
!

Table of Contents ` !

THE UNIVERSITY OF TEXAS AT SAN ANTONIO

SHUSHBot
Smart Humanoid Used for Silencing Humans Robot

4/24/2015

Table of Contents ...
` 1 ..

Table of Figures 3 ...

1.0 Executive Summary 5 ...

2.0 Introduction 6 ...

3.0 Need Being Addressed 7 ...

4.0 Literature and Patent Search Results 8 ...

5.0 Marketing Analysis and Market Strategy 9 ..

6.0 Engineering Design Constraints 9 ...

7.0 Product Requirements 11 ..

8.0 Engineering Codes and Standards 11 ...

9.0 Design Concepts 12 ..

18.0 Attachments 37 ...

!
!

10.0 High level Block Diagrams 14 ...

11.0 Major Components 16 ..

12.0 Detailed Design 17 ...
Hardware 17
Software 27

13.0 Major Problems 37 ...

14.0 Integration and Implementation 39 ...

15.0 Comments and Conclusion 40 ..

16.0 Team Members 40 ...

17.0 References 41..

! 2

Table of Figures !
Figure 1. SHUSHBot 3 ...

Figure 2. SHUSHBot Project Schedule 5 ...

Figure 3. The Concept of SHUSHBot 6 ...

Figure 4. Pugh Matrix 10 ..

Figure 5. Hardware Functional Block Diagram 12 ..

Figure 6. Sofware Function Block Diagram 13 ..

Figure 7. Kobuk unit from underneath [10] 15 ..

Figure 8. Kobuki Control Panel [10] 15 ...

Figure 9. Kobuk Docking Station [5] 16 ..

Figure 10. Kobuk Regional Docking [5] 17 ...

Figure 11. Kobuk Regional Docking [5] 17 ...

Figure 12. Kobuki with its sensors [10] 18 ..

Figure 13. PSPICE Model of Microphone Sensor and Amplifier 19 ...

Figure 14. PSPICE Bode Plot of the Microphone circuit 20 ..

Figure 15. PSPICE Model of LM380 Amplifier 21 ...

Figure 16. Top extension plate [11] 22 ...

Figure 17. Emergency Shutoff Switch 23 ...

Figure 18. Battery to Docking Flow 24 ..

Figure 19. Listener Data Send/Receive 25 ...

Figure 20. Lab (Base Side) 27 ..

Figure 21. SLAM Map of Lab (Base Side) 27 ...

Figure 22. Lab (Area 51 Side) 27 ...

Figure 23. SLAM Map of Lab (Area 51 side) 27 ...

Figure 24. Block diagram of Arduino Program 28 ...

Figure 25. Human Interface Block Diagram 29 ...

Figure 26. Text image 30 ..

Figure 27. Program Block Diagram 32 ..

! 3

!
!

! 4

1.0 Executive Summary !
John Peace Library (JPL) has commissioned the use of a Human-Robot Interactive

machine (SHUSHBot), shown in figure 1, for two main purposes; the first is the lack of staff,
which has led to higher noise levels within the JPL. Certain areas of the JPL are designated as
“Quite zones.” However, these zones are limited in seating and cannot be monitored at all times.
With this problem at hand, Stacy Alexander, Thilo Janssen, Roberto Mexquitic, and Javier
Gonzalez were given the opportunity to design and develop a human interactive mobile robot.
Today the SHUSHBot team is currently debugging and updating the active prototype as planned
in the prior semester. Currently the mobile robot reacts to high noise levels and warns the human
of his/her being too noisy.

!
Figure 1. SHUSHBot

!
The second goal is to serve as an attraction for guests visiting the JPL and as a recruiting

tool for the university and the college of engineering. It was assessed that SHUSHBot would use
the microphone within the laptop to detect and decrypt speech patterns, such that a student may
greet “Hello” and SHUSHBot would reply with a simple “Hello” as well. A deviation was made
this semester due to the primary computer having a malfunction, thus needing us to use a
different computer that has no microphone installed within it. To solve this problem we used a

! 5

USB connected microphone to attach to the laptop. The Blu microphone is temporarily used
while we find an alternative lighter and smaller microphone that will allow speech interpretation.

2.0 Introduction !
Disney Land/World has human interactive robots which catch the attention of young

children. The interaction between the younger people and the robots cause an increase of
attendance to the theme park. These robots in the theme park provide directions to those who are
lost, interact with people via “Hello, Goodbye, and how are you,” and more advanced robots
move even through the park communicating with the guests.

The project, the “Smart Humanoid Used for Silencing Humans Bot” (SHUSH Bot), will
have a primary task of navigating the 3rd floor of the JPL while monitoring the noise level
depending on the position of the bot. As a secondary function it might allure new students to
apply to the university as well as draw more students into engineering.

In our research to create an adequate and inexpensive robot as a platform, we discovered
the TurtleBot 2.0. The TurtleBot is a small, compact mobile robot which uses a Roomba as a
basic frame. It comes prebuilt with a computer, various outputs, a 360 Kinect camera, and
platform to install additional components. Through our research analysis we found that the
TurtleBot software includes a Software Developers Kit (SDK), libraries for visualization,
planning, and perception, control and error handling, and a development environment for the
desktop. With a low cost and ready to play out of the box we anticipated a significant reduction
in construction time.

We applied a Pugh Matrix in order to optimize our design and parts, and to outline our
budget requirements. An alternative design idea was to add a robotic arm to the bot giving it the
ability to wave when greeted and point in the direction of a certain area when asked for it. This
would greatly increase the robots interaction function as well as its appeal to the public. Though,
this design was rejected because of time and budget constraints.

In figure 2 our fully developed project schedule can be seen. The team has set an end date
one month before the presentation day. This will apportion enough time to debug and hopefully
add additional functionality to SHUSHBot so it may perform at its peak. By March 18, 2015 the
team has completed assembly of the fully operational SHUSHBot, which is also compatible with
any user. From there on our emphasis will be on debugging and fine tuning the system. Our main
design will focus on navigating the JPL and checking the noise level. For this function we
require an array of noise sensors to pick up noise and locate its origin. The final decision was
incorporated into a function block diagram, as shown by figure 5, outlining various components
of the design. Afterwards, a software function block diagram, illustrated by figure 6, was created
illustrating the software flow of the design.

! 6

!

!
Figure 2. SHUSHBot Project Schedule

Team 2 is composed of 4 students that cover many sub-fields of electrical engineering.
These include Digital Signal Processing, Systems Controls, Computer Engineering, and Power
Engineering. Several team members have a background in computer programming, research,
internship, and prior work experience. Team 2 members divided the work need to be done
according to the schedule created.

3.0 Need Being Addressed !
 Our main objective is to reduce distracting noises within the library and attract students to
the university. SHUSHBot should operate autonomously with a limited degree of freedom to
explore its environment. It needs to gather information about the environment, safely move
around without harming any people, property, or itself. Fulfilling the task to work for an
extended period without human intervention requires several programming specifications. These
will involve several objectives including navigation through the library, obstacle avoidance and

! 7

noise detection algorithms. We will have to address the issue of battery life operation and
mapping of the JPL. A detailed examination of each component will be required for a successful
project outcome. In figure 3 we illustrate the concept of SHUSHBot. There will be a quiet zone,
in which SHUSHBot tell people to lower their noise levels. There is a home area in which
SHUSHBot will go to after low battery alert is displayed and attend to its charging station. There
is also an interaction phase in which SHUSHBot will be outside the quiet zone and interact with
any passer that comes by.

!
Figure 3. The Concept of SHUSHBot

4.0 Literature and Patent Search Results

 Human to robot interaction has become a new notion within the robotics community, and
there are also companies in which wish to develop newer technologies to help develop these new
notions. Along with designing and developing new human interaction technologies there are
certain constraints, such as patents, we as engineers must abide by. Although our patent search
had relevant articles to SHUSHBot, all of them were not relevant in the design and development
of SHUSHBot. To start off the design we needed a method of movement based on sound
detection. To avoid legal issues we preformed a Google Patents search, in search of any company
of research lab that had developed such device. In our search we came across an interactive robot
in which decodes speech and is able to make an estimate of where the speech comes from.

