)

26

Because of the indeterminacy on the sign of s5, the fifth joint admits two mathematically

distinct values:

q
(A)
5 = atan2(+s5, c5), (3.24)

q
(B)
5 = atan2(−s5, c5), (3.25)

corresponding to the two possible (mirrored) orientations of the Wrist Angle joint. If s5 < 10−3

(chosen threshold), the wrist is in a singular configuration, and the solver sets:

q4 = 0, (3.26)

q5 = 0, (3.27)

q6 = atan2
(
R3

6(2,1)
, R3

6(1,1)

)
. (3.28)

Otherwise, two geometrically valid branches exist:

qA5 = atan2(s5, c5), q
A
4 = atan2

(
−R3

6(2,3)
,−R3

6(1,3)

)
, qA6 = atan2

(
−R3

6(3,2)
, R3

6(3,1)

)
, (3.29)

qB5 = atan2(−s5, c5), qB4 = atan2
(
R3

6(2,3)
, R3

6(1,3)

)
, qB6 = atan2

(
R3

6(3,2)
,−R3

6(3,1)

)
. (3.30)

By default, the implementation evaluates the squared Euclidean norms:

∥∥(qA4 , qA5 , qA6)∥∥2 and
∥∥(qB4 , qB5 , qB6)∥∥2 (3.31)

27

and retains the branch with the smaller value. This heuristic selects the solution nearest to the

origin in joint space (and typically closest to the current configuration), thereby ensuring smooth

wrist motion and avoiding abrupt orientation flips when the target pose varies incrementally.

Overall, this analytic inverse kinematic function uses fundamental trigonometric operations

and a few small matrix multiplications, and ensures execution times of a few microseconds.

3.2 Differential kinematics

While forward and inverse kinematics establish the relationship between joint positions and

end-effector pose, differential kinematics extends this analysis to the velocity domain and tries

to capture the relationship between joint and end-effector velocities through the manipulator

Jacobian matrix, which for a 6-DOF serial manipulator like WidowX is square (6 × 6). This

mathematical framework becomes particularly crucial for dynamic grasping applications, where

the robot must execute smooth, coordinated motions while tracking moving objects or adapting

to changing target poses in real-time.

Since the end-effector’s rotational velocity can be represented as either an angular velocity

vector in space or as time rates of orientation changes, two types of Jacobian matrices arise in

robotic differential kinematics: the geometric Jacobian and the analytic Jacobian.

Irrespective of the adopted framework, however, the following relation always holds:

ẋe = J(q)q̇ (3.32)

28

where ẋe, q̇ ∈ R6 are respectively the end-effector spatial velocity (or twist) and the joint

velocity vectors. This relationship also shows that the Jacobian matrix is a function of the joint

configuration q, which implies that it is not a fixed entity and needs to be computed at runtime

for each configuration under analysis.

3.2.1 Geometric Jacobian

When the end-effector spatial velocity vector ẋe is given as the combination of linear velocity

ve ∈ R3 and angular velocity ωe ∈ R3 of the end-effector expressed in the base frame, the link

between ẋe and q̇ is provided by the geometric Jacobian J(q).

Because all joints of WidowX are revolute, the i-th column of J is

Ji =

zi−1 × (pe − pi−1)

zi−1

 , i = 1, . . . , 6, (3.33)

where the symbol × is used to denote the cross-product and the geometric entities are ex-

tracted from the homogeneous transformation matrices computed using the DH parameters

from Table III:

• pi−1 ∈ R3: position vector of the origin of frame i − 1 relative to frame 0, namely the

base frame, obtained as the translational component of T 0
i−1(q) [17];

• zi−1 ∈ R3: unit vector along the z-axis of frame i − 1 expressed in the base frame,

extracted as the third column of the rotation matrix R0
i−1 from T 0

i−1(q);

• pe ∈ R3: position vector of the end-effector origin with respect to the base frame, obtained

from T 0
e (q).

29

The transformation matrices are computed sequentially as usual:

T 0
i−1 = T 0

1 · T 1
2 (q2) · · ·T i−2

i−1 (qi−1) (3.34)

and each individual transformation T j−1
j (qj) follows the standard DH structure presented in

Section 3.1.2. From each transformation matrix T 0
i−1, the required geometric quantities are

then easily extracted as:

T 0
i−1 =

R0
i−1 pi−1

0T 1

 (3.35)

zi−1 = R0
i−1 · (0, 0, 1)⊤ = third column of Ri−1. (3.36)

This form of the Jacobian matrix allows a more intuitive representation of the rotational

motion of the end-effector as it moves through three-dimensional space.

3.2.2 Analytic Jacobian

Unlike the geometric Jacobian, the analytic Jacobian JA(q,ϕe) maps joint velocities q̇ to

the time derivative of the end-effector pose expressed in terms of position and Euler angle rates:

ẋa =

ṗe

ϕ̇e

 = JA(q,ϕe)q̇ (3.37)

where ϕe = (φe, θe, ψe)
T denotes the Z-Y-X intrinsic Euler angles (roll–pitch–yaw).

30

The angular velocity ωe of the end-effector is related to the Euler angle rates through a

configuration-dependent transformation:

ωe = T (ϕe)ϕ̇e (3.38)

with the transformation matrix given by:

T (ϕe) =


1 0 − sin θe

0 cosφe cos θe sinφe

0 − sinφe cos θe cosφe

 (3.39)

To compute the Euler angle rates from angular velocity, the inverse of this matrix is applied:

ϕ̇e = T−1(ϕe)ωe (3.40)

where the inverse has the explicit form:

T−1(ϕe) =


1 sinφe tan θe cosφe tan θe

0 cosφe − sinφe

0 sinφe/ cos θe cosφe/ cos θe

 (3.41)

Note that T−1(ϕe) becomes singular when cos θe = 0, corresponding to pitch angles of θe =

±π/2. This condition, that occurs when the Euler representation loses rank, is known as gimbal

lock and results in the loss of one degree of freedom in orientation control. To avoid undesired

31

behavior, this singularity must be carefully accounted for during the design and implementa-

tion of trajectory planning algorithms, particularly when joint velocities are computed from

end-effector velocities expressed using Euler angle rates. In practice, to mitigate numerical

instability, the value of cos θe can be clipped to a small nonzero threshold near zero (e.g., 10−4)

during computation to ensure safe matrix inversion.

To incorporate this relationship into the Jacobian, we define the block transformation matrix

TA(ϕe) ∈ R6×6 for which:

T−1
A (ϕe) =

 I3 03×3

03×3 T−1(ϕe)

 (3.42)

It is important to note that the angular component of the geometric Jacobian J(q) typically

expresses angular velocities in the end-effector frame, whereas the matrix T−1(ϕe) expects them

in the base frame. Therefore, before applying T−1, the angular velocity component must be

rotated from the end-effector frame to the base frame using the rotation matrix R0
e derived

from the end-effector orientation:

JA(q,ϕe) =

I3 0

0 T−1(ϕe)R
0
e

J(q) (3.43)

A relevant feature of the analytic Jacobian is its ”dual dependency” on both the joint con-

figuration q and the current end-effector orientation ϕe. This is due to the presence of the

nonlinear, orientation-dependent mapping TA(ϕe), which varies with the pose of the manipu-

lator.

32

The analytic Jacobian is especially beneficial in control frameworks that operate in Euler

angle coordinates, enabling direct control over orientation rates without requiring intermediate

conversions from angular velocity to Euler rate during runtime. However, the analytic Jacobian

has a relevant downside: it does not always exist. In fact, all the angular velocities for which

the end-effector attitude is such that

sin(θe) = 0 (3.44)

cannot be expressed using ϕ̇e. These attitudes, called representation singularities, lead to a null

determinant of the tranformation matrix and should be avoided when planning trajectories in

the Cartesian space with Euler angles rates, that are later converted to joint velocities using

the analytic Jacobian.

3.2.3 Inverse Jacobian

The inverse of the Jacobian matrix plays a critical role in differential kinematics, particularly

when solving for joint velocities given a desired end-effector velocity:

q̇ = J−1(q) ẋe (3.45)

where J−1(q) denotes the inverse of the Jacobian.

For square and full-rank Jacobian matrices, like in the case of WidowX, the inverse is

uniquely defined. However, in redundant or near-singular configurations, a regular inverse does

not exist or may yield numerically unstable solutions. To address this, we employ the damped

least squares (DLS) method, which provides a robust approximation even near singularities.

33

Given the singular value decomposition of the Jacobian:

J = UΣV T (3.46)

where Σ = diag(σ1, . . . , σr) contains the singular values, the damped pseudoinverse is defined

as:

J† = V Σ†UT (3.47)

with the regularized inverse of each singular value given by:

σ†i =
σi

σ2i + λ2
(3.48)

where λ > 0 is the damping factor.

In practice, a small threshold ε is used to distinguish well-conditioned Jacobians. When the

minimum singular value satisfies mini(σi) > ε, the undamped pseudoinverse is used:

J−1 = V Σ−1UT (3.49)

Otherwise, the damped pseudoinverse J† is computed using Equation 3.47, and adopted in

place of J−1.

This technique ensures numerical stability and smooth joint motions even in configurations

close to singularities.

34

3.3 Trajectory Planning

Effective execution of dynamic grasping tasks, particularly those involving objects with

non-zero relative velocities with respect to the robot’s base frame, demands precise trajectory

control to accurately synchronize the robot end-effector with the target object. Under such

circumstances, Cartesian-space trajectory planning is preferred over joint-space planning due

to its inherent ability to directly manage the end-effector’s position and orientation at each time

step. This explicit control simplifies the enforcement of precision constraints and task-specific

requirements, such as maintaining a constant orientation or following a predefined geometric

path.

However, Cartesian-space planning comes with certain drawbacks. Notably, it requires

continuous computation of inverse kinematics within the control loop, and it does not inherently

avoid singularities. These limitations can be significantly mitigated by avoiding known singular

configurations and by employing the analytic inverse kinematic function previously derived in

Subsection 3.1.3.

In the following subsections, we present all the elements, considerations, and strategies

adopted to generate time-optimal end-effector trajectories required for grasping objects under-

going constant linear motion with respect to the robot.

3.3.1 Multi-DOF planning with Ruckig

Planning trajectories for dynamic grasping of moving objects necessitates a high degree

of flexibility and responsiveness, as well as the ability to accommodate non-zero initial and

final velocities. Additionally, it is crucial to consider the full range of constraints, including

35

maximum allowable velocity and acceleration of the robot end-effector, as well as the current

and target state (position and velocity) of the end-effector.

To satisfy these demanding requirements, the Ruckig library was adopted. Ruckig is a state-

of-the-art motion planning library specifically designed for robotic applications, offering jerk-

limited and highly time-optimized trajectory generation for multi-degree-of-freedom systems.

It produces solutions in extremely short computation times, typically under 1 ms [18][19]. The

framework also allows users to define a minimum duration for a trajectory, which acts as a soft

constraint. If no feasible trajectory satisfies the constraints within this minimum duration, the

solver computes the shortest possible trajectory that still fulfills all requirements.

Since Ruckig outputs profiles for position, velocity, and acceleration across each degree of

freedom, the most practical approach for handling orientation components is to use Euler an-

gles. Although quaternions generally provide better robustness against singularities in rotation

representation, Euler angles are more suitable for integration with Ruckig’s API, which enables

specifying custom constraints per degree of freedom. This integration can directly influence

the computed duration of the trajectory. As a consequence of this design choice, any potential

issues related to gimbal lock are addressed separately during the computation of the target

orientation.

It is important to note that each generated trajectory requires, in addition to kinematic

constraints, accurate input regarding both the object’s current position and velocity in the

base frame and the end-effector’s current state in the same reference frame.

36

3.3.2 Grasp point estimation

The predicted grasp point is computed using a straightforward linear extrapolation, under

the assumption of constant object velocity. Letting pobj denote the current position and vobj

the linear velocity of the object, the future grasp point at time tgrasp is estimated as:

pgrasp = pobj + vobjtgrasp (3.50)

This basic extrapolation plays a crucial role in the generation of the main trajectory during

the grasping phase, as it defines the spatial goal that the end-effector must reach.

3.3.3 Motion-aware end-effector orientation strategy

By design, even though the grasp point can be predicted in advance, the robot arm is

programmed to track the object for a brief period before executing the grasp. This strategy

serves two main purposes. First, it allows the controller to remain adaptive to sudden variations

in the object’s relative motion, ensuring smoother and more reactive behavior from the end-

effector, particularly when the object’s velocity changes in magnitude or direction. Second,

and equally important, is the fact that the gripper requires some time to close to the desired

aperture (approximately 0.7 s). This duration practically introduces significant uncertainty

when attempting to perform a grasp with a static end-effector positioned at a predicted grasp

point. If the gripper closes too early or too late, the object may no longer be within its grasping

range, resulting in failure. This issue is further exacerbated by the fact that the required timing

for a successful grasp depends on the size of the object—the larger the object, the earlier the

37

gripper can begin to close. Consequently, achieving consistent success with a purely predictive

approach would demand an impractically high level of precision and tight synchronization across

sensing, planning, and actuation subsystems. By allowing the arm to hover and track the object

briefly before grasping, the system effectively mitigates these risks and increases the robustness

of the grasping behavior. To facilitate this behavior while avoiding premature contact with the

object, the desired orientation of the end-effector is dynamically adjusted based on the observed

motion. This orientation computation assumes that the object either rests on or moves along

a surface (not necessarily horizontal) and is never suspended freely in space.

If the object is in motion, the direction of motion is used as the normal direction of the

end-effector (z-axis):

ze =
vobj

∥vobj∥
. (3.51)

Then, the desired slide direction (y-axis) is computed as a vector orthogonal to the projection

of the velocity on the x0y0-plane:

ye =
(−vobj,y, vobj,x, 0)⊤

∥(−vobj,y, vobj,x, 0)∥
. (3.52)

The negative sign before the y-component is chosen based on the structure of the end-effector’s

local frame, such that the approach direction (x-axis) typically points downward. An example

of a generated desired orientation is shown in Figure 6.

38

Figure 6: Example of desired end-effector orientation based on the object’s motion.

To minimize unnecessary wrist rotations and remain within joint limits, the algorithm eval-

uates whether mirroring the normal direction ze about the base frame z-axis (0, 0, 1) would

result in a better alignment with the object. This is done by comparing the alignment scores:

s+ = z⊤
e pobj , s− =

(
2(z⊤

e z0)z0 − ze

)⊤
pobj (3.53)

where z0 = (0 0 1)⊤. If s− > s+, then the mirrored version is chosen as the new z-axis:

ze ← 2(z⊤
e z0)z0 − ze, ye ← −ye. (3.54)

39

This ensures the end-effector maintains a desirable orientation while minimizing abrupt angular

displacements. Finally, the approach direction (x-axis) is computed as the cross product:

xe = ye × ze. (3.55)

When the object is stationary or its speed is below 1 mm/s, the orientation is derived from

its position vector instead:

ze =
pobj

∥pobj∥
. (3.56)

The slide direction is then computed as:

ye =
(−pobj,y, pobj,x, 0)⊤

∥(−pobj,y, pobj,x, 0)∥
. (3.57)

The orthonormal frame is completed using the same cross product:

xe = ye × ze. (3.58)

With this strategy, when the object is not moving relative to the base frame of WidowX, the

gripper is allowed to approach the object frontally, without any rotation of the Forearm Roll

and the Wrist Rotate joints.