! 8

5.0 Marketing Analysis and Market Strategy !
 SHUSHBot will solve the high noise level problem within located quiet zones. Disney
Land/World, Six Flags, Sea World and any other theme parks that can involve interaction of a
machine and a human. They might pay for such device because human to robot interaction is not
widely known; it can mainly be seen within research labs. Because it is not so common, this
human to robot interaction will be a new experience to people within theme parks and general
populated areas such that people will enjoy as well. In this case the purpose of SHUSHBot
would not only be to silence those in the theme park but also would have a functionality of
interacting with people.
 Populated theme parks and/or libraries would be interested in making human interaction
robots mainly for the experience of the consumer. The purpose of SHUSHBot is to silence loud
students in the library of the university and create a comfortable experience between the student
and SHUSHBot. Therefore, this robot would be mainly used for research and not for
commercialization.

6.0 Engineering Design Constraints !
 Global Constraints

1. Engineering Codes and Standards:
The device will need to have standardized battery power

2. Economic Factors:
The final cost of the product must be affordable and should be simple to acquire.

3. Environmental Effects:
The batteries are rechargeable batteries.

4. Sustainability
The product can be sustained over long term as long as the software and maps are
updated as needed.

5. Manufacturability (Constructability)
The product should be manufactured in the USA and software stay in the
company.

6. Ethical Consideration
The Kinect should not be activated anywhere near a restroom or where video
recording is not allowed.

7. Health and Safety Issues
The robot needs to have adequate obstacle avoidance. The robot needs to have an
emergency off switch in case of malfunction.

! 9

8. Social Ramifications
The robot is not replacing a human’s job, but assisting in the job of the librarian.

9. Political Factors
Currently this is not an issue. In the future if robots start replacing the jobs of
humans the use of robots may become a key political factor.

10.Legal Issues
The use of the product should not interfere on other patents, since nothing
comparable is on the market. !

Local Design Constraints
1. Cost

Development costs of the product are set by the product sponsor.
2. Schedule

The deadline for the development of the product is by the end of spring 2014
semester, the end of Design II class.

3. Manufacturability
The equipment is a combination of readily available parts and amplifier
applications. These applications have to be designed on PCBs and reliable
produced.

4. Engineering Codes and Standards
The robot needs to have an emergency shut off in case of malfunction. All
batteries and other hardware components must comply with existing codes and
standards.

5. Ethical Considerations
The robot needs to be kept away from sensitive data, restrooms, or anywhere a
camera is not permissible.

6. Health and Safety Issue
The robot needs to have adequate obstacle avoidance to avoid injuring bystanders.
The robot needs an emergency shut off switch in case of malfunction.

7. Legal
This does not apply, since employees should not be affected by safety issues in the
manufacturing process.

8. User Requirements
A manual needs to be written with all associated warnings and clear and concise
language.

! 10

7.0 Product Requirements !
 The SHUSHBOT project’s product requirements and specifications transformed slightly
over the course of the project. The facial recognition and adaptive mapping product
specifications were no longer required as the scope of the project was reduced so the
requirements were obtainable with limited time. Specifications including the budget, safety,
sound recognition, and human interaction became more defined as the goals we strived for.

• Battery Life

• Static Avoidance

• Adaptive Mapping

• Sound Recognition

• Dynamic

• Facial Recognition

• Human Interaction

• Kill Switch

• Power Management

• ROS/OOS Integration

• ANSI Standards/Safety

• Complexity/Time Available

• Upgradeable

• Cost

8.0 Engineering Codes and Standards !
 The IEEE organization was founded in 1884 at a time where electricity was becoming
accessible to an increasing number of people. [4] Standards were created for both compatibility
of products and safety of consumers. Many of these standards have been used in the
SHUSHBOT project; some examples of IEEE standards are listed below. !

! 11

• IEEE std 1625 -2008 - Standard for Rechargeable Batteries for Multi-cell Mobile
Computing Devices: !
The IEEE 1625 standard provides guidelines for testing, designing, evaluating, and
interfaces between subsystems. This particular standard also includes end-user awareness
to maximize the reliability of a system [1]. !

• IEEE std 802.11 - 8802-11-2012 - Information technology -Telecommunications and
information exchange between systems Local and metropolitan area networks--Specific
requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications !
This standard is the updated version of the 802.11 incorporating the original amendments
from 2008 – 2010. It sets standards for wireless local area networks. [2] !

• IEEE std 1680.1-2009 - Standard for Environmental Assessment of Personal Computer
Products, Including Notebook Personal Computers, Desktop Personal Computers, and
Personal Computer Displays !

This standard deals with the issue of how to reduce the environmental impact of electronic
products, specifically computers and displays. [3]

9.0 Design Concepts !
 The current design idea for Group 2 is to design a robot to roam around the JPL’s quiet
zones reminding students to be quiet thereby respecting the other students working around them.
The robot’s base design will be a TurtleBot which we will add a display panel that will act as a
face and provide non-verbal communication. The robot will also contain an array of sensors to
determine the location of the person making noise exceeding our set threshold. There will also
be a speaker to help enhance the human interaction component desired by our client. !

Pugh Matrix

Design Constraint/Requirement Weight Design 1 Design 2 Design 3

Battery Life 10 4 6 7

Static Avoidance 4 5 6 6

! 12

Figure 4. Pugh Matrix !
We have defined three different design approaches for our interactive robot. The first

design we called All Attachments, this is the most ideal design to meet the human interaction
requirement. It has the most sensors, a speaker, a monitor acting as a face, and an external arm
but is also the most complex and time consuming of the three design concepts. The second
design still contributes to human interaction but does not include an arm and has a decreased
number of sensors for determining sound location. This design concept will give us a longer
battery life and has a lower cost than the All Attachments design. The third design concept has
the lowest cost of all three designs, the least time and be the least complex. This design does not
include an arm, less sensors to determine location of sound source, and does not have a speaker.
It is the most upgradable and has the best battery life and still meets minimal human interaction
criteria. !

The first design constraint we considered was battery life. If our robot does not have a
sufficient battery life of operation then it is inefficient to deploy. As well as being able to operate
with various modules and peripheral that it must power as well. This also goes along with power
management, the ability to monitor and control the amount of power needed by not only the
robot itself but any additional accessories we add. Static Mapping is referring to the ability of
our robot’s ability to map a room and navigate through it. Our main goal is to have human

Adaptive Mapping 5 10 10 10

Sound Recognition 6 9 6 6

Dynamic 5 4 6 6

Facial Recognition 4 7 8 8

Human Interaction 13 10 9 4

Kill Switch 5 4 6 7

Power Management 10 3 6 7

ROS/OOS Integration 8 6 7 8

ANSI Standards/Safety 8 4 5 6

Complexity /Time Available 10 2 6 8

Upgradeable 3 3 5 7

Cost 9 3 6 7

100 528 638 688

! 13

interaction first then have the robot maneuver around a fixed area. Because the Library is not a
static area, with moving chairs, backpacks, furniture, and other objects our robot should be able
to adaptive to new environments which is where adaptive mapping is a goal. This will be one of
the most complex parts and will likely be the last be the part of our project. Our robot should be
able to tell when a set sound threshold has been crossed and execute a certain command from it.
This will be important for attaining the goal of keeping people quite in the library. The weighing
for the Robot Operating System/Object Oriented Software was established at a medium “8”,
since the ROS is the open source software delivered with the TurtleBot and plays a major role in
the component integration. The ANSI/RIA R15.06-1999 American National Standard for
Industrial Robots and Robot Systems is set to a medium scaling, since we do not work with a
high powered strong robot, but should follow all given standards to a newly build robot, e.g. rule
4.6 “every robot shall have stopping functions providing for one or more emergency stop
devices.” We also have included a goal of adding an external kill switch that would be highly
visible and an easy way for anyone to turn off the robot in case of an emergency. The dynamic
avoidance is set to a lower weight due to slow walking personnel in the library and no
expectations of sudden erratic motions. The TurtleBot needs to have a soft- and hardware design,
which is upgradable for future design students. However, this is not a large concern of our team.
Facial Recognition refers to the SDK Kinect camera will be able to determine different facial
expressions (Smile, Sad, Mad, and Cry) to be able to interact with the person. The human
interaction is to make the robot more likeable and human like to attract attention, for the purpose
of the design, the robot will go around the library to “shush” people that are above threshold
noise. Cost and complexity are primary concerns, even though this project is funded by the
professor, we are still trying to budget low and efficient, in case we decide to add upgrades.

In conclusion, design 1 has the lowest rating and appears to be the most difficult to attain
given the time and financial constraints we face. Although design three received the highest
rating our goal is still to aim for design two, the addition of a speaker will make a significant
positive impact on the human interaction component of our project. !
10.0 High level Block Diagrams

! 14

!
Figure 5. Hardware Functional Block Diagram

! 15

 Software

!
Figure 6. Sofware Function Block Diagram

11.0 Major Components

 The major components on SHUSHBot are the sensors, the Kobuki, and the Robotics
Operating System. Primarily we needed an inexpensive efficient mobile robot tat can maneuver
around obstacles decently. In choosing Turtle bot to be the base of SHUSHBot we looked at size
efficiency and what came in the package, such that what came with the bot. It came down that no
matter what mobile robot we chose, Turtlebot was the cheapest robot that included many things,
and also used in research.
 The sound sensors we also important, we searched for high quality sound sensing
electronics that had variable outputting voltage signals. Even though we made slight
modifications to the sound sensors, the sensors bought were at a higher sensitivity that an
inexpensive sound sensor. The measures taken in choosing the specific sound sensors were not
considered at all.
 The company who built the Turtlebot acquired the operating system for SHUSHBot. We
had no other choice for SHUSHBot, but it is a major component to SHUSHBot.

! 16

12.0 Detailed Design

Hardware

The hardware development was incorporated according priorities. The Turtlebot II (inner
diagram figure 5) was delivered with a functional Kinect 360, Housing and basic Wheel control
(Kobuki), a regular rechargeable battery, a Netbook with a battery/charger and a basic software
package. These hardware accessories did not need to be modified. External hardware (outer part
of figure 5) had to be purchased and modified to meet the required specifications. The team
prioritized on various devices to follow a tight time schedule. The charging station was
purchased with the initial order of the Turtlebot in order to charge the basic battery. The team
decided to use the LCD Display of the netbook for budgetary reasons. An additional battery was
also order with the first order, but was not incorporated into the power scheme. Four
microphones were ordered after the delivery of the Turtlebot, with the focus of incorporating
them as soon as possible. While waiting for the delivery, an external speaker with its amplifier
was developed. Additionally, the team decided to increase the height of the Turtlebot by eight
inches to facilitate the human interaction part, which caused a renaming to SHUSHBot. The
emergency shutoff switch had the lowest priority of our group and was intended to be integrated
last with the Plexiglas cover for the notebook. !
Kinect 360, Kobuki, Battery, and Netbook:
 The Turtlebot II was delivered from the manufacture Clearpath of Canada with the basic
construction. The base contains the Kobuki with a battery compartment, various power supplies,
charging contacts, power switch, housing, and wheel control. A detailed description of the
Kobuki is in the following section. Attached to the Kobuki are three levels of boards with studs
in between to create sturdy balanced platforms. The Kinect 360 was installed on top of the
second board and is connected to the Kobuki for the power supply and via USB cable to the
netbook. The original netbook which was delivered with the Turtlebot was an Asus X200M and
later exchanged for an Acer Travelmate B113 due to malfunction. The Netbook is utilized to
store, control, and monitor the software responsible for the proper operation of the SHUSHBot. !
Kobuki Unit and Battery

The SHUSHBot needed to be supplied by a variety of power sources. The Kobuki-
platform, which is the lowest part of the robot, has a variety of power outlets. These outlets are
driven by a rechargeable battery unit in a compartment of the Kobuki illustrated by figure 7. !!

! 17

! !
Figure 7. Kobuk unit from underneath [10] !

The incorporated battery unit is a 4400mAh Li-Ion battery (4S2P) supplying 14.8V. This
battery has an extended life and is stored in the compartment in addition to the 2200mAh
standard battery (4S1P). Due to the internal charging circuitry of the Kobuki, it is impossible to
hook up both batteries in parallel to achieve even a longer battery time. The 4400mAh battery is
plugged into the Kobuki unit. The positive power supply is connected to the emergency shut off
switch, which is described in the later section. The large capacity battery has an expected
operating time of 7 hours, and the smaller one of 3 hours.  !
Kobuki Power Distribution

On the front side of the Kobuki there are various outlets. Figure XX displays the Control
panel.

!
Figure 8. Kobuki Control Panel [10] !

There are 3 power connectors: 5V/1A, 12V/1.5A, and 12V/5A. The 12V/1.5A is utilized
to power the Kinect. An external wire is connected from the plug to the Kinect. The 12/5A outlet
connects via a wire to the speaker amplifier, which is described in section XX. The amplifier
needs as maximum of 2W and will not reach the maximum available current. The 5V/1A is used
to power the four microphones with their amplifiers, which are illustrated in paragraph XX.

! 18

The serial port with its expansion pins: 3.3V/1A, 5V/1A, 4 x analog in, 4 x digital in, 4 x
digital out; the programmable two colored LED1 and LED2; as well as the programmable touch
buttons B0, B1, and B2 are not used. An integrated audio signal in the Kobuki can be
programmed to various beep sequences, which are not modified from its preset conditions.
Presently, a three beep audio is played when the Kobuki on and off switch, located at the side of
the unit is turned on and when the notebook establishes a connection. This data connection is
established with input USB-port via a USB 2.0 cable from the notebook.

The notebook recharging connector provides 19V/2.1A DC. The notebook requires 40W
for charging its Lithium Ion battery and for normal operation. In order not to drain the Kobuki
battery the connector is disabled when leaving the docking station. The notebook battery lasts for
5 hours and should not run out of power before the SHUSHBot. When the SHUSHBot is in
contact with the charge unit it will turn on the recharging connector providing power to the
notebook. !
Kobuki Docking and Charging Station

In order to maintain a long operation time, the SHUSHBot needs to be recharged
periodically. This is achieved by the docking station as shown in figure 9. This docking station
will recharge the robot at an expected charging time of 2.6 hours for the large battery and
respectively 1.5 hours for the small battery. Additionally, a recharging adapter is integrated with
an input of 100-240V, 50/60Hz, 1.5A maximum with a 19VDC, 3.16A output (60W). This
adapter is not used.

!
Figure 9. Kobuk Docking Station [5] !

The SHUSHBot will find the docking station with its integrated “Go Home” function.
Therefore, it utilizes the Mapping function to find the docking area. This region is defined by a
2x5m area in front of the docking station. Docking IR sensors are programmed to maneuver the
robot into the correct position to the recharge connectors. The docking station supplies 19V and a
maximum of 3.16A to two connectors. These connectors connect to the Kobuki after it has
reached its charge position. The Kobuki maneuvers into the docking space sensing the emitted IR
signal. The docking station transmits this IR light by covering three regions: left, central and
right, each divided in two sub-fields: near and far. The robot can sense the different frequencies

! 19

and determines its own position. The regions and fields are independently identified and can
overlap on its borders. In case of the Kobuki being at the middle, it follows the central region’s
signal and homes into the docking station. Figure 10 displays the different regions. !

!
Figure 10. Kobuk Regional Docking [5] !

If the robot is to the right, it yaws into the z-direction until the left region signal is
detected by the right sensor (data [0]). The robot moves forward until it hits the central region,
turning in the negative z-direction to home into the docking station. If the robot is to the right,
the opposite procedures apply. Figure 11 shows the used data by the Kobuki platform.

!
Figure 11. Kobuk Regional Docking [5] !

The docking function is integrated in the unit and the Code is not modified for
improvement. The Code needs to be loaded and started when launching the software for the
SHUSHBot. Figure 12 shows the IR sensors of the Kobuki in green. The sensor data rate is 50Hz
and provides enough data to create a smooth transition to the charge unit.

! 20

!
Figure 12. Kobuki with its sensors [10] !