40

Additionally, in both stationary and non-statioray cases, a small corrective rotation about

the y-axis is applied if xe is nearly aligned with the global downward direction [0, 0,−1], in

order to avoid singularities in orientation.

3.3.4 Main Trajectory

As previously discussed, the objective of the main trajectory, which is the one used to grasp

a moving object, is to bring the end-effector above the object, for a short time, with the correct

orientation and a velocity that matches that of the object, to then proceed to approach and

grasp the object.

This main trajectory can be described as a sequence of four distinct yet connected segments:

• First segment: this segment guides the end-effector from its current pose (Figure 7a) to

a position directly above the object, at a distance oa, referred to as the approach offset

(Figure 7b). During this segment, the end-effector adjusts its orientation and velocity to

match those of the object. A little negative contribution to the velocity along the z-axis

is added in order to ”anticipate” the motion of the second segment, allowing to save some

time overall. Notably, this is the only segment in which the orientation of the end-effector

is altered.

• Second segment: this phase moves the gripper from the approach offset oa down to a

closer distance to the object, practically around it, at the grasp offset og, enabling the

robot to prepare for the grasp (Figure 7c).

41

• Third segment: this is a brief constant-velocity segment during which the end-effector

tracks the object while waiting for the gripper to fully close, thereby completing the

grasp.

• Fourth segment: this final phase brings the end-effector to a complete stop.

Both the approach and grasp offsets (oa and og) are configurable parameters that should be

adjusted depending on the object’s dimensions and geometry. Importantly, each segment after

the first uses the final state of the preceding segment as its initial state, ensuring continuity in

both position and velocity across the trajectory. Each of these trajectory segments is computed

independently. This is necessary because the Community Version of Ruckig does not support

the specification of intermediate waypoints that include both position and velocity constraints

[19]. Additionally, this segmentation enables the use of different offline solvers provided by

Ruckig: specifically, the last two segments are computed using a velocity-control approach

without imposing position constraints.

To ensure that the overall trajectory is time-efficient, the trajectory planner dynamically

determines the duration of the first segment, which typically exhibits the greatest variability

due to the uncertain initial distance between the end-effector and the moving object at the time

a new trajectory is generated. This is achieved by solving a preliminary optimization problem

that estimates a lower bound for the segment duration, based on the current distance and the

kinematic limits of the end-effector, which are the maximum velocity and maximum acceleration

of the end-effector. An initial trajectory solution is then computed and its resulting duration

is compared to the estimated lower bound. If the durations match, the solution is accepted

42

(a) (b)

(c) (d)

Figure 7: Main phases of the trajectory to grasp a moving object.

43

and the planner proceeds to solve the second segment. If the computed duration exceeds the

bound, the planner stores the new duration and increases it by 10%. The expected end-effector

state is then re-evaluated using the most recent measurements, and the Ruckig solver is called

again to generate a new solution. This iterative process continues until the duration output by

Ruckig’s solver matches the duration provided as input, ensuring that the end-effector reaches

the predicted target point precisely at the expected time.

The 10% increment is a design choice aimed at relaxing the lower bound constraint. While

this results in a slightly longer trajectory, it reduces the number of iterations needed and thus

accelerates the overall trajectory generation process. The feasibility of this iterative scheme is

enabled by the high computational efficiency of Ruckig’s trajectory generation.

In contrast, the durations of the subsequent trajectory segments are fixed and determined

a priori, based on the velocity and acceleration limits of the end-effector and validated through

simulation testing to ensure grasp success across a wide range of relative velocities. Specifically,

the duration of the first segment typically ranges from 2 s to 4 s, while the second and third

segments are both set to last 1 s. The fourth segment does not have a predetermined duration,

as the planner attempts to decelerate the end-effector to a stop as quickly as possible.

3.3.5 Stop trajectory

While the main trajectory governs the entire grasping motion, it is not sufficient to handle

all dynamic scenarios encountered during execution. To enhance the adaptability of the robotic

arm to changes in the target’s relative motion, the system must be capable of recognizing when

such changes occur and reacting accordingly. In particular, the robot should halt its motion

44

until the object’s trajectory has stabilized. To accommodate this requirement, an additional

trajectory type is introduced, referred to as the stop trajectory.

When the planner receives an external command to interrupt the current motion, Ruckig

is used to compute a deceleration trajectory that brings the end-effector to a complete stop

starting from its current state. Functionally, this operation is nearly identical to the fourth

segment of the main trajectory, with the key difference that it can be triggered asynchronously

whenever needed.

3.3.6 Go-to-rest trajectory

A successful grasping task requires not only reaching and securing the object but also

ensuring that the robot transitions to a safe and stable post-grasp configuration. Relying solely

on the main trajectory would leave the robot near the grasp point after completion, which is

not ideal for further operations or readiness for subsequent tasks.

To address this, a dedicated trajectory is designed to return the robot arm to a predefined

configuration named rest pose, illustrated in Figure 7d. In this pose, the links between the

Shoulder and Wrist Angle joints are positioned horizontally, and the wrist center is located on

the same side of the base frame’s z-axis as the tool center point. This configuration is considered

safe, as it retracts the robot away from potential collisions and avoids proximity to a shoulder

singularity.

The rest pose is defined both in joint space and in Cartesian space, as follows:

qrest = (0,−1.8, 1.55, 0, 0.8, 0)⊤ (3.59)

45

xe,rest = (0.174, 0, 0.171, 0, 0.247, 0, 0.969)⊤ (3.60)

Following a successful grasp, once the planner receives the command to transition to the rest

pose, Ruckig generates a smooth trajectory from the current end-effector state to the predefined

configuration. This motion is designed to be completed in 3 s, as depicted in Figure 7d. This

newly computed trajectory replaces the final segment of the main trajectory, which is retained

only to allow the end-effector to stop in case the grasp fails or is aborted.

3.3.7 Discretization and Conversion of the Trajectory

Although all trajectories are generated in Cartesian space, the robot’s position controllers

operate in joint space. Therefore, an additional processing step is required to convert the

planned trajectories into a format compatible with the control architecture.

The first step is to discretize the continuous Cartesian trajectory profiles. This is achieved

by sampling the desired position and velocity profiles at a specified interval, referred to as the

sampling time. In this work, a sampling interval of δt = 50 ms is used, which has been shown

to offer a good trade-off between trajectory fidelity and computational efficiency. If the total

duration of a segment is not a multiple of δt, the final point of the segment is sampled at its

actual timestamp to ensure that the full trajectory is represented.

After discretization, all segments that belong to the same motion (such as those composing

the main trajectory) are concatenated into a single trajectory. Care is taken to avoid duplicating

points at segment boundaries, since each new segment is initialized using the final state of the

preceding one.

46

The resulting set of Cartesian trajectory points is then transformed into joint space. This

involves computing the joint configurations using the analytical inverse kinematics solver, and

deriving the corresponding joint velocities by multiplying the Cartesian velocity by the inverse

of the analytical Jacobian matrix:

q̇ti = J−1
A (qti ,ϕe,ti)ẋe,ti . (3.61)

Each trajectory point retains its original timestamp throughout the conversion process. Once

this transformation is complete, the entire trajectory—now represented in joint space and for-

matted appropriately—is transmitted to the robot’s controller for execution.

3.4 Gripper Trajectory Planner

The gripper trajectory planner is responsible for generating position-based control com-

mands for the WidowX’s gripper in response to high-level symbolic inputs (like ”Released” or

”Grasping”) or numerical aperture values. Although the actuation mechanism of the gripper

is a revolute joint, of the same type as that of the Wrist Rotate joint, the gripper planner

abstracts this complexity by operating entirely in terms of linear aperture widths. This design

choice allows intuitive control over the gripper, specifying how far apart the fingers should be

rather than the angle they should rotate.

47

A command specifying a desired aperture width wdes is internally converted into a target

joint position gtarget using the following mapping:

gtarget =
wdes + woffset

2
(3.62)

where woff = 1.8 cm compensates for the fixed offset between the contact point of each finger

and its connection with the joint servomotor. This formula accounts for the symmetric move-

ment of the fingers: to achieve an opening of wdes, each finger must move half that distance

from the center, plus the mechanical offset.

The trajectory planner supports both preset and custom commands. Presets include:

• Grasping: closes the gripper to a tight position suitable for grasping small objects.

• Released: fully opens the gripper.

• Home: a neutral or intermediate opening position.

Alternatively, a numeric width can be specified, provided it does not exceed a maximum al-

lowed width. Invalid or out-of-range inputs are rejected to ensure mechanical safety. Once a

valid command is received, the planner generates a time-parameterized trajectory consisting of

three waypoints: the current finger position, a midpoint, and the final target position. This

helps ensure smooth and gradual motion, reducing undesired motion that could affect object

interaction. A simple time-based monitoring mechanism ensures that the motion completes

within a specified window; otherwise, the system resets to a safe state.

48

A boolean state variable indicating whether the gripper is closed is also maintained. This

state is derived based on the most recently executed command: any command other than

Released is interpreted as a closed gripper state.

This approach enables reliable and user-friendly control over the gripper by abstracting

low-level actuation and enforcing smooth, safe trajectories.

3.5 Relative state estimation

3.5.1 Streaming of position data

To enable real-time tracking of rigid bodies within the robot’s workspace, this work employs

a motion capture (MoCap) system by OptiTrack. The data acquisition is performed using the

NatNet streaming protocol, which transmits position and orientation data with minimal latency

over a local wireless or wired network. In practice, this allows for reliable motion capture

performance even in mobile setups or when operating without physical connections between

the tracking system and the robot controller.

The data stream is received and interpreted using a software interface provided directly

by OptiTrack; it is an open-source package designed for integration with robotic platforms

[20]. This package is fully compatible with the ROS 2 middleware, but it can also act as

a generic client for NatNet streams and is capable of publishing the tracked pose data in a

standardized format at high frequency. Each rigid body’s pose is output as a separate message,

timestamped and expressed with respect to a global inertial frame defined by the MoCap system

in its dedicated software. This continuous stream of accurate pose measurements serves as the

49

primary input for the velocity estimation and relative localization modules described in the

following subsections.

3.5.2 Velocity estimation of rigid bodies from position data

Unfortunately, position data from MoCap suffer from micro-level jitter at high frequency

and the adopted setup, with a mobile base, is characterized by mechanical vibration due to

the moving base, which mainly affect the motion on the vertical axis (z-axis). The presence

of these factors makes discrete differentiation an unreliable method to obtain the velocity from

position data, as it would greatly amplify noise leading to chattery velocity signals.

To robustly estimate the linear and angular velocity of a rigid body from noisy position

measurements, this work implements a method based on linear regression over a sliding window

of timestamped pose samples. This approach is well-suited to scenarios where the rigid body are

expected to exhibit approximately a constant linear motion over a short temporal window and

where the available data are rich in temporal resolution, such as when using a motion capture

system. Under these assumptions, within such a window, the trajectory of the object can be

locally approximated by a linear model, enabling the application of least-squares regression.

Since the robot arm will be able to recognize and plan trajectories to grasp only objects moving

with a constant linear velocity, this velocity estimator will only estimate the translational

components of the velocity vector, by determining the slope of a best-fit line through recent

position measurements.

Let us now delve into the adopted linear regression method for estimating linear velocity

from position data. Let the sliding window contain N ≥ 3 samples, each consisting of a

50

timestamp ti ∈ R and a corresponding position pi ∈ R3, expressed with respect to the origin of

the fixed frame of the vision system.

The goal is to model the position trajectory over time as a linear function:

p(t) = v · t+ b, (3.63)

where v ∈ R3 is the constant linear velocity vector (i.e., the slope), and b ∈ R3 is a constant

bias term. The vector v is what we aim to estimate using a least-squares fit.

To improve numerical stability and simplify computation, we center the timestamps around

their mean:

t̃i = ti − t̄, where t̄ =
1

N

N∑
i=1

ti. (3.64)

This centering ensures that the design matrix has zero mean, which leads to an unbiased and

numerically stable estimation of the slope.

The least-squares regression tries to determine the parameter vector v that minimizes the

sum of squared residuals, which is given by:

min
v

N∑
i=1

∥pi − (v · ti + b)∥2. (3.65)

When timestamps are centered around their mean, the optimal solution for the slope vector

becomes:

v =

∑N
i=1 t̃i(pi − p̄)∑N

i=1 t̃
2
i

, (3.66)

51

where

• p̄ =
1

N

∑N
i=1 pi is the mean position vector in the window;

• t̃i is the centered time, which shifts the time vector to have zero mean;

• pi − p̄ is the deviation of the i-th position sample from the mean position.;

• the numerator
∑
t̃i(pi − p̄) is the sample covariance between time and position;

• the denominator
∑
t̃2i is the sample variance of time.

This formula yields the slope of the line that best fits the time-position data in the least-squares

sense. This estimate provides a robust approximation of the rigid body’s translational velocity

over the duration of the sliding window.

It can be seen that the regression estimate is a multivariate analog of the classical 1-

dimensional slope formula from statistics:

slope =
Cov(t, p)

Var(t)
. (3.67)

The sliding window linear regression method provides a simple yet effective solution for

real-time velocity estimation, without relying on a predefined motion model or knowledge of

the system dynamics. The primary tunable parameter governing the behavior of this estimator

is the window size. Increasing the number of samples in the window enhances smoothing and

yields a more stable velocity estimate, particularly beneficial when the target moves at constant

speed. However, this comes at the cost of reduced responsiveness to abrupt changes in motion,

effectively introducing latency in the output.

52

As a result, the choice of window size represents a trade-off between smoothness and respon-

siveness, and must be carefully tuned based on the sampling characteristics of the vision system

and the temporal requirements of the application. In this work, the motion capture system used

during experimental validation provides pose updates at a rate of 240 Hz, while maintaining

full coverage of the workspace. Given this sampling frequency, the estimator operates with a

window of 120 samples, corresponding to a temporal span of 0.5 s. This configuration offers a

highly smooth velocity profile while maintaining a bounded maximum delay of 0.5 s, which is

deemed acceptable for the requirements of the system under study.

3.5.3 Relative state estimation in the robot’s reference frame

As the aim of this project is to perform grasping of objects in a dynamic environment where

both robot arm and target can be non-stationary, it is not sufficient to know the absolute

position and velocity of an object with respect to a fixed inertial frame. As a matter of fact, the

robot’s control system, as explained in the precedent sections, requires the object’s state relative

to its base frame (frame 0) to work as expected. As a consequence, velocity data obtained from

the estimator needs to be processed further.

The goal of the relative state estimator is to determined the object’s state with respect to

the robot base frame.

Let pw
obj and pw

0 denote the absolute positions of the object and the robot, respectively, both

expressed in a common inertial ”world” frame, denoted as w. Let Rw
0 represent the rotation

53

matrix that describes the orientation of the robot’s base frame (frame 0) in relation to the world

frame. The position of the object, as expressed in the robot’s frame, is given by:

p′
obj = p0

obj = (Rw
0)

⊤(pw
obj − pw

0), (3.68)

where the term pw
obj−pw

0 represents the vector from the robot to the object in the world frame,

and the rotation (Rw
0)

⊤ = R0
w transforms it into the robot’s local frame.

A similar reasoning applies to linear velocities. Let vw
obj and vw

0 be the linear velocities of

the object and robot, respectively, expressed in the world frame. Then, the relative velocity of

the object with respect to the robot, expressed in the robot’s frame, is:

v′
obj = v0

obj = (Rw
0)

⊤(vw
obj − vw

0). (3.69)

This transformation follows directly from the Galilean principle of relative motion. The

vector vw
obj−vw

0 represents the relative velocity between the two bodies in the world frame, and

the rotation R0
w maps it into the robot’s coordinate system.

This formulation offers a mathematically consistent framework for expressing both the po-

sition and velocity of a moving object relative to the robot. From this point forward, we will

refer to the object’s position and velocity with respect to the robot arm’s base frame simply

as object position and object velocity. However, to clearly distinguish them from the absolute

quantities, we will adopt the notation p′
obj and v′

obj .

54

3.5.4 End-effector kinematics data

The last piece of the puzzle required to fully characterize the state of the robotic system is

the position and linear velocity of the end-effector. These quantities can be computed from the

joint states of the manipulator, under the assumption that the joint configuration q and the

joint velocities q̇ are known at each time instant. This assumption is satisfied in practice, since

each actuator in the robot provides direct feedback of its own joint state, including position and

velocity data. These signals are then processed using the forward kinematics and the analytic

Jacobian models introduced in Section 3.1.

3.6 Grasp-attempt decision logic and state machine

To manage the sequence of decisions required to dynamically grasp a moving object, this

work implements a finite state machine that takes as input pose and velocity data of both the

object and the end-effector, reacts to them, and plans the appropriate behavior for the robotic

arm accordingly. The decision logic is evaluated periodically at a fixed rate of 30 Hz, ensuring

that updates and transitions are responsive to fast-changing dynamics in both the object motion

and robot state. A scheme of the state machine is shown in Figure 8. Each state corresponds to

a specific sub-task in the overall grasping pipeline, and transitions between states are triggered

based on both sensor feedback and logical conditions derived from predictive trajectory analysis.

in the following, a brief overview of the states:

• Idle: The system always begins in this inactive state (marked in red in Figure 8), waiting

for the start command to initiate the grasp sequence. It is also set to return to this state

every time a grasp is completed successfully.

55

Figure 8: Simplified finite state machine of the dynamic grasping control system.

• Monitoring: It is a state that is always active whenever the system is not idling. After

the start command, the system begins monitoring the position and velocity of both the

object and the end-effector. In this state, if the grasp sequence has not started yet,

the decision logic continuously evaluates whether the object has a stable trajectory and

conditions are favorable to attempt a grasp. It is also responsible for determining when

to stop the robot’s movement if the object deviates from steady linear motion.

56

• Main trajectory: If the object is predicted to become reachable under suitable motion

conditions, a trajectory is initiated to intercept the object. In this state, the planner

generates a trajectory to grasp the moving target and sends it to the motors’ controllers,

which execute it.

• Gripper closing: As the end-effector nears the predicted interception point, the system

checks whether it has entered the final grasp zone. Once sufficiently close, a signal is

issued to close the gripper.

• Going to rest pose: After the grasp is confirmed, the system tells the robot to transi-

tion to the rest pose, a safe post-grasp configuration. This marks the conclusion of the

manipulation phase.

• Reset: This state performs a full reset of internal variables and flags, clearing any residual

state before preparing for a new grasping attempt. From here, the system returns to the

Idle state once the reset phase is over.

• Stop: This emergency state is triggered if a sudden change in the object’s motion is

detected during grasp execution. The grasp attempt is aborted, and the planner generates

a trajectory for a smooth stop of the arm. The system then keeps monitoring and awaits

a new stable condition before resuming.

57

3.6.1 Predictive trajectory analysis and grasp triggering conditions

The core of the grasping decision logic lies in forecasting the object’s motion and evaluating

whether the robot can reach it in time. The core parameters that are evaluated at each cycle,

on which the decision logic is based, are:

• τobj,out: the estimated future time at which the object will enter a defined graspable

workspace;

• τobj,in: the expected duration for which the object will remain in that workspace;

• p′
obj,in: the predicted position at which the object will enter the graspable region.

Given the quantities above, the distance between the end-effector and the entry point is com-

puted as:

de =
∥∥p′

obj,in − pe

∥∥ (3.70)

Based on this distance, the minimum time τe required by the robot to reach the object is esti-

mated using a trapezoidal velocity profile, which is meant to approximate the actual trajectory

time needed by the end-effector to move from its current state to being over the object once

the latter enters the reachable workspace (see Figure 7b). In this profile, the end-effector first

accelerates uniformly up to a maximum velocity ve,max over a time interval tacc, cruises at

constant speed for a duration tcruise, and finally decelerates symmetrically back to zero. The

acceleration phase covers a distance:

sacc =
1

2
ae,maxt

2
acc (3.71)

58

and the time required to reach maximum speed is:

tacc =
ve,max

ae,max
. (3.72)

Since the deceleration phase is symmetric, the total distance covered during acceleration and

deceleration is:

sramp = 2 · sacc = ae,max

(
ve,max

ae,max

)2

=
v2e,max

ae,max
. (3.73)

If the total displacement de is greater than sramp, then a constant-velocity cruising phase exists,

and its duration is:

tcruise =
de − sramp

ve,max
. (3.74)

Therefore, the total time required is the sum of the three segments:

τe = 2 · tacc + tcruise = 2 · ve,max

ae,max
+
de − v2e,max/ae,max

ve,max
. (3.75)

On the contrary, if the required displacement is short enough that the end-effector cannot reach

its maximum velocity before needing to decelerate, a triangular velocity profile is used. In this

case, the trajectory consists solely of an acceleration phase followed by a deceleration phase,

both symmetric. Let tpeak be the time to reach the peak velocity before reversing the motion.

Then the total displacement is:

de = 2 ·
(
1

2
ae,maxt

2
peak

)
= ae,maxt

2
peak, (3.76)

59

and solving for tpeak yields:

tpeak =

√
de

ae,max
. (3.77)

Thus, the total time is:

τe = 2 · tpeak = 2 ·

√
de

ae,max
. (3.78)

At the core of this decision pipeline is the ability to predict whether the object will enter a

region that is truly reachable given the robot’s kinematic constraints and the desired grasping

orientation. Rather than relying on a predefined, static workspace volume, this work adopts a

more adaptive and accurate approach. The object’s future trajectory is extrapolated using a

constant velocity model, and a sequence of 150 discrete positions is sampled along this path at

a spatial resolution of 1 cm, using a time step inversely proportional to the object’s speed. This

corresponds to analyzing a segment of 1500 mm, which is about 15% longer than the WidowX’s

maximum span (see Table II). At each predicted position, the target grasping orientation is

computed using the function described in Subsection 3.3.3, and a reduced version of the robot’s

analytic inverse kinematic function, based on Equation 3.17’s principle, evaluates whether a

valid solution exists that places the end-effector above that position with the required orienta-

tion. Only positions for which a valid joint configuration exists are considered reachable. This

strategy effectively defines a dynamic, orientation-aware reachable workspace that adapts to

both the object’s path and the grasping constraints. Thanks to the efficiency of the closed-form

inverse kinematics solver, this reachability check is executed in real time as part of each decision

cycle. This approach ensures that grasp triggering decisions are based not just on geometric

60

proximity, but on actual kinematic feasibility, which is particularly important when certain

orientations restrict reachability or when the robot is operating near its joint limits.

Figure 9 illustrates a representative scenario in which a moving object crosses the reachable

workspace of the robotic arm, potentially triggering the grasp sequence. The sketch highlights

the main variables involved in the trajectory analysis and grasp decision process, offering a visual

aid to better understand their geometric and temporal relationships. Note that the elements

shown in pink do not represent physical distances; rather, they indicate the time required for

the object or the end-effector to traverse the corresponding path segments under constant or

planned motion conditions.

Once all these variables are computed, the system evaluates whether the conditions for

initiating a grasp are met. The decision primarily depends on the object’s current position

relative to the robot’s workspace and its velocity characteristics. More precisely, the situation

is handled differently if the object is outside the workspace compared to when it is inside. If

the object is currently outside the reachable workspace but predicted to enter it in the near

future, the system evaluates whether the predicted motion allows for a timely and feasible grasp.

Specifically:

• The predicted duration of stay inside the workspace must be sufficiently long: τobj,in > 2 s.

This threshold is set to 2 s since it is know that the end effector takes roughly 1.6 s to

grasp the object once it is on top of it (Figure 7b). The remaining 0.4 s is used to leave

some tolerance.

61

Figure 9: Illustration of the key variables involved in the grasp triggering logic in a typical

scenario.

• For moving objects, their speed must be lower than the maximum end-effector speed, to

allow for it to catch up:

∥vobj∥ < 0.85 · ve,max (3.79)

62

• For moving objects, the predicted entry time must fall within a feasible timing window.

This ensures that the robot can reach the object before its stay in the workspace gets

below the minimum required duration of 2 s. Specifically, the entry time must satisfy:

max (0, τe − (τobj,in − 2)) ≤ τobj,out ≤ τe (3.80)

The lower bound of this interval guarantees that, even if the object arrives at the entry

point earlier than the robot, it remains within the workspace long enough for the robot to

complete the approach and execute the grasp. The offset (τobj,in−2) represents the excess

duration the object is expected to stay inside the workspace beyond the minimal required

grasping window. The upper bound simply ensures that the object does not arrive later

than the robot, which would result in a missed interception. The lower limit is clamped to

zero to exclude cases where the object is already inside the workspace, which are handled

separately. Appendix A shows an example of this metric for clarity.

Note that for stationary objects, no timing alignment is required between τobj,out and τe, since

the object is expected to remain in place for the full duration.

In case the object is already inside the graspable region (for example when its motion

stabilized again after a direction change), the decision logic simplifies and only the remaining

dwell time is relevant:

• For stationary objects: the grasp can be initiated immediately, without further checks.

63

• For moving objects: the object must be expected to remain in the workspace for a longer

duration to allow for the full execution. Specifically:

τobj,in > 4 s (3.81)

The speed constraint of (Equation 3.79) still applies. Although it may initially appear ad-

vantageous for the object to already lie within the reachable workspace, this situation can, in

fact, present more challenging conditions for initiating a successful grasp sequence. Unlike the

case in which the object is predicted to enter the graspable region, which allows the robot to

preemptively plan and synchronize its motion thanks to a longer time window, an object that is

already inside the workspace may have already traversed a portion of it and is typically moving

away from the end-effector’s current position at the moment the motion begins. This intro-

duces a key uncertainty: the spatial location at which the end-effector will successfully intercept

the object, and the corresponding time at which this alignment will occur, are both unknown

a priori and depend dynamically on the robot’s acceleration profile and the object’s current

trajectory. Consequently, defining a reliable condition based on a minimum required duration

of stay within the workspace becomes less straightforward. Moreover, even if one attempted

to determine the minimum time required to intercept the object using an optimization-based

formulation, it would be no assurance that the Ruckig-based trajectory planner will generate a

trajectory that has exactly that duration, since, as mentioned before, this is considered a soft

constraint. As a result, establishing a consistent and predictive threshold for triggering the

64

grasp based solely on motion duration is not practical in this scenario. A 4 s condition has,

however, proven to be effective in most scenarios, especially when the object’s relative speed is

40% or less of the maximum end-effector velocity.

Eventually, if the conditions in either scenario are satisfied, the system can send the com-

mand to start planning the main trajectory, so that the robot begins its approach toward the

predicted grasping position.

3.6.2 Gripper actuation logic

While executing the grasp trajectory, the system continually monitors the distance dobj

between the tool center point and the object’s center of mass. Once this distance drops below

a threshold, the robot initiates the grasp by closing the gripper:

dobj < og + δg. (3.82)

In this equation, og denotes the grasp offset introduced in Subsection 3.3.4, while δg is an

additional parameter used to slightly anticipate the closing phase of the gripper—typically by a

few hundredths of a second. This anticipation allows the system to conclude the grasp sequence

earlier and transition more efficiently to the subsequent phase. For optimal performance, δg

should be tuned according to the object’s geometry and size, ensuring that the gripper begins

to close as early as possible without risking premature closure before having the gripper around

it. The gripper closure represents a crucial stage of the grasp sequence, as it also triggers the

65

monitoring logic to transition from executing the main trajectory to initiating the return motion

toward the rest configuration.

3.6.3 Direction change detection and grasp plan adaptation

A key feature of the system is the ability to detect and respond to changes in the object’s

velocity. This is done through a rolling buffer of recent velocity measurements. At each step k,

the average velocity over a window of N samples, including the current one and the previous

N − 1 samples, is computed:

v
′(k)
obj,avg =

1

N

N∑
i=1

v′
obj,i (3.83)

The magnitude of the difference with the previous average is then evaluated:

∆
∥∥v′

obj

∥∥ =
∥∥∥v′(k)

obj,avg − v
′(k−1)
obj,avg

∥∥∥ (3.84)

If this exceeds a predefined threshold εvel before the gripper has closed:

∆
∥∥v′

obj

∥∥ ≥ εvel (3.85)

the robot smoothly halts its current operation after transitioning into the Stop state. A sta-

bilization mechanism is then used to monitor the object’s velocity until it becomes constant

and linear again, defined as a return to variations below threshold over a sufficient number of

samples. As soon as this happens, if the grasp is still feasible, the main trajectory may be

retriggered.

66

3.6.4 Post-grasp reset and reinitialization

After a grasp attempt concludes, the system enters a reset state in which the monitoring

logic and all internal buffers, flags, and motion history are restored to their original state as

when the robot first started, ensuring a clean environment for the next grasp. Once this reset

is complete, the system returns to its idling condition, awaiting the next trigger to begin a new

cycle.

Ultimately, the described state machine, supported by predictive analysis and stability mon-

itoring, enables robust decision-making in scenarios involving both stationary and dynamically

moving objects, adapting in real time to ensure safe and efficient grasp execution.

CHAPTER 4

ROS 2 INTEGRATION AND SIMULATION FRAMEWORK

4.1 ROS 2 Humble as middleware backbone

4.1.1 Motivation and relevant features

To deploy the motion-control architecture developed in Chapter 3, ROS 2 Humble was

selected as the middleware foundation. Humble is a stable version of ROS 2 and the current

long-term-support release, which makes it ideal in many scenarios [21]. Additionally, ROS

2 Humble brings enhanced performance, real-time support, and improved security features

essential for reliable motion control and future scalability in more complex robotic ecosystems.