Once the SHUSHBot reaches the docking station, two contacts from underneath connect
to the charging unit. As long as the contact is not closed, a red light on the docking station is
illuminated. Once in contact, the light turns green and the charge logic is started. The logic in
the docking station will determine the charge status of the Kobuki battery. The light will flash
green as long as the battery is charging and turns steady green once complete. The charging
process is independent of the on and off status of the Kobuki unit. The Kobuki LED will flash
green as long as the charging process is in progress. This state LED will turn orange to indicate a
low battery status. Furthermore, a software program is monitoring the power status of the battery
and sending the SHUSHBot to the charging station when needed. !
LCD Display:
The Acer netbook is delivered with an 11.6-inch screen in 16:9 widescreen format. The size and
resolution of 1366x768 pixels is sufficient for the human interaction function of SHUSHBot. The
matte surface distracts reflections and can be used in sunny and shady conditions. However, the
brightness with its average luminosity of 180 cd/m2 is satisfactory only for indoor use. The
display appears brighter from upper vertical viewing angles than from the side or lower angles
and requires to be tilted at the correct angle when the SHUSHBot is in operation. !
External Battery:

The external battery is stored in the battery compartment of the Kobuki and is described
in the previous section.

Four Microphone Sound Sensors:

! 21

The team ordered four Arduino High Quality Sound sensors designated for detecting high
noise levels and helping SHUSHBot maneuver to the area and/or person producing high noise
levels. After a long wait the Arduino sensors arrived. They were evaluated for their performance.
The sound sensors picked up only sounds within 2 feet distance. Therefore, the team decided to
use the microphone itself without the sensor. An amplification circuit needed to be developed.

The function of the microphone sensors is to use the analog output to feed into the analog
input of the Arduino. The Arduino algorithm evaluates the voltage peak-to-peak to determine
which sensor has the highest noise detection. The front sensor is the main reference. When a side
sensor picks up a higher signal, the algorithm publishes a message to ROS. This command
moves the SHUSHBot either in the z-yaw direction around its own axis, or it will do a forward
turning motion to face the front sensor to the highest signal. This is continued until the
SHUSHBot reaches the highest signal strength which is also predefined in the program. Four
sensors are needed to detect signal of all four cardinal directions. Every sensor circuit is
constructed and designed in the same manner. The amplification circuit is illustrated in figure 13.

!
Figure 13. PSPICE Model of Microphone Sensor and Amplifier !

The circuit consists of a microphone, an LM358 amplifier, several capacitors, resistors
and voltage sources. The following analysis explains the function of the circuit. The microphone
is displayed as voltage source V3 for simulation purposes and is at the input of the circuit. The
microphone and the amplifier are powered by the 5VDC output of the Kobuki. Initially, it was
planned to use the power of the Arduino unit. Although only measured at 1.05mA, the current
output of the Arduino could not handle the amplification of the signal. The output of the Kobuki
of 1A is definitely able to handle that. A 10µF capacitor is selected to filter high frequencies, a
low pass filter, and to decouple the DC voltage. The 470Ω and 100kΩ resistors determine the
gain of the inverting amplifier. The gain is G=|-(100k/470K)|=|-213|=46.6dB, which is required
to amplify signals/voices up to a distance of about 25 feet. The 100µF capacitor at the output
filters low frequencies, acting as a high pass filter. The resulting band pass filter curve can be

C1

10u

0

R1

470

U1

LM358

+
3

-
2

V+
7

V-
4

OUT
6

OS1
1

OS2
5

0
R2

100k

V2
5Vdc

R3

10k

R4
10k

0

0
C2

100u

Vout

R5
1k

0

C3
0.1u

C4
10u

0

V3
1mVac
0Vdc

V

R6
10k

! 22

seen on figure 14. The normal voice spectrum is between 300 Hz and 3 kHz and is sufficiently
covered by the band pass filter. !

!
Figure 14. PSPICE Bode Plot of the Microphone circuit !

The 1kΩ resistor is used for simulation purposes as the load, which is our analog input
into the Arduino. Two 10kΩ resistors at the positive input of the amplifier are used as a voltage
divider from the 5VDC input to establish a 2.5VDC to the amplifier. Since the LM358 amplifier
is not a real single rail amplifier, the offset is required for the input signal of the microphone. The
LM358 was chosen due to the dual amplification possibility, which was eventually not being
used. The AC signal is added to the 2.5 VDC in order not to be clipped. The 100µF capacitor
decouples this voltage at the output. The rails of the amplifier are fed with the 5VDC and have
the common ground of the Kobuki. The positive input rail is supported by two capacitors with
0.1 µF and 10 µF to eliminate any parasitic noise.

The development of the amplifier created a challenge for the team, since the ordered
Arduino High Quality Sound sensors did not work as promised. The project was on hold until the
sensors were built and incorporated. Most of the algorithm had been completed and needed
functional testing. A breadboard solution failed due to vibrations of the SHUSHBot while
moving. The team decided to work fast and to solder the microphones on prepared PCBs. A
further development of perfect PCBs, which was planned together with the speaker amplifier,
would have delayed the project. Therefore, the amplifier for the speaker was created and
soldered in a similar fashion. !

! 23

Amplifier for Speaker

!
Figure 15. PSPICE Model of LM380 Amplifier !

The SHUSHBot needed a speaker in order to facilitate human interaction. The notebook
has a build in speaker, which would not be loud enough to silence a speaking person. Therefore,
the team decided to add an exterior speaker to the overall design. This speaker is connected to an
amplifier based on the LM380. A similar circuit was found on the source http://
cdselectronics.com/kits/Mono Amp.htm. However, the circuit was modified to fit our needs.
Figure 15 presents the PSPICE version of the circuit.
The input of the amp utilizes the Speaker outlet of the notebook, which gives a varying AC
signal. This signal can be modified in amplitude by a 10kΩ potentiometer. In our circuit we
chose a potentiometer which can only be changed with a screw driver to avoid abuse. The
potentiometer regulates the gain. The LM380 amplifier has a maximum output of 2W to a
connecting speaker. This amplification is achieved by the 12VDC source. The source is
connected to the 12V source of the Kabuki platform of the SHUSHBot. The Kabuki platform can
handle 5A; and therefore it provides enough power to handle the amplification. The amplifier
LM380 is chosen since it achieves a high gain, a low input sensitivity and low distortion. The
maximum output of 2W limits the gain, but is sufficient for our circuit. The potentiometer is
adjusted that our 1W speaker (chosen for economic reasons) will not reach its limits. The LM
380 amplifier chip is mounted directly onto the PCB, since it can act as a heat sink. The 12V DC
is regulated by a protective 3.3Ω resistor. The capacitor at the output is chosen at 470µF to pass
the lower frequency range. On the other hand, the 470µF capacitor at the DC input is utilized to
decrease high frequencies or noise.
 The speaker housing was handcrafted to achieve SHUSHBot’s uniqueness. The 2W
speaker is tilted towards a person for two reasons. First, it tries to get attention with an order for
a speaking person to be silent; and second for communication with attracted students, future
students, or other people in the library. The complete speaker is mounted on the second level of
the SHUSHBot and creates enough volume.

U1

LM380

+IN
2

-IN
6 OUT

8

VS
14

BYPASS
1

V2
12Vdc

0

R2

3.3

0

R3
1k

V1
1.5Vac
0Vdc

C2

470u

C1
470u

R4

10K
SET = 0.5 0

! 24

 The speaker amplification exceeded the team’s expectations. The clear and loud volume
will not be overheard by anyone in the library. It will create the needed attention and facilitate
the function of the SHUSHBot. !
SHUSHBot Human Interaction Extensions

The Turtlebot2 height measurement is 420 mm. This height is relatively small to create a
platform for human interaction. The notebook screen is utilized to display pictures according the
need for silencing loud humans or for communicating with interested friendly students.
Additionally, the microphone of the notebook needs to sense the voice input of the
communicating partner. Therefore, an eight inch extension and an increased top plate are added
to the Turtlebot2 base transforming it into a “SHUSHBot.” The new height of 630mm allows a
better human interaction without sacrificing the center of gravity. The new measurement for the
top plate is depicted in figure 16. Several performed tests resulted in no negative performance
results. Even the added weights of all added components do not slow down the SHUSHBot.
They reduce the Kobuki battery life only by a few minutes.

The top plate added an additional advantage to the design of the SHUSHBot. According
to Professor Pranav A. Bhounsule our group was not allowed to do any hardware modifications
in the Turtlebot2 due to warranty reasons. The top plate allowed us, to mount all required
hardware without changing the Turtlebot2 base. All hardware changes are removable without any
noticeable damage to the original base. !

!
Figure 16. Top extension plate [11] !