[21][22].

Unlike ROS 1, ROS 2 replaces the centralized master node with a peer-to-peer architecture

based on the Data Distribution Service (DDS). This eliminates single points of failure and

enables seamless communication across distributed systems, a key requirement for multi-robot

and cloud-integrated deployments [23]. Consequently, each algorithmic element from Chapter 3,

like trajectory planner, velocity estimator, state detector, grasp logic state machine (dynamic

grasping manager), and motion commands, is encapsulated within its own C++ ROS 2 node.

All these nodes then send data and information to each other using topics, the traditional

ROS communication system. As an example, /wx250s/arm_controller/joint_trajectory carries

messages of time-stamped joint-space trajectory points, /wx250s/joint_states streams position,

67

68

velocity, and effort feedback from the robot arm, and /object_state transmits the object’s

relative states to the dynamic grasping manager and the trajectory planner.

An important feature of ROS 2 that enhances this communication framework is its support

for Quality of Service (QoS) profiles [23]. These profiles allow developers to configure topic-

specific communication characteristics based on application requirements. For instance, joint

state data can be configured with a QoS profile that prioritizes low latency over guaranteed

delivery, since occasional message drops are acceptable given the high publication frequency.

Conversely, finite state machine events require a reliable QoS profile to ensure that critical state

transitions are never lost, maintaining system consistency. This modular, node-based architec-

ture provides substantial benefits for system development and maintenance. Individual nodes

can be independently developed, tested, and refined without affecting other system compo-

nents. Furthermore, the loose coupling between nodes facilitates system evolution, allowing for

component replacement or algorithm improvements without requiring extensive system-wide

modifications. This design philosophy proves particularly advantageous during the iterative

development process characteristic of research-oriented robotics projects, where algorithms fre-

quently undergo refinement and optimization. The modular approach allows researchers to

experiment with different implementations of individual components while maintaining system

stability. Beyond development benefits, this architecture also enables seamless integration with

other ROS 2-based robotic platforms, such as UGVs and quadrupedal robots. This compati-

bility opens possibilities for developing sophisticated loco-manipulation systems, where mobile

platforms and manipulator arms work in coordination to achieve complex tasks.

69

4.1.2 Integration with Interbotix X‑Series ROS 2 packages

The backbone of our implementation begins with the open-source Interbotix X‑Series ROS

2 packages, officially supported by Trossen Robotics and fully compatible with Ubuntu 22.04

and ROS 2 Humble [24]. These packages serve as a robust foundation, providing both real-

hardware and Gazebo setups for DYNAMIXEL-based X-Series arms, including the WidowX

250 S, through components such as:

• X-Series robot arm descriptions: URDFs, meshes, and realistic inertial properties for

robot models.

• Low-level control: launch systems for starting SDK nodes, driver interfaces (interbotix_xs_sdk),

and motor configuration.

• Simulation environment setup: Gazebo Classic simulation settings, including controller

plugins and tuned parameters.

• ROS 2 control setup: enabling the joint trajectory controller integration for both simula-

tion and the physical robot.

These core packages work together out of the box to provide a working simulation and real-robot

stack, including Gazebo launch, RViz visualization, and SDK-based control of the WidowX 250

S. However, to align with the specific requirements of dynamic grasping and our custom control

pipeline, this base functionality has been extended significantly, including the custom dynamic

grasping control system, mission-specific robot parameters and setups, and personalized Gazebo

simulations.

70

This layered approach preserves the reliability of the Interbotix stack, while allowing flexi-

bility in tailoring the simulation, control, and execution pipeline to our grasping scenario. By

maintaining Gazebo Classic compatibility and the standard ROS 2 node interfaces, this integra-

tion ensures that both simulated and real-world experiments share identical software structures

and behavior.

4.2 Joint-Trajectory Controller as Final Execution Interface

Another essential component of the control pipeline is the joint_trajectory_controller, part

of the ROS 2 control framework. This controller serves as the final execution interface between

the high-level planning modules and the physical robot hardware [25]. It is responsible for

receiving, interpolating, and forwarding joint trajectory commands to the low-level actuation

layer at the right time. Trajectories can be sent either through an action server interface, ideal

for monitored execution, or directly to the topic /wx250s/arm_controller/joint_trajectory

when feedback is not required.

A key feature of this controller is its built-in trajectory interpolation. When the incoming

trajectory includes both position and velocity information at each waypoint, that is what the

trajectory planner of Section 3.3 streams by default, the controller leverages a cubic spline

interpolation scheme. This results in smooth motion profiles that are continuous in both position

and velocity (C1 continuity), ensuring that the generated joint commands do not introduce

abrupt changes in motion [26]. By contrast, if velocity information is omitted, the controller

defaults to linear interpolation, which often produces undesirable velocity discontinuities at

waypoint boundaries and degrades overall tracking performance [26].

71

In terms of hardware compatibility, the controller is designed to support different types of

interfaces. For systems that can operate using position control, such as the WidowX control

system under analysis, it forwards position commands at the right time to the nodes responsible

for controlling the robot by communicating with its U2D2 microcontroller. When working with

velocity or effort interfaces, however, it employs internal PID loops to convert tracking errors

into appropriate velocity or torque values. This versatility allows the same controller to be

reused across platforms with different actuation schemes, without modifying the trajectory

format or upstream logic.

Another valuable feature for real-time robotics applications is the controller’s trajectory

replacement capability. When a new trajectory is received during the execution of a previous

one, the controller does not discard the old command entirely. Instead, it preserves the portion

of the active trajectory that has not yet been executed and splices it with the new one, creating

a continuous motion that avoids sharp transitions or halts [26][27]. This seamless merging is

particularly effective in applications requiring reactive behavior, and therefore fits perfectly with

how the dynamic grasping manager handles state transitions such as sudden stops or returns to

the robot’s rest pose. In fact, once these trajectories are generated, they are transmitted to the

ROS 2 arm controller, which replaces the remaining portion of the current trajectory (typically

the main one being executed) with the new incoming trajectory.

As mentioned before, during execution, the controller generates time-synchronized joint

commands and forwards them to the xs_sdk node via the topic /widowx/commands/joint_tra

jectory. This SDK node acts as the interface to the hardware, translating ROS commands into

72

device-level instructions. In simulation, the identical control structure is preserved by replacing

the SDK with its simulated counterpart xs_sdk_sim, which mimics the same interfaces [28].

This consistent control pathway guarantees that behaviors validated in simulation transfer

reliably to the physical robot, simplifying testing and deployment.

4.3 Gazebo environment and simulation setup

4.3.1 Gazebo and ROS 2 integration for realistic simulations

To validate the functionality and integration of the control architecture prior to hardware

testing, all grasping experiments were first performed within the Gazebo simulation environ-

ment. Gazebo provides a high-fidelity physics engine capable of simulating the full dynamics of

the robot, the environment, and any interacting objects, enabling safe and repeatable testing

conditions [29].

At the core of any Gazebo simulation is the launch file of all physical elements in the

scene through URDF (Unified Robot Description Format) files. Each element, like robot,

table, or graspable object, must be instantiated with correct physical properties such as mass,

inertia, collision geometry, and friction. Additionally, Gazebo-specific plugin tags are included

in the URDF to provide additional specific functionalities like sensor simulation or controller

interfaces.

For the Interbotix WidowX 250 S arm, the robot’s URDF includes both the actual physical

links and joints, as well as virtual frames used for referencing, planning, and control. One

such frame is ee_gripper_link, which represents the tool center point and plays a critical role

in trajectory generation and grasp planning. The URDF also includes a ROS 2 control plugin

73

that provides Gazebo with the interface needed to receive position commands from the standard

ROS 2 controller infrastructure and to publish joint state feedback.

During execution, the robot controller sends joint commands to the same joint trajectory

controller used for real hardware, also using the same ROS 2 interface (/wx250s/arm_controll

er/joint_trajectory). In simulation, these commands are received by the Gazebo plugin, which

applies them to the virtual model and simulates joint motion. The only feedback available from

Gazebo, however, is joint position; joint velocities are not natively provided. To address this,

a simple moving average filter is applied only in simulation to the differentiated joint position

data. This approach yields sufficiently accurate velocity estimates for the purpose of monitoring

and control, and it introduces negligible delay due to the short window size used. In the actual

robot, this issue does not arise, as the servomotors provide a direct feedback of joint positions

and velocities through the ROS 2 topic /wx250s/joint_states.

Once Gazebo, ROS 2, and the control components are fully integrated, the simulation

framework replicates the entire dynamic grasping pipeline under realistic conditions. Each

module of the control architecture (trajectory planners, estimators, and the finite-state machine)

operates as an independent ROS 2 node and communicates using the same interfaces configured

for real-hardware execution. This consistent middleware structure ensures that simulation

results are directly transferable to the physical robot, enabling a smooth transition between

testing phases.

The complete structure of the system is illustrated in Figure 10. The diagram highlights the

interaction between the Gazebo physics engine and the various nodes responsible for planning,

74

estimation, and control. Note that feedback is processed through the same computational

pipeline that will later handle real sensor data.

Figure 10: Overall architecture of the simulated dynamic grasping system.

4.3.2 Simulation scenario for dynamic grasping

To evaluate the control pipeline under controlled yet challenging conditions, a representative

simulation scenario was constructed within Gazebo. In this setup, the Interbotix WidowX 250 S

robotic arm is fixed to the world frame, while the object to be grasped, a red cylinder, is placed

atop a mobile cart, as shown in . This design choice, where the object is mobile and the robot is

75

Figure 11: Simulation setup in Gazebo, showing all the rigid bodies involved in the exchange.

stationary, was made deliberately to allow for easier maneuverability and to validate the system

under the demanding dynamic conditions. Importantly, this inversion of roles does not lead

to issues when switching to the real hardware setup, where the robot is instead mounted on

a mobile UGV. Since the control logic only relies on relative positions and velocities between

the robot and the object, the simulation scenario remains fully representative of real-world use.

Both in simulation and hardware experiments, the cart’s (or UGV’s) movement is manually

commanded via a keyboard teleoperation node, offering maximum flexibility to test trajectories,

velocity profiles, and disturbances.

The chosen object is a cylinder with the same physical characteristics, like dimensions and

mass, as the one used in the hardware experiments. A cylindrical shape was selected because

76

it ensures a stable base whether it is moving or not, and does not enforce a specific grasping

orientation thanks to its axisymmetric nature. This simplification was intentional, as the focus

of this work lies in the robustness of the control and motion coordination, rather than in

addressing complex grasping strategies for irregularly shaped objects.

Notably, Gazebo streams joint states and object pose information at a frequency of 30 Hz.

To remain synchronized with this simulation rate and avoid unnecessary computational over-

head, the dynamic grasping manager node, in simulation, is configured to operate at the same

frequency. This ensures that no data packets are missed and that the grasping logic always

processes the most recent available state, preserving both responsiveness and stability.

4.3.3 Insights derived from simulation experiments

Running extensive dynamic grasping simulations within this framework yielded several valu-

able insights. First and foremost, they helped determine the approximate time durations re-

quired for each segment of the grasping trajectory. After the initial tests with approximate

durations, these parameters were subsequently adjusted to achieve the quickest motion possible

while ensuring maximum reliability and repeatability across a wide range of object velocities.

These simulations also allowed to roughly estimate the upper bounds on the object velocity

that the system could track reliably without compromising the success of the grasp.

From a methodological standpoint, the simulations suggested a series of refinements and

improvements to the original control architecture. These included slight modifications in the

way the finite-state machine handles premature grasp attempts and direction changes, as well

as enhancements in the gripper timing logic based on empirical results. Furthermore, simula-

77

tions provided a baseline for measuring computational performance: trajectory planning was

consistently completed in approximately 0.5ms, and full trajectory execution (from planning to

actuation) required only a few milliseconds. These results confirmed the feasibility of deploying

the system in real-time applications.

The practical effectiveness of the proposed approach was also confirmed visually. The se-

quence shown in Figure 12 demonstrates how the robot performs all the essential phases of

the dynamic grasping pipeline: tracking, approaching, grasping, and retreating, all under dy-

namic conditions. This simulated behavior is directly comparable to the theoretical trajectory

design discussed in Chapter 3 and illustrated in Figure 7. Both the simulated and theoreti-

cal representations share a consistent structure, with well-defined approach and grasp offsets

(oa and og), and segment transitions that preserve continuity in position and velocity. It is

worth noting that, unlike in Figure 7b and Figure 7c, the end-effector orientation in this case

appears flipped. This variation arises from the optimal orientation computed for the specific

spatial configuration of the arm, cart, and object, as determined by the strategy outlined in

Subsection 3.3.3.

Overall, this simulation setup provides a high-fidelity, fully reproducible environment that

mirrors the kinematic and dynamic interactions of the real system. It enables exhaustive testing

of the control strategy across a wide range of conditions while maintaining consistency with the

hardware implementation pipeline.

78

(a) (b)

(c) (d)

Figure 12: Main phases of the trajectory executed in simulation for dynamic object grasping.

CHAPTER 5

HARDWARE SET-UP AND EXPERIMENTS

This chapter describes the hardware configuration and experimental protocol used to assess

the performance of the proposed dynamic grasping framework in a real-world setting. We

begin by introducing the robotic and perception systems, then discuss their integration and

calibration. Following that, we detail the experimental scenarios and the metrics employed for

evaluation. Finally, we highlight key observations and insights gained through the hardware

trials.

5.1 Hardware overview

5.1.1 Robotic arm

The primary manipulator in this study is the WidowX 250 S, a 6-DOF articulated arm

with revolute joints, actuated by DYNAMIXEL servomotors. To ensure mechanical stability

and prevent base tipping when the arm extends its links, it is rigidly mounted to a custom

aluminum plate, as shown in Figure 13. This plate enlarges the contact area and shifts the

resulting center of mass closer to the center of the robot base, maintaining system balance

under full extension. MoCap markers are attached near the Waist joint on the base to enable

accurate tracking of the robot’s pose.

The end-effector comprises a two-finger gripper with 3D-printed narrow fingers, actuated via

the arm’s final motor stage. The gripper fingers translate along guide rails to execute grasping

motions.

79

80

Figure 13: WidowX 250 S bolted to an aluminum base, equipped with motion-capture markers.

Internally, a DYNAMIXEL U2D2 interface board is mounted within the robot’s central

hub. This board provides USB-based communication between the offboard computer and the

servomotors, allowing the control software to send joint commands and receive encoder feedback

in real time.

5.1.2 Objects

The experiments employed simple geometric objects compatible with the WidowX gripper’s

limited width and simple design. Figure 14 shows representative examples: Two approaches

were considered for marker placement. The first method, shown in Figure 14a, uses a cylindrical

object mounted on a small marker-equipped plate. While this approach adds complexity, it

guarantees reliable tracking, since MoCap requires markers to be spatially well separated. The

81

(a) (b)

Figure 14: Sample test objects with motion‑capture marker configurations.

second method (Figure 14b) places markers directly on the object. Although more similar to

other works with different vision systems, where it is the object itself to be tracked at all times,

this configuration may result in less reliable data from the motion capture system. In fact, the

latter works best when the markers used to define a rigid body are not too close to one another.

Moreover, placing them directly on the object to be grasped can lead to marker occlusion or

collisions with the gripper. For the sake of completeness and performance testing, experiments

were carried out using both approaches.

82

5.1.3 Mobile base (UGV)

To simulate relative motion scenarios during grasping, the WidowX manipulator is mounted

on a Clearpath Husky A200 unmanned ground vehicle, as shown in Figure 15. The Husky is

Figure 15: Clearpath Husky A200 UGV supporting the WidowX manipulator and computing

platform.

well-suited for rapid prototyping in ROS 2 environments. It can be teleoperated via keyboard

or accept velocity commands on ROS 2 topics, enabling the generation of controlled relative

83

motion for dynamic grasp execution. Its deck provides a grid of threaded inserts, allowing the

aluminum plate from Subsection 5.1.1 to be securely fastened. The aluminum mounting plate

has been custom designed and machined to incorporate counterbore holes, allowing the screw

heads to sit flush or slightly below the surface of the plate. These were measured and drilled

manually to align precisely with the threaded inserts in the Husky’s deck, ensuring that no

screw heads protrude from either side. This flush mounting ensures a solid connection between

the manipulator and the UGV.

Onboard the Husky are both the WidowX arm and the computer responsible for all real-

time grasp planning and perception tasks. Once fully assembled, the integrated system, which

includes the manipulator, UGV, and offboard computer, is ready to perform grasping of objects

while moving, independently tracking the targets, planning and executing trajectories on the

fly as the UGV is teleoperated. The complete setup is shown in Figure 16.

5.1.4 Motion capture system

As previously introduced, the vision system adopted for tracking the positions of both the

robotic arm and the target object is a motion capture system developed by Optitrack. Specifi-

cally, the experimental environment is equipped with twelve Primex 13 motion capture cameras

(Figure 17), which provide millimeter-level accuracy across a tracking area of approximately

36m2, streaming data at a native frame rate of 240Hz [30]. These cameras operate by detecting

only specially designed reflective markers, as illustrated in Figure 18.

OptiTrack’s system is managed through its proprietary software, Motive, which enables

the monitoring and configuration of all tracked elements, as well as access to various data

84

Figure 16: Integrated loco-manipulation system: WidowX 250 S, Husky A200, and offboard

computer.

streaming options. Due to the high precision of the system and the collaborative nature of

the camera array, any change in the position or orientation of the cameras can drastically

degrade tracking accuracy and performance. Therefore, whenever the system is resumed after a

period of inactivity, a full calibration is strongly recommended. This process should be carried

out following OptiTrack’s official guidelines and using the dedicated calibration tools. After

completing this procedure, the system used in this work reported a root-mean-square error

(RMSE) of approximately 0.6 mm. Following calibration, rigid bodies were created within

85

Figure 17: OptiTrack’s Primex 13 motion

capture camera.

Figure 18: Motion capture markers.

the tracked environment by selecting and grouping the corresponding sets of markers. It is

important to note that the reference frame initially assigned to a rigid body upon its creation

does not necessarily coincide with the one initially designed during the kinematic analysis. This

is particularly critical for elements such as the base of the WidowX arm. In such cases, it is

necessary to manually reposition the center of mass and adjust the frame orientation to match

the intended reference system. This refinement was performed using Motive’s built-in tools,

and the final configuration of the tracked rigid bodies is shown in Figure 19.

86

Figure 19: Rigid bodies in Motive software.

Once all components are properly configured, the Motive software is capable of streaming

accurate position and orientation data for each rigid body, labeled according to the names

defined within the software interface, via the NatNet 4.0 protocol to the offboard computer.

To provide a comprehensive understanding of the hardware setup and its interconnections,

Figure 20 illustrates the overall architecture adopted for dynamic grasping. The diagram sum-

marizes the main components described in this section, including the motion capture system,

the robotic manipulator mounted on the mobile platform, and the computation and control

modules. It highlights the flow of data and control signals, from sensing and state estimation

to motion planning and actuation, showcasing how each element contributes to the execution

of the grasping task.

87

Figure 20: Overview of the complete hardware and software architecture for dynamic grasping.

5.2 DYNAMIXEL Position Controller PID Tuning

Each DYNAMIXEL actuator of the robotic arm (e.g., XM430-W350, XL430-W250) contains

an onboard position controller incorporating PID control and feed-forward terms. Figure 21

depicts the internal controller pipeline of XM-series and XL-series actuators: Any instruction

received from the DYNAMIXEL bus is stored as the Goal Position, which is then converted into

the desired position and velocity trajectories using the specified Velocity Profile and Acceleration

Profile, both of which are adjustable parameters. Standard PID feedback is then applied to the

error e = qd−q (where qd is the goal joint position and q is the current measured position), with

88

Figure 21: Block diagram of the DYNAMIXEL position controller including internal PID and

feedforward (velocity and acceleration) controllers, anti-windup, and output limiter [1][2].

proportional (KP), integral (KI), and derivative gains (KD). It is also possible to introduce

preemptive compensation by adding feedforward terms:

uFF = KFF1 · q̇d +KFF2 · q̈d

where KFF1 and KFF2 scale desired velocity and acceleration, thus reducing tracking error due

to dynamics. By computing a baseline command from known reference signals, feedforward

terms reduce the burden on the feedback (PID) loop, sometimes resulting in faster settling

times, reduced overshoot, and improved tracking accuracy. An anti-windup gain (Ka), that is

not modifiable by the user, limits the integral term to prevent accumulation outside actuator

capabilities. The combined PWM output is saturated when needed before being issued to the

89

motor. Finally, the correct PWM output is sent to the motor, and the current joint position

and velocity are obtained through an encoder and stored for the next cycle.

It is relevant to notice that, when performing tuning using the DYNAMIXEL Wizard 2.0

software, all the controller gains that the user can modify follow a dedicated range of values,

which are scaled versions of physical ones. The scaling factor is, however, not the same for

all the gains. Table IV summarizes all these details and applies to both types of servomotors

in WidowX. Note that in Table IV, the symbols K ′
P , K

′
I , K

′
D, K

′
FF1, K

′
FF2 denote the raw,

TABLE IV: DYNAMIXEL POSITION CONTROLLER GAINS, CONVERSION EQUA-

TIONS, AND RANGES [1][2].

Gain Address Conversion Equation Range

Position D gain 80 K ′
D = 16 KD 0–16383

Position I gain 82 K ′
I = 65536 KI 0–16383

Position P gain 84 K ′
P = 128 KP 0–16383

Feedforward 1st gain (velocity) 90 K ′
FF1 = 4 KFF1 0–16383

Feedforward 2nd gain (acceleration) 88 K ′
FF2 = 4 KFF2 0–16383

90

non-physical gain values that must be assigned to the corresponding control table addresses

within the actuator firmware.

All the DYNAMIXELs of WidowX come with factory settings. The XM430-W350 servo-

motors have only a default proportional gain, while the XM430-W350 servomotors have both

proportional and derivative gains assigned. This was not optimal, and after a few tests, even

in stationary conditions, the robot arm clearly showed poor accuracy, suggesting that tuning

was needed.

We performed gain tuning using the official DYNAMIXEL Wizard 2.0 software by ROBO-

TIS, a very versatile GUI tool that allows users to isolate individual motors, modify maximum

velocity and acceleration profile values, and adjust PID and feedforward parameters in real

time, observing the actuator’s responses on live graphs during step tests. The adopted manual

tuning process involved:

• Torquing on all the motors to make the whole kinematic chain solid.

• Enabling single-motor control via Wizard.

• Applying step position commands and observing the response curves.

• Iteratively adjusting the proportional (KP), integral (KI), derivative (KD), and, if nec-

essary, feedforward gains (KFF1,KFF2) too.

• Aiming for fast yet stable joint responses, without excessive overshoot or steady-state

error.

The results are illustrated in Table V. In Table V, the second feedforward gain (acceleration

91

TABLE V: FIRMWARE AND PHYSICAL CONTROL-LOOP GAINS FOR EACH JOINT

OF WIDOWX 250 S.

Joint
Firmware gains (K′) Physical gains (K)

K ′
P K ′

I K ′
D K ′

FF1 KP KI KD KFF1

Waist 1000 10 0 0 7.8 1.5·10−4 0.0 0.0

Shoulder 2800 3500 8700 700 21.9 5.3·10−2 543.8 175.0

Elbow 2000 3200 6000 600 15.6 4.9·10−2 375.0 150.0

Forearm roll 800 16 0 0 6.2 2.4·10−4 0.0 0.0

Wrist angle 1200 20 0 0 9.4 3.1·10−4 0.0 0.0

Wrist 640 0 3600 0 5.0 0.0 225.0 0.0

Gripper 640 0 3600 0 5.0 0.0 225.0 0.0

term) is omitted because none of the joints required it. As expected, the Shoulder and Elbow

joints, responsible for carrying and positioning the entire kinematic chain, demanded the most

nuanced tuning. Including a velocity feedforward term ensures control effort is proportional

to speed, enhancing the arm’s ability to track its desired trajectory through space. The inte-

gral gain also plays a crucial role: tiny angular errors at these joints translate into significant

end-effector displacement, so a well-tuned KI swiftly eliminates steady-state errors for preci-

92

sion positioning. Finally, the derivative gain is employed to dampen any oscillatory behavior

introduced by higher P and I gains, helping the system converge smoothly.

Manual tuning was chosen because robotic manipulators exhibit strongly configuration‑dependent

dynamics; in fact, variations in inertia, gravity loading, friction, and coupling occur every time

the arm moves. As a result, a set of gains that works in one pose may perform poorly in another.

Although model‑based or analytical tuning methods can achieve higher theoretical precision,

they require accurate dynamic models and often involve significant online computation. In

contrast, manual (trial and error) tuning is model‑free, relies solely on observed behavior, and

allows for rapid, pose‑specific adjustment. To achieve optimal performance in the dynamic

grasping tasks of this study, each joint’s PID calibration was conducted arranging the other

joints to configurations that mimic those achieved in such tasks and working around that point,

one joint at a time. It is, in fact, better to ensure precision in configurations achieved at the

end of grasping trajectories, where the correct positioning and orientation of the end-effector

are crucial.

5.3 Experiment protocols and evaluation metrics

Experiments were conducted in a controlled laboratory environment with a floor covered in

rubber tiles to minimize mechanical vibrations. To evaluate the performance of the proposed

dynamic grasping algorithm under various conditions, the relative placement of the robotic arm,

UGV, and object was intentionally varied between trials. Consistent positioning was preserved

only during tests designed to study performance degradation over a range of relative speeds, so

as to isolate the effect of velocity while minimizing other sources of variability. This approach

93

ensured a fair and objective assessment of the sensitivity of the system to changes in motion

dynamics.

The following subsections detail the rationale behind each experimental scenario, the method-

ology adopted, and the types of data collected to assess system performance.

5.3.1 Testing at different speeds

To examine how performance deteriorates with increasing relative speed between the object

and the end-effector, a series of trials was performed at different constant velocities. These

trials shared an identical spatial setup: from the perspective of the robot’s base frame, the

object consistently entered the reachable workspace from the same location and followed a

fixed direction. This consistency ensured that the primary variable affecting performance was

the relative velocity, which directly influenced the time the object remained within the reachable

workspace (∆τ in Subsection 3.6.1).

For all runs, the robot arm was initialized from a position sufficiently far from the object

to allow the grasp sequence to begin immediately once the conditions described in Subsection

3.6.1 were met. This maximized the time available for WidowX to perform the grasp, thereby

improving the likelihood of success.

Figure 22 presents three snapshots from a representative trial, depicting a successful grasp

as the system follows a linear trajectory alongside the object. It can be seen that the wooden

box holding the target object was consistently positioned along the lateral path of the mov-

ing Husky–WidowX system. Thus, from the manipulator’s base frame, the object always ap-

proached from the same side. Figure 22a shows the moment just before the robot initiates its

94

(a)

(b)

Figure 22: Sequence illustrating a successful grasp as the Husky–WidowX system moves linearly

at 25 cm/s beside the target object.

95

(c)

Figure 22: Sequence illustrating a successful grasp as the Husky–WidowX system moves linearly

at 25 cm/s beside the target object.

motion toward the object (similar to the configurations shown in Figure 7a and Figure 12a).

A few instants later, as shown in Figure 22b, the end-effector manages to get over the object,

at the predefined approach distance oa = 10 cm, a configuration also visible in Figure 7b and

the simulation frame in Figure 12b. Finally, Figure 22c captures the exact moment of grasp,

when the gripper closes around the object at the grasp offset og = 1 cm. As discussed earlier,

the grasp offset represents the distance between the object’s center of mass and the tool center

point of the end-effector, and must be adjusted according to the object’s size and shape.

96

The same type of test, where the relative velocity between the robot’s base and the object

to be captured remains constant, can also be viewed from the perspective of the mobile base.

This is illustrated in Figure 23, which highlights the critical steps involved in capturing the

object as shown in Figure 22, but from a different viewpoint. These images also depict the

reachable workspace of the robot arm for an object that, from the point of view of the robot

arm, travels on that imaginary plane parallel to the xy-plane of the manipulator’s base frame,

and a portion of predicted object trajectory at that instant, in order to better highlight the

space that object had to travel before entering the workspace (Figure 23a) and, when already

inside the workspace, the space that it has left inside it (Figure 23b); these are in fact critical

details that are needed to establish if to start the grasp sequence or to continue it after a change

in the object’s relative velocity is detected.

The set of speed values tested ranged from 5 cm/s to 35 cm/s in increments of 5 cm/s.

During each trial, joint states, end-effector poses, and object positions were recorded with

timestamps from ROS 2 topics using a custom data logger. Both the planned and actual

trajectories were captured, preserving the full temporal progression of each event.

This data was used to generate plots comparing the planned and the executed joint and

end-effector trajectories, as well as depicting the spatial paths of the object and end-effector

from the start of the grasp sequence to the moment of grasp. Additionally, the relative distance

between the two over time was analyzed, all referenced to the base frame of the manipulator.

97

(a)

(b)

Figure 23: Sequence illustrating a successful grasp at 18 cm/s from the point of view of the

mobile system.

98

(c)

Figure 23: Sequence illustrating a successful grasp at 18 cm/s from the point of view of the

mobile system.

5.3.2 Testing variations in velocity magnitude

Given that the proposed control algorithm was designed to function in dynamic and changing

environments, further testing was conducted to assess its robustness against variations in the

magnitude of the object’s relative velocity, including sudden stops. These tests reused the same

spatial setup described in Subsection 5.3.1, with one key distinction: during each run, the

Husky initially moved at a constant velocity that was deliberately altered mid-trial, either by

slowing down or accelerating, after the arm began its motion. This destabilized the originally

planned trajectory and triggered real-time replanning by the control system.