! 25

http://engineering.utsa.edu/me/faculty_staff/bhounsule.html

Attached to the top extension plate are the component box of the Arduino, the speaker
amplifier, four microphone sensors, wiring, and protective handles. The emergency shut off
switch is positioned and fixed at the rear right to the plate. !
Emergency Shut Off Switch

The ANSI/RIA R15.06-1999 American National Standard for Industrial Robots and
Robot Systems is obeyed by following the rule 4.6 “every robot shall have stopping functions
providing for one or more emergency stop devices.” The robot is not a high powered strong
robot. Thus, safety standards are followed for using a newly build robot doing human interaction.
An emergency shut off switch is mounted on the top board of the robot next to the notebook. It is
highly visible and an easy way for anyone to turn off the robot in case of an emergency,
malfunction, or abnormal behavior. The shut off switch interrupts the power supply of the
battery to the Kobuki unit by interrupting the anode power cord. However, the notebook power
stays on, since we do not see any human harm possible by a computer. This will allow a quick
reboot of the system by qualified personal after resetting the power supply. Figure 17 displays
the Emergency shut off switch. !

!
Figure 17. Emergency Shutoff Switch !

Plexiglas and Protective Handles !
Handles are mounted on the top plate to hold the notebook in place to protect it from

sliding off when the SHUSHBot has to overcome obstacles like cables. Attached to the handles is
a Plexiglas cover to avoid abuse of the notebook keyboard. The Plexiglas is removable by two
screws allowing an easy access to the keyboard or to reboot the system. !!

! 26

Software

!
Software was the major portion of the SHUSHBOT project and was tackled by Team 2.

The code for the sound sensors and Arduino was assigned to Thilo and Javier as Javier has the
most experience working with the Arduino board. Roberto took on the voice recognition portion
of the project because it was based in Java which he has the most experience with. Stacy took
the navigation, battery, and listening functions as she has the most experience programming in C
++. Stacy and Javier both worked on the integration portion of the software development. !
Start-up Function !

As the use of ROS becomes more familiar and more functions are added to complete the
assigned task it became obvious the start- up process would need to be simplified. Hence a script
has been created to automate the start-up of the robots necessary programs. Files included in the
script are the minimal ROS launch file, the file to activate the auto-docking algorithm, the
battery monitor program, the Arduino code, the map files, and the main listener program. !!

!
Figure 18. Battery to Docking Flow !

Battery Monitor !
The battery is monitored by using the Linux ACPI, or advanced configuration and power

interface, modules. The battery levels are refreshed at an interval in the state file, the battery
monitoring program reads this information in as a string and compares it to what is considered a
low battery level. Once the strings match the listener program is signaled to navigate to the
coordinates close to the docking station and activate the auto-docking algorithm. The choice to
monitor the battery life of the laptop instead of the base was basically the laptop batteries are
always depleted first, as the Kobuki base has an extended battery. If not for the constraint of

! 27

time, a second section of code would have been added to likewise initiate the auto-dock if the
Kobuki base batteries were depleted. !
Go Home and Auto Dock Function !

This function will be activated after receiving the signal the batteries, either laptop or
Kobuki base, are close to being depleted. It will take the pre-determined coordinates from the
map which are close to the base and first navigate there. Once the initial destination is reached
the Auto docking algorithm is launched commanding the SHUSHBOT to dock and allow for the
batteries to fully charge. The reason behind the initial destination coordinates being used exists
because the docking algorithm is depended on limited distance infrared sensors. By first having
the SHUSHBOT move to the desired coordinates ensures a suitable distance from the charging
station is achieved. The Kobuki auto docking package was written by Younghun Ju
(yhju@yujinrobot.com) and is licensed as BSD. !

!
Figure 19. Listener Data Send/Receive !

Listener Code

! 28

!
This file is where a majority of our groups programs interact with the robot. In this file

he subscribes to the various ROS nodes as dictated by us. When SHUSHBot hears a command it
is listening for, it will respond as directed. SHUSHBot will move in the direction requested, if a
noise threshold has been reached he will play an audio file reminding the student to be quiet, if
the batteries are low SHUSHBot will follow start the go home function, and the location and
appropriate times to show the face are in this code. !

The listening for direction code will be done using the Publisher/Subscriber method in
ROS. When the SHUSHBot receives a command from the sound detection code (which is the
Publisher) it has subscribed to it will move in the direction as requested. To direct the base an X-
Y coordinate system is used so the commands (Forward, Turn 180, Left, and Right) needed to be
converted.

The display functions allow for a face to be displayed on the screen of the TurtleBot
laptop, this is to allow for an enhanced experience to improve the human interaction aspect of the
project. During normal operation a smiling face will be displayed, when the quiet threshold has
been breached, a shushing face, and when the battery is low, a sleeping face. The commands to
view these images will be launched from the cpp file that corresponds to the desired expression.
The decision to launch them from within the cpp was it being the simplest method for viewing
different expressions as a result of the corresponding program. !
Mapping and Area 51 Function !

Mapping for the SHUSHBot is a multi-step process that was modified from the initial
map of the lab reflects the layout of the library. To create the initial map SLAM (Simultaneous
localization and mapping) gmapping was used. The first step was to bring up the gmapping
software and save the map file to a specified location. Unfortunately, once the map has been
created there is not a way to update the map, if updates are needed it would need to be
completely recreated. The generated map as saved as two different files, a .yaml file and a .pgm
file. The .yaml file contains the location of the map, resolution, origin, negate (whether the
white/black free/occupied areas should be reversed), and the occupied and free space estimates.

The .pgm file contains the image of the map as displayed in ROS using the RVIZ
program. This map can be edited to exclude areas as we wanted done with our area 51 concept
to keep the SHUSHBot from entering the bathroom or getting close to the stair case or any other
obstacles where it could be damaged. The main limitation to this is only a certain amount of
changes can be made of the SHUSHBot or it will no longer recognize where it is located. Using
the Kinect it does a scan of its environment to locate where on the map it is using a Monte Carlo

! 29

method, if the SHUSHBot scans and cannot find anything close enough to what it “sees” on the
map file it will just keep spinning around and sending errors to ROS that it is stuck. In the
images below you can see where the SHUSHBot is on the map, where area 51 is, and a
photograph of the actual layout of the mapped area. !!

 Figure 20. Lab (Base Side) Figure 21. SLAM Map of Lab (Base Side)

! !

! 30

!
Figure 22. Lab (Area 51 Side) Figure 23. SLAM Map of Lab (Area 51 side)

!
!

! 31

Arduino/ROS Microphone Sensor Program !
 The scheme behind this program is to allow the four sensors on SHUSHBot to determine
which has a higher incoming noise level and be able to send a command to the Listener to move
towards the noise. The Arduino commands must work hand in hand with Stacy’s Listener
program.
 After determining where to position the sensors, we had to make sure that all sensors read
the same value when hearing just one sound. Allowing us to makes sure that the computer will
not always attend to one direction. The program also includes a thresh max and min, which help
the filter random noise from the sensors. For example if our minimum is four volts and
maximum is six volts, anything less than four volts coming from the sensors will not move
SHUSHBot. Yet anything greater than six will send a command to the listener program to output
the silence audio file, meaning the speaker will output a sentence telling the person to be quiet.
The block diagram below (figure 24) will help illustrate the sequence in which the Arduino takes
each phase carefully and calculates whether or not the incoming sound is important to it or not.
 Going through the program in detail is as follows. The incoming sound will be measured
by the sensors. From there the program will determine if the signal is strong enough to pursue or
to ignore and scan again. If the signal is stronger than the minimum threshold, it will compare to
the other sound sensors to determine which direction it should move towards. From there it will
filter those signals not needed and take the strong signal to use to advertise to the listener
program as well as compare the signal to the max threshold. If breaking the max threshold the
program will output a silencing audio file telling the person to be quiet, yet if it is not greater
than the threshold then it will simply just repeat the scanning process. !!
 !!!!!!!!!

Figure 24. Block diagram of Arduino Program !!
! 32

Incoming Sound
Compare to other

sensors

Min Threshold Strongest signalSignal
Advertisers

Max Threshold

Silence Audio File
Scan Again

Not Greater than
Min Not greater than

Max

Greater than Max

!!!
Human Interaction Program !
 To have an interactive program we need to be able take in inputs and tie them to an
output. To interact with a person we need to have a Graphical User Interface (GUI) that is
responsive to the action of the user and can give visual cue. To manage the visuals, program
state, and actions we implemented a model-view-controller (MVC) architecture. MVC has three
parts that have specific task and are connected as seen in Fig XX. This is the framework on
which we build our application for the Human Interactive Program for SHUSHBot (HIPS). !!
 !!!!!!!!!!