99

Figure 24 depicts the final stage of one such trial, where the red cylinder is successfully

grasped after the system detected that the object was no longer moving relative to the base

frame. The data collected in these trials mirrored that of the fixed-speed experiments. In

Figure 24: WidowX grasping a stationary red cylinder after a sudden stop of Husky.

addition to visual confirmation of grasp success, the analysis focused on the 3D trajectories of

the object and end-effector over time and the time evolution of their relative distance in space.

100

5.3.3 Testing changes in direction

The final experimental condition addressed the system’s response to changes in the direction

of the object’s motion. Although, from a control perspective, this scenario is treated similarly

to the one involving velocity magnitude variations, since the algorithm tracks the velocity

vector and only initiates grasping when linear motion is stable, a direction change imposes an

additional requirement: the orientation of the planned trajectory must be updated. Because

the object is no longer moving along the same line, this adjustment typically results in a longer

time to successfully complete the grasp.

To evaluate the system under these circumstances, tests were conducted in two configura-

tions: one with WidowX mounted on the moving Husky while the object remained stationary,

and another where the roles were reversed: WidowX was placed on a box and the object was

placed on the Husky. This second configuration was essential because Husky can only maintain

a constant linear velocity along the longitudinal axis, and given the orientation of the robot

arm on its platform, any direction change would still result in the object moving in a similar

straight path relative to the arm, just at a shifted lateral position but with the same direction.

Therefore, to genuinely test direction changes, the object had to move with respect to the base

frame in varying directions, which was achieved by mounting it on Husky while keeping the

robot arm fixed.

Figure 25 illustrates a test where Husky changed direction three times while moving at a

constant speed of approximately 10 cm/s, with the object on board. Like in Figure 23, these

images show the reachable workspace of the robot arm and a portion of the predicted object

101

trajectory at the represented time instant. In this situation, after a change of direction, the

length of the portion of reachable workspace that the object has to travel and the time in which

it is predicted to travel it are paramount in determining whether to continue the grasp or to

stop the task.

Figure 25a captures an instant before the object enters the workspace, with the robot arm

still at rest. After a change in direction occurs, the control system detects that the velocity

of the target received during the current cycle of the dynamic grasping manager no longer

matches the previously known velocity. This discrepancy means that the predicted ”old” and

”new” trajectories differ, as illustrated in Figure 25b. Consequently, the dynamic grasping

manager sends a command to the motion execution pipeline to stop the arm. Figure 25c

instead illustrates the end-effector pose and the object position right after the last change

in direction. It is clear that there was a much smaller portion of space inside the reachable

workspace available and consequently also the time constraint became tighter, as the object

would have soon exited the reachable workspace. However, thanks to the fact that end-effector

had already started the capture sequence and got close to the object, it had time to start right

after and manage to grasp the object right before it got out of its reachable workspace, as shown

in Figure 25d.

For these tests, the data collected and the validation criteria are the same explained and

adopted for the tests described in Subsection 5.3.1.

102

(a)

(b)

Figure 25: Sequence illustrating a successful grasp after direction changes of the object.

103

(c)

(d)

Figure 25: Sequence illustrating a successful grasp after direction changes of the object.

CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter we present the results of the experiments and tests carried out to evaluate

the performance of the proposed dynamic grasping algorithm and control system.

6.1 Computational performance of the dynamic grasping control system

The experimental results provide comprehensive insights into both the robot system’s data

retrieval capabilities and the computational performance of the implemented algorithms. In

hardware experiments, the dynamic grasping manager node successfully handles and updates

the entire system state at a frequency of 50 Hz. The trajectory planner emerges as the highest-

performing component, generating complete Cartesian trajectories from start to finish in ap-

proximately 100 µs and converting all Cartesian position and velocity waypoints to joint space

waypoints in under 300 µs. The total processing time, from the moment the trajectory gen-

eration command is issued until the planner forwards the trajectory to the position controller,

averages approximately 500 µs and consistently remains below 1 ms. This exceptional per-

formance is achieved through Ruckig’s capability to generate time-optimal trajectories within

extremely short timeframes, combined with the analytical inverse kinematic function that en-

ables rapid Cartesian-to-joint space conversions in a few microseconds.

6.2 Performance and accuracy across different relative velocities

Let us now move to the actual outcomes of experiments. The following figures correspond

to a test conducted using the basic setup described in Subsection 5.3.1, where the relative speed

104

105

between the object and the end-effector was approximately 25, cm/s. They compare the ideal

and actual trajectories of the robot arm in terms of joint positions, joint velocities, and end-

effector pose. These results are representative of the range of relative velocities for which the

dynamic grasping algorithm has proven to be successful. In each figure, the red arrow marks

the first moment when the gripper is fully closed and the grasp sequence is considered complete.

This time also defines the final instant shown in all time-based plots.

Figure 26 is clearly the one in which the actual trajectory best follows the ideal one. This is

a direct consequence of the fact the joint configuration is part of the closed control loop of the

motors’ PID controllers, which therefore try to correct the error between the measured joint

positions and the target ones at each step. As a result, accurate tracking at the joint level,

particularly towards the end of the trajectory, leads to relatively precise end-effector motion in

Cartesian space. It is worth noting, however, that Cartesian motion is not directly regulated

in closed loop, but rather arises from the forward kinematics of the joint configuration, and is

therefore effectively controlled in open loop. For what concerns the position components of the

pose, it is evident that the most critical trajectory to follow is the one along the z direction.

This can be explained by the presence of gravity, which from the point of view of the position

controller is considered a pure (unknown) disturbance that cannot be avoided. Among the

Cartesian position components, the most challenging trajectory to follow appears to be along

the z-axis. This discrepancy can be attributed to the influence of gravity, which acts as an

unmodeled disturbance from the perspective of the position controllers and is not explicitly

compensated for during motion execution.

106

Fi
gu

re
26

:
Id

ea
l(

da
sh

ed
)v

s.
ac

tu
al

(s
ol

id
)j

oi
nt

po
sit

io
n

tr
aj

ec
to

rie
sf

or
th

e
six

ar
m

jo
in

ts
du

rin
g

dy
na

m
ic

gr
as

pi
ng

at

a
re

la
tiv

e
ob

je
ct

sp
ee

d
of

0
.2
5
m
/s

.
T

he
jo

in
t-

sp
ac

e
R

M
SE

is
0.
25

4
ra
d
.

107

Fi
gu

re
27

:
Id

ea
l(

da
sh

ed
)v

s.
ac

tu
al

(s
ol

id
)j

oi
nt

ve
lo

ci
ty

tr
aj

ec
to

rie
s

fo
r

th
e

six
ar

m
jo

in
ts

du
rin

g
dy

na
m

ic
gr

as
pi

ng
at

a
re

la
tiv

e
ob

je
ct

sp
ee

d
of

0
.2
5
m
/
s.

T
he

jo
in

t-
sp

ac
e

ve
lo

ci
ty

R
M

SE
is

0.
92

85
ra
d
.

108

Fi
gu

re
28

:
Id

ea
l(

da
sh

ed
)

vs
.

ac
tu

al
(s

ol
id

)
en

d-
eff

ec
to

r
po

se
tr

aj
ec

to
rie

s
at

a
re

la
tiv

e
ob

je
ct

sp
ee

d
of

0.
25

m
/s

.
T

he

R
M

SE
is

0.
0
18

6
m

fo
r

po
sit

io
n

an
d
0
.0
52

(u
ni

tle
ss

)
fo

r
or

ie
nt

at
io

n
in

qu
at

er
ni

on
sp

ac
e.

109

Concerning the quaternion component of the pose (used to describe the orientation of the

end-effector with respect to the base frame of the manipulator), after a preliminary analysis,

at approximately t = 0.75 s a spike is visible in the Qe,x component (see Figure 28). To verify

whether this spike corresponds to a meaningful orientation error, the two quaternions are first

converted into rotation matrices; their relative rotation is then analyzed and finally expressed

in Euler angles. The actual and ideal quaternions at that instant are

qact = (0.1624, 0.3511,−0.02611, 0.9217), (6.1)

qid = (0.0002, 0.3663, 0.0005, 0.9305), (6.2)

where the ordering is (qx, qy, qz, qw) and ∥q∥ = 1. Recall that for a unit quaternion q =

(qx, qy, qz, qw), the corresponding rotation matrix is

R(q) =


1− 2(q2y + q2z) 2(qxqy − qzqw) 2(qxqz + qyqw)

2(qxqy + qzqw) 1− 2(q2x + q2z) 2(qyqz − qxqw)

2(qxqz − qyqw) 2(qyqz + qxqw) 1− 2(q2x + q2y)


. (6.3)

Applying (Equation 6.3) yields

Ract =


0.7521 0.1622 0.6387

0.0659 0.9459 −0.3177

−0.6557 0.2810 0.7007

 , Rid =


0.7316 −0.0008 0.6817

0.0011 1.0000 −0.0000

−0.6817 0.0007 0.7316

 . (6.4)

110

Then, the relative rotation between ideal and actual frames at that specific time instant is

obtained as

Rrel = Ract R
⊤
id =


0.9856 0.1630 −0.0452

−0.1691 0.9460 −0.2767

−0.0023 0.2803 0.9599

 . (6.5)

Had the two quaternions been identical, Rrel would be exactly the identity matrix; the

small off-diagonal terms therefore quantify the misalignment. Using the ZY X convention, the

error angles (ϕerr, θerr, ψerr) are obtained from (Equation 6.5) as

(ϕerr, θerr, ψerr) = (atan2(R32, R33), − arcsin(R31), atan2(R21, R11))

= (0.284, 0.0023, −0.170) rad

≈ (16.3◦, 0.1◦, −9.7◦).

(6.6)

Despite the visible spike in the Qe,x plot, these values indicate a moderate deviation. Fur-

thermore, this deviation occurred only for a brief period and not at the end of the trajectory.

Overall, it did not undermine the success of the grasping motion for the task being studied.

The group of plots in Figure 27 is the one that shows the most evident deviations between

the ideal and actual trajectories, and it is about joint velocities. This outcome is expected,

as joint velocity is not explicitly controlled by the position controller, which regulates only

joint positions via PID loops. As a result, the velocity profiles do not precisely track the

ideal trajectories, especially during the initial phase of motion where rapid accelerations are

required. Nonetheless, it can be observed that velocity tracking improves toward the end of

111

the trajectory, where accelerations are smaller. This suggests that the joint actuators may

have limitations in producing high acceleration commands, possibly due to torque or current

constraints. Interestingly, the system appears more capable of decelerating than accelerating, as

actual velocities tend to converge more quickly when decreasing than when ramping up. Despite

the discrepancies observed at the beginning of the motion, the final joint velocities closely match

the reference values, indicating a successful completion of the planned motion and supporting

the effectiveness of the grasp execution. Two additional plots that help characterize the

Figure 29: Euclidean distance between the end-effector and the object over time during a test

at a relative object speed of 0.25 m/s.

112

Figure 30: Actual trajectories of the end-effector (solid) and the object (dashed) in the base

frame of WidowX 250 S at a relative object speed of 0.25 m/s.

end-effector’s behavior (as described in Subsection 3.3.4) during the grasp sequence are shown

in Figure 29 and Figure 30. The first presents the evolution in time of Euclidean distance

between end-effector and target object, specifically measured between the tool center point and

the object’s center of mass, from the moment the manipulator starts the grasp sequence until

113

it the gripper is fully closed and the object is grasped. In the figure it is possible to observe

a short, almost flat portion of the curve where the distance appears to be constant: this is

the point where the robot arm gets to place its end-effector over the object and ”inverts” its

motion to match the object’s velocity. This phase is also evident in the spatial trajectory plot

of Figure 30, where the end-effector’s path exhibits a change in direction, aligning more closely

with the trajectory of the moving object. Toward the end of the sequence, the end-effector

continues to follow the object at close range, maintaining alignment until the gripper is fully

closed and the object is secured. Additional results of the same type of test (successful grasp)

at a lower speed of 0.05 m/s are illustrated in Appendix B.

Let us now analyze the outcomes of an unsuccessful experiment with the usual setup of

Subsection 5.3.1, in which Husky moved forward at a speed of 35 cm/s, which is approximately

the point at which the robotic arm no longer manages to perform a successful capture of the

target object. The test failure in this case can be explained by several interconnected factors.

First, at this relative speed, the object crosses the reachable workspace in a very short time.

The largest diameter of the workspace, achieved only when the arm is fully extended (including

wrist joints), is approximately 130 cm (see Table II). Realistically, when the wrist is bent to

grasp the object as in any of the described trajectories for grasping moving objects, the span

reduces to approximately 100 cm. This still refers to the maximum diameter, which is not

entirely crossable since it passes through the robot base. Therefore, the portion of reachable

workspace traversed by the object forms a chord whose length is at least 10-15% smaller than

the maximum diameter, reducing the distance traveled within the graspable area to 85 cm

114

Fi
gu

re
31

:
Id

ea
l(

da
sh

ed
)v

s.
ac

tu
al

(s
ol

id
)j

oi
nt

po
sit

io
n

tr
aj

ec
to

rie
sf

or
th

e
six

ar
m

jo
in

ts
du

rin
g

dy
na

m
ic

gr
as

pi
ng

at

a
re

la
tiv

e
ob

je
ct

sp
ee

d
of

0
.3
5
m
/s

.
T

he
jo

in
t-

sp
ac

e
R

M
SE

is
0.
30

59
ra
d
.

115

Fi
gu

re
32

:
Id

ea
l(

da
sh

ed
)v

s.
ac

tu
al

(s
ol

id
)j

oi
nt

ve
lo

ci
ty

tr
aj

ec
to

rie
s

fo
r

th
e

six
ar

m
jo

in
ts

du
rin

g
dy

na
m

ic
gr

as
pi

ng
at

a
re

la
tiv

e
ob

je
ct

sp
ee

d
of

0
.3
5
m
/
s.

T
he

jo
in

t-
sp

ac
e

ve
lo

ci
ty

R
M

SE
is

1.
30

2
ra
d
.

116

Fi
gu

re
33

:
Id

ea
l(

da
sh

ed
)

vs
.

ac
tu

al
(s

ol
id

)
en

d-
eff

ec
to

r
po

se
tr

aj
ec

to
rie

s
at

a
re

la
tiv

e
ob

je
ct

sp
ee

d
of

0.
35

m
/s

.
T

he

R
M

SE
is

0.
0
35

3
m

fo
r

po
sit

io
n

an
d
0
.0
44

1
(u

ni
tle

ss
)

fo
r

or
ie

nt
at

io
n

in
qu

at
er

ni
on

sp
ac

e.

117

Figure 34: Euclidean distance between the end-effector and the object over time during a test

at a relative object speed of 0.35 m/s.

or less. At 35 cm/s, this distance is covered in slightly more than 2 s, which represents the

minimum time required for the dynamic grasping manager to activate the manipulator’s motion,

as described in Section 3.6. This implies that even if the robot arm attempts a grasp, it occurs at

the workspace edge just before the target exits, creating instability as the robot arm loses much

of its mobility when fully extended. When coupled with joint velocity and acceleration limits

and the fact that the PID position controller struggles to counteract errors due to dynamic

effects and gravity at higher speeds, these factors provide a complete explanation for why the

dynamic grasping algorithm fails at relative speeds around 35 cm/s and above.

118

Figure 35: Actual trajectories of the end-effector (solid) and the object (dashed) in the base

frame of WidowX 250 S at a relative object speed of 0.35 m/s.

The end-effector’s proximity to the reachable workspace border is evident in Figure 31

and Figure 32. For joints responsible for full arm extension, such as Shoulder and Elbow, the

planned joint velocities spike to extremely high values toward the end, clearly indicating full arm

extension during those time instants. This behavior significantly impacted trajectory following,

119

as shown in the joint position plots where the same joints experiencing velocity limit issues

failed to track the desired trajectory, resulting in unstable robot movement as demonstrated

in Figure 34. Overall, while the end-effector came remarkably close to capturing the object,

the attempt failed due to degraded position controller performance and instability caused by

operating at the workspace boundary.

TABLE VI: TRACKING ERROR VERSUS RELATIVE SPEED FOR JOINT POSITIONS

(rad) AND JOINT VELOCITIES (rad/s).

Rel. speed (m/s)
Joint positions Joint velocities

RMSE ℓ∞ -norm RMSE ℓ∞-norm

0.05 0.2112 0.6638 0.9373 2.9083
0.10 0.2070 0.6578 0.8925 2.8144
0.15 0.2108 0.6919 0.8972 2.7582
0.20 0.2018 0.6380 0.8367 2.6553
0.25 0.2540 0.7523 0.9285 2.8111
0.30 0.2638 0.7193 0.9275 2.9237
0.35 0.3059 0.7162 1.3020 5.8519

As shown in Table VI and Table VII, the average and maximum deviations from the ideal tra-

jectory, represented by RMSE and ℓ∞-norm respectively, remain remarkably consistent across

120

TABLE VII: TRACKING ERROR VERSUS RELATIVE SPEED FOR END-EFFECTOR

POSITION (m) AND END-EFFECTOR ORIENTATION (QUATERNION ERROR).

Rel. speed (m/s)
End-effector position End-effector orientation

RMSE ℓ∞-norm RMSE ℓ∞-norm

0.05 0.0126 0.0279 0.0282 0.0955
0.10 0.0136 0.0315 0.0281 0.0877
0.15 0.0128 0.0359 0.0329 0.1049
0.20 0.0143 0.0424 0.0405 0.1488
0.25 0.0186 0.0419 0.0520 0.1658
0.30 0.0254 0.0567 0.0275 0.0551
0.35 0.0353 0.0647 0.0441 0.1172

the relative speed range of 5 cm/s to 25 cm/s. This consistency is particularly pronounced for

end-effector position, which represents the most critical element of the analysis, since it directly

relates to our Cartesian space objectives. The average end-effector position error for the trial

conducted at Husky’s speed of 35 cm/s is nearly twice the average position error observed for

speeds within the 5 cm/s to 25 cm/s range. Similarly, elevated values appear in the joint

velocities section of Table VI, attributed to the significant trajectory misalignment towards the

end of the motion when the manipulator operates at the boundary of reachable workspace.

As summarized in Figure Figure 36, the success rate of dynamic grasping experiments

remains consistently high in simulation across all tested speeds, with 100% successful captures

even at the highest relative speed; this happens since in Gazebo, joint position commands

121

Figure 36: Success rate of the dynamic grasping control system as a function of relative object

speed, comparing results obtained in simulation and on hardware.

are executed by moving the joint smoothly toward the target using simulated controllers and

physics, which often results in more precise movement than on the real robot due to the absence

of real-world imperfections. In fact, hardware tests reveal a noticeable decline in performance

as the relative object speed increases. While relative speeds up to 25 cm/s achieve success

rates of 95%, performance starts to drop significantly beyond this threshold. At speeds of

about 26−31 cm/s, the hardware success rate falls to approximately 70%, primarily due to the

more relevant effect of dynamic disturbances on the position controllers and the limited time

the object remains within the reachable workspace, particularly when its trajectory crosses the

workspace far from the center. At 32 − 35 cm/s, successful grasps are basically almost never

guaranteed. These results highlight the impact of physical limitations such as actuator dynamics

122

and unmodeled disturbances, which are absent in the idealized simulation environment. Note

that the infrequent failures at speeds within 25 cm/s are mainly not speed-related, but rather

stem from undesired disturbances such as higher mechanical vibrations of the entire system

caused by Husky’s motion or erroneous data acquisition from the vision system.

6.3 Performance and accuracy in dynamic scenarios

Given the way the employed trajectory planner and control system operate, there is an

intrinsic difficulty in quantitatively assessing the difference between nominal and executed tra-

jectories in tests involving changes in the object’s relative motion. In such scenarios, the manip-

ulator must dynamically adapt its plan, alternating periods of constant motion with other time

intervals during which it is stopped and does not have a planned trajectory to follow, making

it challenging to establish a consistent reference trajectory. Consequently, performance and

accuracy were primarily evaluated through visual inspection, verifying whether the end-effector

was able to successfully intercept the target.

Through this visual assessment approach, the experimental results demonstrate that suc-

cessful target capture after a motion change is highly dependent on the target’s speed range.

At low speeds (about 0-10 cm/s), the system maintains a very high capture likelihood even

when subjected to two rapid direction changes, indicating robust tracking capabilities within

this operating range. Performance degrades significantly as target speed increases, with mod-

erate success (about 10-15 cm/s) only achievable when a single quick change occurs within the

workspace, and low success rates (15-18 cm/s) requiring that direction changes happen before

workspace entry or shortly thereafter. Beyond 18 cm/s, the system shows very low to no success

123

in target capture, even with optimal timing of directional changes. These findings confirm that

the system’s responsiveness is fundamentally limited by target velocity, with the optimal oper-

ating range for what concerns the starting velocity of 0-25cm/s, providing the best conditions

for the end-effector to initiate motion and align with moving targets. The results underscore

the critical importance of maintaining target speeds within the low-to-medium velocity ranges

to ensure reliable capture performance in dynamic tracking scenarios, where a motion change

is expected.

To complement this visual evaluation, recorded joint data allowed for a-posteriori analysis,

enabling the generation of two complementary plots: a 3D animation of the actual end-effector

and object trajectories in the robot base frame, and a plot showing the evolution of their

Euclidean distance over time. The animation is presented through a figure displaying six

successive snapshots capturing the most critical moments of the interaction. These figures

provide additional insight into the system’s behavior under dynamic conditions.

Figure 38 directly refers to the test described in Subsection 5.3.3 and illustrates an object

trajectory featuring three changes in the direction of motion, executed at a speed of 10 cm/s.

In the initial portion of the trajectory, the end-effector attempted to move over the object and

align with its original path. This smooth phase concludes with a full stop, coinciding with a

sharp bend in the end-effector trajectory. From that point onward, the manipulator attempted

to replan its motion; however, slightly after a new trajectory was computed and dispatched,

another change occurred, requiring the process to be repeated. The grasp sequence successfully

concluded just before the object exited the reachable workspace, as shown in Figure 25c. The

124

Figure 37: End‐effector (solid) and object (dashed) 3D trajectories in the direction‐change test

performed at a relative speed of 0.10 m/s.

125

Figure 38: Euclidean distance between end‐effector and object over time during the direc-

tion‐change test performed at a relative speed of 0.10 m/s.

instant at which the robot arm halts to reprogram itself can be identified in Figure 38 by

examining the nearly flat segment of the curve. Following the initial decrease in distance, two

small bumps appear around 4.7 s and 6.7 s. These correspond to moments when the distance

temporarily increased, immediately after the manipulator paused to replan its trajectory. In

fact, while the end-effector remained stationary during replanning, the object continued to move

along its new direction, momentarily increasing the separation.

Another notable detail is the time required for the end-effector to reprogram its trajectory

once the object’s velocity stabilizes. As expected, experimental results indicate this interval

lasts approximately 0.5 s. This duration is primarily attributed to latency introduced by the

126

velocity estimator of Subsection 3.5.2, which, by design, employs a window of 120 samples.

Consequently, when the target changes direction and reaches a new constant velocity, the

estimator needs about half a second to reflect the updated motion based on position data.

An additional delay follows, as the dynamic grasping manager and control system recognize the

new motion stability and generate the corresponding commands for execution.

Similar observations can be drawn from the results of other tests including deceleration

phases after the manipulator already started it motion or scenarios in which Husky was brought

to a complete stop, leading to a new simplified trajectory for stationary objects, that only

includes the first two segments: in this case the end-effector does not necessitate to track the

object, since it is not moving relative to its base frame. Additional plots from these experiments

are shown in Appendix C.

CHAPTER 7

CONCLUSIONS

This thesis has presented a comprehensive framework for dynamic object grasping using

a robotic manipulator, addressing the challenges of real-time motion prediction and adaptive

control in non-static scenarios. The system developed throughout this work enables a 6-DOF

robotic arm to successfully identify, track, and capture objects moving with a constant linear

velocity relative to it, under a variety of dynamic scenarios. This capability was made possible

through the integration of motion estimation, predictive trajectory planning, and adaptive grasp

execution, all coordinated via a finite-state machine that updates the system state at a 50 Hz

frequency.

At the core of the architecture is an efficient real-time motion planner that, together with

a custom analytic inverse kinematics solver, enables the robot to generate and execute time-

optimal end-effector trajectories in under a millisecond. This computational efficiency was a key

enabler for maintaining the reactivity required for dynamic grasping. The design also accounted

for practical constraints such as gripper closure delays and object geometry, using motion-aware

orientation strategies to increase grasp robustness.

Experimental results confirmed that the system is capable of successfully grasping objects

moving at relative speeds up to roughly 30 cm/s, with a very high success rate in this range.

Beyond this threshold, performance began to degrade due to kinematic and actuation limita-

tions, as the time during which the object remains in the robot’s reachable workspace becomes

127

128

insufficient for safe execution. The ability to adapt to changes in the object’s motion, both

in magnitude and direction, was also demonstrated. In such scenarios, the system reacts by

pausing its current motion, monitoring for trajectory stabilization, and replanning as soon as

the tracked relative motion becomes steady (constant and linear) again. These capabilities were

validated through both realistic simulations in Gazebo and hardware experiments, employing

different setups, with the robotic arm mounted on a UGV, or stationary on a support.

A key contribution of this work lies in the dynamic grasp triggering logic, which moves

beyond static workspace boundaries by leveraging real-time kinematic feasibility checks and

velocity-based trajectory extrapolation. This adaptive grasp prediction strategy allows the

robot to make informed decisions about when and how to engage in a grasp attempt, rather

than relying solely on geometric proximity. Additionally, the modular ROS 2-based software

design ensures that the developed framework can be extended or repurposed in broader loco-

manipulation contexts, including multi-robot cooperation and field robotics.

Nevertheless, a number of practical constraints emerged during implementation and testing,

highlighting specific areas for improvement:

• Servo tracking at high dynamics: the DYNAMIXEL position controller shows reduced

tracking accuracy at elevated speeds and accelerations, as gravity and other dynamic

forces are not currently compensated.

• Dependence on an external vision system: while the MoCap system delivers excellent

precision for position data at very high rates, it restricts deployment to controlled envi-

ronments and is not always a viable solution for certain applications. However, it can

129

still be employed in indoor applications where there is the possibility to install and use a

motion capture system.

• Trajectory complexity limitations: objects following non-linear paths, such as circular

motion or constant acceleration, fall outside the grasp manager’s predictive capabilities.

• Gripper geometry constraints: the small and simple gripper design limits the system to

handling only objects that match its basic geometry and finger opening range.

From these observations, it is possible to describe what could be some future improvements:

• Unified WidowX–UGV control architecture: host the control logic on the UGV’s on‑board

Jetson using ROS 2 and powering the arm directly from the robot vehicle, enabling fully

autonomous operation.

• Vision-based tracking: transition from motion capture to RGB cameras with depth sen-

sors. Though this entails addressing a reduced field of view (potentially requiring mul-

tiple cameras), vibration compensation, lower data rates, and coarser position estimates,

it would significantly increase applicability in varied environments.

• Support for non-linear trajectories: enhance the grasp manager to recognize and handle

additional simple trajectory types, such as circular or uniformly accelerated motion.

• Advanced control methods: replace position PID control with inverse dynamics-based

controller to actively counter dynamic disturbances, leveraging a higher control refresh

rate.

130

• Dynamic planning fallback: for more complex motion that cannot be described through

simple models, the system could temporarily switch from predictive grasp logic to real‑time

trajectory planning, leveraging Ruckig’s online solver and possibly the inverse dynamics-

based controller, that works at higher rates. This would allow the end effector to closely

follow the object, minimizing waiting periods until a stable grasp window emerges.

Ultimately, with its blend of predictive planning, responsive control, and modular architec-

ture, this framework establishes a solid foundation for responsive robot interaction with moving

objects. Addressing the outlined limitations and pursuing the proposed improvements will move

this work decisively toward operational autonomy in complex environments.

APPENDICES

131

132

Appendix A

GRASP TIMING AND DECISION LOGIC EXAMPLE

To better understand the grasp triggering condition involving the predicted entry time

τobj,in, consider the following illustrative scenario.

Suppose the robot requires τe = 3 s to reach the predicted entry point, and the object is

expected to remain inside the reachable workspace for a total duration of τobj,in = 3 s. Since

the minimum required grasp window is 2 seconds, the object exceeds this minimum by 1 s,

meaning it provides some timing flexibility.

In this case, the robot can initiate the grasp sequence even if the object is predicted to

arrive at the entry point as early as τobj,out = τe − (τobj,in − 2) = 2 s. This works because the

robot will arrive 1 second later, while the object will still be inside the workspace for 2 more

seconds, satisfying the minimal dwell-time requirement.

If instead τobj,out were less than this threshold (e.g., 1.5 seconds), the object would have

already been in the workspace for approximately 1.5 seconds when the robot arrives, leaving

only 1.5 seconds to complete the grasp. This would violate the safety margin encoded in the

duration condition, and thus the grasp would not be triggered.

133

Appendix B

ADDITIONAL RESULTS AT A LOWER RELATIVE SPEED

This appendix reports the results of the same dynamic grasping experiment discussed in

Subsection 5.3.1, but performed with a lower relative speed between the end-effector and the

object, set to approximately 5 cm/s. The structure of the plots is identical to those presented in

Section 6.2: joint positions, joint velocities, end-effector pose, Euclidean distance to the object,

and the 3D spatial trajectories are all included for completeness. These results are provided to

illustrate the system’s behavior in slower motion scenarios, although no significant deviations

from the expected grasping performance are observed at this speed. It can be seen that the

RMSE is generally lower, especially for position and orientation in the Cartesian space (see

Figure 41): a lower relative speed of the object to track and capture relaxes the work the

position PID controller which can therefore follow the desired trajectory with a higher lever of

accuracy.