Figure 25. Human Interface Block Diagram !!
HIPS original purpose was to respond to a person speaking. To give a simple response to

what a speaker may have said. For example a speaker may say “Hi” and SHUSHBot would
respond with “Hello”. Now our HIPS can tell you the time, recognized names and remember
things about you. SHUSHBot uses the Sphinx4 toolkit that is open source from Carnegie Mellon
University. Sphinx4 provides several functions that process speech and output a word or a string
of words that were spoken. The string output is the result of the best fit match compared to the
words in the toolkits dictionary. The string result then goes though the 3 parts of the HIPS
program, the controller, model, and view. !

! 33

 The model holds many functions and the current state of the HIPS. The model has states
such as if playing audio is true then it will play a corresponding audio file to a corresponding
word or string of words that were uttered. It also holds the file names to respective audio, and
image files. As well as various functions that help determine what string of words was said and
give a corresponding responses. The model calls one function that retrieves the information of a
certain user. The information about the user includes their name, likes, and dislikes. This
information can be change by the user and/or can also be retrieved by user.
 The view is the face of the program. It opens up a simple window which has two parts,
an area to display text and an area to display images. This display can be seen in figure 26. !

 !!!!!!!!!!
Figure 26. Text image !

The view uses the swing class that is slandered in java to open images, display text, and
update both images and text. !
 The controller connects the model and the view. It takes in the string and passes it along
to the model. Then the controller calls the view to call the model so that it may do the necessary
action need to be done such as displaying new text, or changing the image currently displayed. !
Pseudo Code !
In Main
SetUpMircophone();
OpenGui();
While(GuiIsOpen){
 Result=GetSpeachFromSensor();

! 34

 Controller.heardString(Result);
 View.UpDateView;
} !
In Controller
heardString(Result){
Model.ProcessString(Result);
View.Updateinfo(Model.GetResponse())
} !
In Model
ProcessString(Result){
Response=MatchResultToResponse();
} !
In View
UpdateInfo(Response){
UpdateText(Response);
GetImageFiles();
} !
 An example of how the program works is if the user said “Good Moring”. This string
would be sent to the controller which would call the model to process this string. It would then
go through several cases to find the appropriate response. All possible strings of words that can
be recognizes by the program are hard coded. All possible responses to all possible recognized
strings are also hard coded. In our example of “Good Morning” the key word “Good” is used to
reduce the number of possible cases. In the current version of the program there are four
possible strings that start with “Good”. Once the recognize string is found an appropriate
response will be set. If a string response also comes with a correlating image and /or audio file,
these files will also be set. All audio files are played inside the model.
 Once the model has completed its process it will display any correlating images, play
audio files, and give a proper response depending of what was said. When a person introduce
themselves by their first name the program will recognized the name and will determine whether
this is a new person or a person already in the list of recognized people. If it is a new user the
program will begin asking question to the user until the user has answered all the question or the
user says “no more questions”. Information about a certain person can also be retrieved by
saying “Do you know SOME_PERSON_NAME”. If they are on the list and the user asks

! 35

question about that person such as if their favorite color is red and it happens to be true the Shush
bot will respond with “Yes they do like the color red”. Here is a block diagram of the program in
figure 27. !

!
Figure 27. Program Block Diagram !

 The first problem encountered when implementing the program was in which langue.
Original program was meant to be written in C++ but this proved to be difficult. It was difficult
to integrate the Sphinx toolkit to work in C++ due to limitation of our programing experience.
Also it would have proven difficult to create at GUI since C++ does not have library for
graphics. Our solution to these issues was to use Java. Java already has standard libraries for
graphics and was easier to plug in the Sphinx4 toolkit since one of our group members has
experience in java.
 The next issue was being able to display an image without having to resize the window
and creating a new window. Through trial and error and following online examples we were able
to change images without having to open a new window. Next was plugin in the Sphinx4 tool
kit. Using the hello world example took some trials. This was due to lack of knowledge about

! 36

having the prober libraries and JAR files need to support the Sphinx4 toolkit. After installing
these libraries and referencing them into the program, it began to work properly. !
 Playing an audio file became an issue. Looking at an example found online it seemed
strait forward but proved to be difficult. The issue was that the program was not properly set to
the correct audio output. Simply changing one value, the audio was able to play.
 Finally after much debugging and trial and error the HIPS program started to come to
life. When moving from the Desktop station that it was developed on onto the travelmate laptop
there was one major issue. The microphone on the laptop was not performing to our
expectations. The onboard microphone was slow and very irresponsible to the user. The
program would still run but only after a major delay after someone had spoken. Plugging in an
additional microphone resulted in the program being more responsive. With limited time we will
sure our separate microphone in our system.

13.0 Major Problems !
 The biggest overall issue was getting a basic understanding of ROS and the Turtlebot
hardware, which lead to several different major obstacles. We were unable to connect the
Turtlebot to the Air Rowdy network because of security constraints; to work around this we
brought in our own router and created a network for just the Turtlebot and any laptop we were
using to communicate with the Turtlebot.

At the request of our sponsoring professor we had the IS department back up the
Turtlebot laptop but with their limited experience with Ubuntu they managed to destroy the
operating system on the laptop. This resulted in us reinstalling ROS, Ubuntu, and programs we
had written, and recreating all of the network settings and options.

At this point the power supply on the laptop failed and a new laptop for the Turtlebot had
to be ordered under warranty. Once the new laptop was received we had to reinstall our software
and recreate all of the network settings and options again. This laptop was a different model and
the battery level could not be read by ROS. ROS expected to battery level to be in a folder
called BAT0 but instead the replacement had a folder called BAT1. After contacting the
manufacturer, who said because it was software they could not assist us, it was discovered we
could modify our. bashrc file to reflect the change in battery folder name and that would allow
ROS, which was also started in the terminal, to recognize the battery and monitor the charge.

Along with those laptop problems we had issues with the microphone sensors software.
For these sensors we are using Arduino/ROS software to control the output signals that will
allow us to determine the direction we must travel to, thus allowing us to tell such person to

! 37

silence them. To understand what was needed the team had to get an output from the microphone
and be able to see if the sound can be recognized from

!

! 38

14.0 Integration and Implementation

To achieve the goal of both quieting students in the library and human interaction the
SHUSHBOT has been designed to run in one of two modes. The first mode is human interactive
mode; this is the mode where the SHUSHBOT will communicate with the user with voice
recognition. This goal was accomplished by writing two different start-up scripts allowing the
mode selection when bringing the SHUSHBOT online.

The second mode is the “quieting” mode; this is the mode where the SHUSHBOT will
silence students in the library quiet zone. The main method of communication between the
different programs is done using the ROS publisher/subscriber method. The listener program is a
subscriber to both the Arduino code and battery monitoring code, which have both been
programmed as publishers. The listener repeatedly scans for the following topics: !

• Move Right
• Move Left
• Move Forward
• Turn 180 degrees
• Silence
• Low Battery !

As soon as one of the topics are heard and recognized, the listener code will go into the
subroutine designed for that particular command. If the Battery is Low topic is published the
listener program will go into a subroutine that calls the subroutine containing the coordinates
close to the location of the charging station and then directs the base to navigate there. Likewise,
if any of the direction topics are published by the Arduino code the subroutine will be called to
move the base in that precise direction. If the Quiet topic is published by the Arduino code the
SHUSHBOT will open a play an audio file politely asking for silence.
The process to integrate the two software components included taking one sensor at a time and
testing it individually with the SHUSHBOT to make sure both communication and the correct
command was being communicated. Once verified each individual section was functioning
correctly with the software, they were all connected and tested as a single sound-sensing unit.
The integration process for the auto-docking function was to initial test going to the coordinate
and initiating the auto-docking algorithm as a single function. Once verified those two parts
functioned together it was time to integrate it with the rest of the listener code. To have the
SHUSHBOT stay docked while the batteries fully charged a minimum time limit was needed
before the listener program would start accepting commands, which was accomplished by using
a sleep command in ROS.

! 39

15.0 Comments and Conclusion !
 Overall the design project has allowed us to expand our knowledge in ROS and robotics
itself as well as use our common knowledge to help design SHUSHBot. Thankfully Dr. Pranav
was able to fund the project allowing us to really focus on the human interaction and the
silencing rather than having pressure building a mobile robot from scratch. As for the team, we
were luck to have a brain in each concentration of the electrical engineering department as this
allowed us to learn from each other as well as help each other get through what could have been
many difficult obstacles.

To conclude our project, there is still much than can be done for future students. The
sensors can be higher quality such that they can detect any sound and do not need software
amplification and hardware amplification. The Human interaction can always be expanded as
well; no robot is ever too human. As mentioned before the purpose of SHUSHBot was not only
to silence those in the library but to also encourage students to come to the university and allow
them to experience researching robotics along with human interaction.

16.0 Team Members

Javier Gonzalez- team lead as well as programmer for the majority of the Arduino sound
sensing program. Javier was in charge of making sure the team was on time with the
responsibilities, provided what was needed to complete SHUSHBot, and made sure that the code
was developed and integrated to expected final product.
 Thilo Janssen- The hardware man, in charge of designing all outer components and
making sure that all power distribution was to safety standards and calculated whether or not
everything we wanted to attach was possible to do. He built the top layer in which the laptop sits,
added all the attachments such as speaker and amplifier, built the sensors with amplifiers
attached and established a well-coordinated power distribution to each component.
 Roberto Mesquitic- this man is our special programmer, although he has a concentration
in signals and systems, he also has a minor in programming. He was given the task to develop
the software in which would allow SHUSHBot to be the most “Human” it can be. He fully
developed a human interaction program in which the user is able to communicate to the robot
and SHUSHBot will respond at the best of its abilities. Along with that he was able to develop a
file in which help Stacy output the silence audio file.
 Stacy Alexander- Last but not least the “integrator.” Stacy is responsible for most of our
programs working all together. She was assigned to develop the program in ROS, something we
were all not familiar with, and make SHUSHBot move, map, and collision avoidance, receive
incoming silence commands, and outputting the designated audio commands for the interface.

! 40

Although she mainly worked with Javier to get the integration moving, most of it was slowly
getting together though her programming.
 Overall this team is a BEAST! And wouldn’t choose any other team.

17.0 References !
[1] IEEE Standard (2008). Rechargeable Batteries for Multi-Cell Mobile Computing

Devices. pp. c1 - 79. !
[2] IEEE Standard 802.11. Information technology -Telecommunications and information

exchange between systems Local and metropolitan area networks (2012, Nov 21). pp.
1-2798. !

[3] IEEE Standard1680.1-2009. Standard for Environmental Assessment of Personal
Computer Products (2010, 3 5). pp. c1-33. !

[4] IEEE.org. History of IEEE (2015). !
[5] ROS.org. Documentation. 2014-12-19 !
[6] (2015). sphinx4 (1.0 beta6). Cmusphinx.sourceforge.net. !
[7] Various Audio Files [Online]. Soundjax.com. !
[8] Various Image Files [Online]. Google.com. !
[9] Model-view-controller [Online]. Wikipedia.org. !
[10] Kobuki Users Guide !
[11] Retrieved from: http://yujinrobot.com/eng/] !!!!!!

! 41

! !

! 42

Human Interaction Program
Prsmodel
package demo1; !
public class prsmodel {

 private String NAME;
 //private String SPORT;
 //private String HOBBI;
 private String COLOR,PLACE;
 public int numberOfQuestions=1;//this part you can change Be care full program may crash if you do
 public int onQuestion;
 public boolean answerAllQuestions;

 /**
 *Question 0 Favorite Color
 * @param name
 */
 public prsmodel(String name){
 NAME=name;
 COLOR=null;
 PLACE=null;
 onQuestion=0;
 answerAllQuestions=false;
 }

 public String getName(){
 return NAME;
 }

 public String getCOLOR(){
 return COLOR;
 }
 public String getPlace9(){
 return PLACE;
 }
 public void setPlace(String in){
 PLACE=in;
 }
 public void setCOLOR(String in){
 COLOR=in;
 }

 //public String !
} !
Spconfig
<?xml version="1.0" encoding="UTF-8"?> !
<!--
 Sphinx-4 Configuration file
--> !
<!-- ** -->

! 43

<!-- an4 configuration file -->
<!-- ** --> !
<config> !
 <!-- ** -->
 <!-- frequently tuned properties -->
 <!-- ** --> !
 <property name="logLevel" value="WARNING"/> !
 <property name="absoluteBeamWidth" value="-1"/>
 <property name="relativeBeamWidth" value="1E-80"/>
 <property name="wordInsertionProbability" value="1E-36"/>
 <property name="languageWeight" value="8"/> !
 <property name="frontend" value="epFrontEnd"/>
 <property name="recognizer" value="recognizer"/>
 <property name="showCreations" value="false"/> !!
 <!-- ** -->
 <!-- word recognizer configuration -->
 <!-- ** --> !
 <component name="recognizer" type="edu.cmu.sphinx.recognizer.Recognizer">
 <property name="decoder" value="decoder"/>
 <propertylist name="monitors">
 <item>accuracyTracker </item>
 <item>speedTracker </item>
 <item>memoryTracker </item>
 </propertylist>
 </component> !
 <!-- ** -->
 <!-- The Decoder configuration -->
 <!-- ** --> !
 <component name="decoder" type="edu.cmu.sphinx.decoder.Decoder">
 <property name="searchManager" value="searchManager"/>
 </component> !
 <component name="searchManager"
 type="edu.cmu.sphinx.decoder.search.SimpleBreadthFirstSearchManager">
 <property name="logMath" value="logMath"/>
 <property name="linguist" value="flatLinguist"/>
 <property name="pruner" value="trivialPruner"/>
 <property name="scorer" value="threadedScorer"/>
 <property name="activeListFactory" value="activeList"/>
 </component> !!
 <component name="activeList"
 type="edu.cmu.sphinx.decoder.search.PartitionActiveListFactory">
 <property name="logMath" value="logMath"/>
 <property name="absoluteBeamWidth" value="${absoluteBeamWidth}"/>
 <property name="relativeBeamWidth" value="${relativeBeamWidth}"/>
 </component>

! 44

!
 <component name="trivialPruner"
 type="edu.cmu.sphinx.decoder.pruner.SimplePruner"/> !
 <component name="threadedScorer"
 type="edu.cmu.sphinx.decoder.scorer.ThreadedAcousticScorer">
 <property name="frontend" value="${frontend}"/>
 </component> !
 <!-- ** -->
 <!-- The linguist configuration -->
 <!-- ** --> !
 <component name="flatLinguist"
 type="edu.cmu.sphinx.linguist.flat.FlatLinguist">
 <property name="logMath" value="logMath"/>
 <property name="grammar" value="jsgfGrammar"/>
 <property name="acousticModel" value="wsj"/>
 <property name="wordInsertionProbability"
 value="${wordInsertionProbability}"/>
 <property name="languageWeight" value="${languageWeight}"/>
 <property name="unitManager" value="unitManager"/>
 </component> !
 <!-- ** -->
 <!-- The Grammar configuration -->
 <!-- ** --> !
 <component name="jsgfGrammar" type="edu.cmu.sphinx.jsgf.JSGFGrammar">
 <property name="dictionary" value="dictionary"/>
 <property name="grammarLocation"
 value="resource:/demo1/"/>
 <property name="grammarName" value="sp"/>
 <property name="logMath" value="logMath"/>
 </component> !!
 <!-- ** -->
 <!-- The Dictionary configuration -->
 <!-- ** --> !
 <component name="dictionary"
 type="edu.cmu.sphinx.linguist.dictionary.FastDictionary">
 <property name="dictionaryPath"
 value="resource:/WSJ_8gau_13dCep_16k_40mel_130Hz_6800Hz/dict/cmudict.0.6d"/>
 <property name="fillerPath"
 value="resource:/WSJ_8gau_13dCep_16k_40mel_130Hz_6800Hz/noisedict"/>
 <property name="addSilEndingPronunciation" value="false"/>
 <property name="allowMissingWords" value="false"/>
 <property name="unitManager" value="unitManager"/>
 </component> !
 <!-- ** -->
 <!-- The acoustic model configuration -->
 <!-- ** -->
 <component name="wsj"
 type="edu.cmu.sphinx.linguist.acoustic.tiedstate.TiedStateAcousticModel">
 <property name="loader" value="wsjLoader"/>