134

Appendix B (continued)

Fi
gu

re
39

:
Id

ea
l(

da
sh

ed
)v

s.
ac

tu
al

(s
ol

id
)j

oi
nt

po
sit

io
n

tr
aj

ec
to

rie
sf

or
th

e
six

ar
m

jo
in

ts
du

rin
g

dy
na

m
ic

gr
as

pi
ng

at

a
re

la
tiv

e
ob

je
ct

sp
ee

d
of

0
.0
5
m
/s

.
T

he
jo

in
t-

sp
ac

e
R

M
SE

is
0.
21

12
ra
d
.

135

Appendix B (continued)

Fi
gu

re
40

:
Id

ea
l(

da
sh

ed
)v

s.
ac

tu
al

(s
ol

id
)j

oi
nt

ve
lo

ci
ty

tr
aj

ec
to

rie
s

fo
r

th
e

six
ar

m
jo

in
ts

du
rin

g
dy

na
m

ic
gr

as
pi

ng
at

a
re

la
tiv

e
ob

je
ct

sp
ee

d
of

0
.2
5
m
/
s.

T
he

jo
in

t-
sp

ac
e

ve
lo

ci
ty

R
M

SE
is

0.
93

73
ra
d
.

136

Appendix B (continued)

Fi
gu

re
41

:
Id

ea
l(

da
sh

ed
)

vs
.

ac
tu

al
(s

ol
id

)
en

d-
eff

ec
to

r
po

se
tr

aj
ec

to
rie

s
at

a
re

la
tiv

e
ob

je
ct

sp
ee

d
of

0.
25

m
/s

.
T

he

R
M

SE
is

0.
0
12

6
m

fo
r

po
sit

io
n

an
d
0
.0
28

2
(u

ni
tle

ss
)

fo
r

or
ie

nt
at

io
n

in
qu

at
er

ni
on

sp
ac

e.

137

Appendix B (continued)

Figure 42: Euclidean distance between the end-effector and the object over time during a test

at a relative object speed of 0.05 m/s.

138

Appendix B (continued)

Figure 43: Actual trajectories of the end-effector (solid) and the object (dashed) in the base

frame of WidowX 250 S at a relative object speed of 0.05 m/s.

139

Appendix C

ADDITIONAL RESULTS OF SCENARIOS WITH CHANGING

VELOCITY

This appendix reports additional plots of experiments done in scenarios where the object

velocity was changing either in magnitude or direction from the point of view of WidowX’s base

frame (not necessarily stationary).

In Figure 44 and Figure 46, it is possible to identify the point in space where the end-

effector stopped, allowing the manipulator to reprogram a new trajectory. This point appears

as a knot-like feature along the trajectory, characterized by small displacements of the tool

center point. The irregularity is attributed to mechanical vibrations induced by the motion of

the Husky platform during the stop.

140

Appendix C (continued)

Figure 44: End‐effector (solid) and object (dashed) 3D trajectories in a test during which the

relative velocity was lowered from 0.20 m/s to 0.10 m/s.

141

Appendix C (continued)

Figure 45: Euclidean distance between end‐effector and object over time in a test during which

the relative velocity was lowered from 0.20 m/s to 0.10 m/s.

142

Appendix C (continued)

Figure 46: End‐effector (solid) and object (dashed) 3D trajectories in a test during which the

relative velocity was dropped to zero.

143

Appendix C (continued)

Figure 47: Euclidean distance between end‐effector and object over time in a test during which

the relative velocity was dropped to zero.

CITED LITERATURE

1. ROBOTIS: DYNAMIXEL XM430-W350 Position PID Controller. https://emanual.
robotis.com/docs/en/dxl/x/xm430-w350/, 2025. Accessed: 2025-06-19.

2. ROBOTIS: DYNAMIXEL XL430-W250 Position PID Controller. https://emanual.robotis.
com/docs/en/dxl/x/xl430-w250/, 2025. Accessed: 2025-06-19.

3. Trossen Robotics: WidowX 250 S Product Photograph. https://www.trossenrobotics.com/
widowx-250. [Online; accessed June 4, 2025].

4. Trossen Robotics: WidowX 250 S Technical Drawing. https://www.trossenrobotics.com/
widowx-250. [Online; accessed June 4, 2025].

5. Miller, A. and Allen, P.: Graspit! a versatile simulator for robotic grasping. IEEE Robotics
and Automation Magazine, 11(4):110–122, 2004.

6. Ferrari, C. and Canny, J.: Planning optimal grasps. In Proceedings 1992 IEEE
International Conference on Robotics and Automation, pages 2290–2295 vol.3,

1992.

7. Houshangi, N.: Control of a robotic manipulator to grasp a moving target using vision. In
Proceedings., IEEE International Conference on Robotics and Automation, pages
604–609 vol.1, 1990.

8. Allen, P., Timcenko, A., Yoshimi, B., and Michelman, P.: Automated tracking and grasping
of a moving object with a robotic hand-eye system. IEEE Transactions on Robotics
and Automation, 9(2):152–165, 1993.

9. XiaoYang, Z., Ayub, M. A., Ruslan, F. A., Abdul-Rahman, S., and Abdullah, S. C.: Flex-
ible target grasping strategy of industrial robot based on eye-in-hand 3d machine
vision. In 2025 IEEE International Conference on Robotics and Technologies for
Industrial Automation (ROBOTHIA), pages 1–6, 2025.

10. Zhang, Y., Wang, R., and Chen, X.: Dynamic behavior cloning with temporal feature
prediction: Enhancing robotic arm manipulation in moving object tasks. IEEE
Robotics and Automation Letters, 10(6):5209–5216, 2025.

144

https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/
https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/
https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/
https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/
https://www.trossenrobotics.com/widowx-250
https://www.trossenrobotics.com/widowx-250
https://www.trossenrobotics.com/widowx-250
https://www.trossenrobotics.com/widowx-250

145

CITED LITERATURE (continued)

11. Nguyen, H. H., Vu, M. N., Beck, F., Ebmer, G., Nguyen, A., Kemmetmueller, W., and
Kugi, A.: Language-driven closed-loop grasping with model-predictive trajectory
optimization. Mechatronics, 109:103335, 2025.

12. Sleiman, J.-P., Farshidian, F., and Hutter, M.: Versatile multicontact planning and control
for legged loco-manipulation. Science Robotics, 8(81):eadg5014, 2023.

13. Ferrolho, H., Ivan, V., Merkt, W., et al.: Roloma: Robust loco-manipulation for quadruped
robots with arms. Autonomous Robots, 47:1463–1481, 2023. Published: 15 October
2023.

14. Jiang, K., Fu, Z., Guo, J., Zhang, W., and Chen, H.: Learning whole-body loco-
manipulation for omni-directional task space pose tracking with a wheeled-
quadrupedal-manipulator. IEEE Robotics and Automation Letters, 10(2):1481–
1488, 2025.

15. Trossen Robotics: WidowX 250 S – 6-DOF Research Manipulator Arm. https://www.
trossenrobotics.com/widowx-250. [Online; accessed June 4, 2025].

16. Trossen Robotics: WidowX 250 S – X-Series Arms Documentation. https://docs.
trossenrobotics.com/interbotix_xsarms_docs/specifications/wx250s.html. [Online;
accessed June 4, 2025].

17. Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G.: Robotics: Modelling, Planning and
Control. Advanced Textbooks in Control and Signal Processing. London, Springer,
2009.

18. Berscheid, L. and Kröger, T.: Jerk-limited real-time trajectory generation with arbitrary
target states. Robotics: Science and Systems XVII, 2021.

19. Griffig Robotics GmbH: Ruckig - Motion Generation for Robots and Machines. https:
//ruckig.com/#about. [Online; accessed March 28, 2025].

20. OptiTrack: Mocap4ROS2 Setup Guide, 2023. [Online; accessed April 16, 2025].

21. Open Robotics: ROS 2 Humble Hawksbill Release (LTS). https://docs.ros.org/en/humble/
Releases.html, 2022. [Online; accessed June 14, 2025].

https://www.trossenrobotics.com/widowx-250
https://www.trossenrobotics.com/widowx-250
https://docs.trossenrobotics.com/interbotix_xsarms_docs/specifications/wx250s.html
https://docs.trossenrobotics.com/interbotix_xsarms_docs/specifications/wx250s.html
https://ruckig.com/#about
https://ruckig.com/#about
https://docs.ros.org/en/humble/Releases.html
https://docs.ros.org/en/humble/Releases.html

146

CITED LITERATURE (continued)

22. Open Robotics: ROS 2 Humble: Stability, Performance and Developer Ergonomics.
https://www.openrobotics.org/blog/2022/5/24/ros-2-humble-hawksbill-release,
2022. [Online; accessed June 14, 2025].

23. Open Robotics: Unconfigured DDS considered harmful to networks. https://discourse.
ros.org/t/unconfigured-dds-considered-harmful-to-networks/25689, 2021. [Online;
accessed June 14, 2025].

24. Trossen Robotics: Interbotix X-Series ROS 2 Packages Documentation. https://docs.
trossenrobotics.com/interbotix_xsarms_docs, 2024. [Online; accessed June 15,
2025].

25. ros2_control Maintainers: joint_trajectory_controller – User Documentation.
https://control.ros.org/master/doc/ros2_controllers/joint_trajectory_controller/
doc/userdoc.html, 2025. [Online; accessed June 14, 2025].

26. ros2_control Maintainers: Trajectory Representation in joint_trajectory_controller.
https://control.ros.org/master/doc/ros2_controllers/joint_trajectory_controller/
doc/trajectory.html, 2025. [Online; accessed June 14, 2025].

27. ROS Maintainers: Understanding trajectory replacement
(joint_trajectory_controller). https://wiki.ros.org/joint_trajectory_controller/
UnderstandingTrajectoryReplacement, 2025. [Online; accessed June 14, 2025].

28. Trossen Robotics: Interbotix X-Series SDK – ROS 2 Interface Overview.
https://github.com/TrossenRobotics/interbotix_xsarms_docs/blob/main/docs/
ros_interface/ros2/overview/xs_sdk.rst, 2025. [Online; accessed June 14, 2025].

29. Open Source Robotics Foundation: Gazebo simulation environment. https://classic.
gazebosim.org, 2014. [Online; accessed June 15, 2025].

30. NaturalPoint, Inc. (dba OptiTrack): Primex 13 Motion Capture Camera. https://www.
optitrack.com/cameras/primex-13, 2025. [Online; accessed June 20, 2025].

https://www.openrobotics.org/blog/2022/5/24/ros-2-humble-hawksbill-release
https://discourse.ros.org/t/unconfigured-dds-considered-harmful-to-networks/25689
https://discourse.ros.org/t/unconfigured-dds-considered-harmful-to-networks/25689
https://docs.trossenrobotics.com/interbotix_xsarms_docs
https://docs.trossenrobotics.com/interbotix_xsarms_docs
https://control.ros.org/master/doc/ros2_controllers/joint_trajectory_controller/doc/userdoc.html
https://control.ros.org/master/doc/ros2_controllers/joint_trajectory_controller/doc/userdoc.html
https://control.ros.org/master/doc/ros2_controllers/joint_trajectory_controller/doc/trajectory.html
https://control.ros.org/master/doc/ros2_controllers/joint_trajectory_controller/doc/trajectory.html
https://wiki.ros.org/joint_trajectory_controller/UnderstandingTrajectoryReplacement
https://wiki.ros.org/joint_trajectory_controller/UnderstandingTrajectoryReplacement
https://github.com/TrossenRobotics/interbotix_xsarms_docs/blob/main/docs/ros_interface/ros2/overview/xs_sdk.rst
https://github.com/TrossenRobotics/interbotix_xsarms_docs/blob/main/docs/ros_interface/ros2/overview/xs_sdk.rst
https://classic.gazebosim.org
https://classic.gazebosim.org
https://www.optitrack.com/cameras/primex-13
https://www.optitrack.com/cameras/primex-13

VITA

NAME Simone Ughetto

EDUCATION

M.S., Electrical and Computer Engineering, University of Illinois at
Chicago, Chicago, Illinois, United States of America, Expected July,
2025.

M.S., Mechatronic Engineering, Politecnico di Torino, Turin, Italy, Ex-
pected July, 2025.

B.S., Mechanical Engineering, Politecnico di Torino, Turin, Italy, July
2023.

LANGUAGE SKILLS

Italian Native speaker.

English Full working proficiency.

2023 - TOEFL examination (109/120).

A.Y. 2024/2025 One Year of study abroad in Chicago, Illinois.

A.Y. 2020/2024. Lectures and exams attended exclusively in English.

SCHOLARSHIPS

Fall 2024 Italian scholarship for TOP-UIC students.

147

	to1 Introduction
	 Dynamic grasping
	 Motivations
	 Document structure
	 Additional notes

	to2 Related work
	 Static grasping in robotic manipulation
	 Dynamic grasping: real-time perception, prediction, and control
	 Loco-manipulation: combining locomotion and arm-based manipulation

	to3 Motion control architecture
	 Kinematic modeling
	 Robot arm description
	 Forward kinematics
	 Inverse kinematics

	 Differential kinematics
	 Geometric Jacobian
	 Analytic Jacobian
	 Inverse Jacobian

	 Trajectory Planning
	 Multi-DOF planning with Ruckig
	 Grasp point estimation
	 Motion-aware end-effector orientation strategy
	 Main Trajectory
	 Stop trajectory
	 Go-to-rest trajectory
	 Discretization and Conversion of the Trajectory

	 Gripper Trajectory Planner
	 Relative state estimation
	 Streaming of position data
	 Velocity estimation of rigid bodies from position data
	 Relative state estimation in the robot's reference frame
	 End-effector kinematics data

	 Grasp-attempt decision logic and state machine
	 Predictive trajectory analysis and grasp triggering conditions
	 Gripper actuation logic
	 Direction change detection and grasp plan adaptation
	 Post-grasp reset and reinitialization

	to4 ROS 2 integration and simulation framework
	 ROS 2 Humble as middleware backbone
	 Motivation and relevant features
	 Integration with Interbotix X‑Series ROS 2 packages

	 Joint-Trajectory Controller as Final Execution Interface
	 Gazebo environment and simulation setup
	 Gazebo and ROS 2 integration for realistic simulations
	 Simulation scenario for dynamic grasping
	 Insights derived from simulation experiments

	to5 Hardware set-up and experiments
	 Hardware overview
	 Robotic arm
	 Objects
	 Mobile base (UGV)
	 Motion capture system

	 DYNAMIXEL Position Controller PID Tuning
	 Experiment protocols and evaluation metrics
	 Testing at different speeds
	 Testing variations in velocity magnitude
	 Testing changes in direction

	to6 Experimental results
	 Computational performance of the dynamic grasping control system
	 Performance and accuracy across different relative velocities
	 Performance and accuracy in dynamic scenarios

	to7 Conclusions
	to APPENDICES
	to Appendix A
	to Appendix B
	to Appendix C
	to CITED LITERATURE
	to VITA