! 45

 <property name="unitManager" value="unitManager"/>
 </component> !
 <component name="wsjLoader" type="edu.cmu.sphinx.linguist.acoustic.tiedstate.Sphinx3Loader">
 <property name="logMath" value="logMath"/>
 <property name="unitManager" value="unitManager"/>
 <property name="location" value="resource:/WSJ_8gau_13dCep_16k_40mel_130Hz_6800Hz"/>
 </component> !!
 <!-- ** -->
 <!-- The unit manager configuration -->
 <!-- ** --> !
 <component name="unitManager"
 type="edu.cmu.sphinx.linguist.acoustic.UnitManager"/> !
 <!-- ** -->
 <!-- The frontend configuration -->
 <!-- ** --> !
 <component name="frontEnd" type="edu.cmu.sphinx.frontend.FrontEnd">
 <propertylist name="pipeline">
 <item>microphone </item>
 <item>preemphasizer </item>
 <item>windower </item>
 <item>fft </item>
 <item>melFilterBank </item>
 <item>dct </item>
 <item>liveCMN </item>
 <item>featureExtraction </item>
 </propertylist>
 </component> !
 <!-- ** -->
 <!-- The live frontend configuration -->
 <!-- ** -->
 <component name="epFrontEnd" type="edu.cmu.sphinx.frontend.FrontEnd">
 <propertylist name="pipeline">
 <item>microphone </item>
 <item>dataBlocker </item>
 <item>speechClassifier </item>
 <item>speechMarker </item>
 <item>nonSpeechDataFilter </item>
 <item>preemphasizer </item>
 <item>windower </item>
 <item>fft </item>
 <item>melFilterBank </item>
 <item>dct </item>
 <item>liveCMN </item>
 <item>featureExtraction </item>
 </propertylist>
 </component> !
 <!-- ** -->
 <!-- The frontend pipelines -->
 <!-- ** --> !

! 46

 <component name="dataBlocker" type="edu.cmu.sphinx.frontend.DataBlocker">
 <!--<property name="blockSizeMs" value="10"/>-->
 </component> !
 <component name="speechClassifier"
 type="edu.cmu.sphinx.frontend.endpoint.SpeechClassifier">
 <property name="threshold" value="13"/>
 </component> !
 <component name="nonSpeechDataFilter"
 type="edu.cmu.sphinx.frontend.endpoint.NonSpeechDataFilter"/> !
 <component name="speechMarker"
 type="edu.cmu.sphinx.frontend.endpoint.SpeechMarker" >
 <property name="speechTrailer" value="50"/>
 </component> !!
 <component name="preemphasizer"
 type="edu.cmu.sphinx.frontend.filter.Preemphasizer"/> !
 <component name="windower"
 type="edu.cmu.sphinx.frontend.window.RaisedCosineWindower">
 </component> !
 <component name="fft"
 type="edu.cmu.sphinx.frontend.transform.DiscreteFourierTransform">
 </component> !
 <component name="melFilterBank"
 type="edu.cmu.sphinx.frontend.frequencywarp.MelFrequencyFilterBank">
 </component> !
 <component name="dct"
 type="edu.cmu.sphinx.frontend.transform.DiscreteCosineTransform"/> !
 <component name="liveCMN"
 type="edu.cmu.sphinx.frontend.feature.LiveCMN"/> !
 <component name="featureExtraction"
 type="edu.cmu.sphinx.frontend.feature.DeltasFeatureExtractor"/> !
 <component name="microphone"
 type="edu.cmu.sphinx.frontend.util.Microphone">
 <property name="closeBetweenUtterances" value="false"/>
 </component> !!
 <!-- *** -->
 <!-- monitors -->
 <!-- *** --> !
 <component name="accuracyTracker"
 type="edu.cmu.sphinx.instrumentation.BestPathAccuracyTracker">
 <property name="recognizer" value="${recognizer}"/>
 <property name="showAlignedResults" value="false"/>
 <property name="showRawResults" value="false"/>
 </component>

! 47

!
 <component name="memoryTracker"
 type="edu.cmu.sphinx.instrumentation.MemoryTracker">
 <property name="recognizer" value="${recognizer}"/>
 <property name="showSummary" value="false"/>
 <property name="showDetails" value="false"/>
 </component> !
 <component name="speedTracker"
 type="edu.cmu.sphinx.instrumentation.SpeedTracker">
 <property name="recognizer" value="${recognizer}"/>
 <property name="frontend" value="${frontend}"/>
 <property name="showSummary" value="true"/>
 <property name="showDetails" value="false"/>
 </component> !!
 <!-- *** -->
 <!-- Miscellaneous components -->
 <!-- *** --> !
 <component name="logMath" type="edu.cmu.sphinx.util.LogMath">
 <property name="logBase" value="1.0001"/>
 <property name="useAddTable" value="true"/>
 </component> !
</config> !
Spcontroller
package demo1; !
public class spcontroller {

 private spview view;
 private spmodel model;

 public spcontroller(spview view,spmodel model){
 this.model=model;
 this.view=view;
 } !
 /**
 * This Function takes in a string variable
 * Passes it to model.setImage and the calls
 * view.updateImage using the new image set my the model
 */
 public void heardString(String in){
 System.out.println("In SPCrtl heard: "+in);
 model.setImageName(in);
 model.procesString(in);

 view.updateImage(model.getImageName(),model.getResponse());
 model.playAudio();
 view.mainFrame.repaint();

 }

! 48

} !
Spgram
#JSGF V1.0; !
/**
 * JSGF Grammar for Hello World example
 */ !
grammar jsgf; !
/*public <greet> = (Good morning | Hello) (Bhiksha | Evandro | Paul | Philip | Rita | Will);*/ !
/*public <basicCmd> = <startPolite> <command> <endPolite>;
<command> =<action> <object>;
<action> = /10/ open | /2/ close | /1/ delete | /1/ move;
<object>=[the | a] (window | file | menu);
<startPolite> = (please | kindly | could you | oh mighty computer)*;
<endPolite> =[please | thanks | thank you]; !
Proper title <SomethingSomething> and not <Something Something> No spaces!!!! !
*/ !
public <word>=<BasicTalk>;
<BasicTalk>= <Greet> | <Question> | <simpleRep> |<name>| <song> | <aware> | <Farewell>;
<Greet>= <dayoftime> | <hello>;
<dayoftime> = [good] (morning | afternoon | evening);
<hello> = (hello | hello friend | hello buddy | greetings);
<Question>= <time> | <doing> | <me> | <color> ;
<aware>=(are you self aware);
<color>=(red | blue | green | yellow | purple | white | black | pink); !!
<me>=<myname>| <love>;
<love>=(what is love| what are their names | their names| hello it is pranav | next);
<simpleRep>= (yes | maybe | ok | no);
<myname>=(what is your name | who are you | you are| who made you);
<time> = (what time is it| do you have the time | time | what is the time);
<doing> = (how are you doing | are you doing well | doing well | what is your purpose | who is your savior | now
what);
<Farewell>= (goodbye | bye | good night | night | farewell | later);
<song>=(baby don't hurt me);
<name>=(my name is| name is| name) (roberto | javier | stacy | thilo); !
Spmain
package demo1; !
import javax.swing.JFrame; !
import edu.cmu.sphinx.frontend.util.Microphone;
import edu.cmu.sphinx.recognizer.Recognizer;
import edu.cmu.sphinx.result.Result;
import edu.cmu.sphinx.util.props.ConfigurationManager; !

! 49

!
public class spmain {
 public static void main(String[] args){
 /**
 * This code follows from the hello world example with
 * additions made to it.
 */

 spmodel model=new spmodel();
 spview view =new spview();
 //Conects the spmodel to the spview
 spcontroller controller =new spcontroller(view,model);

 ConfigurationManager cm; !
 if (args.length > 0) {
 cm = new ConfigurationManager(args[0]);
 } else {
 cm = new ConfigurationManager(spmain.class.getResource("sp.config.xml"));
 } !
 Recognizer recognizer = (Recognizer) cm.lookup("recognizer");
 recognizer.allocate(); !!
 // start the microphone or exit if the programm if this is not possible
 Microphone microphone = (Microphone) cm.lookup("microphone");
 if (!microphone.startRecording()) {
 System.out.println("Cannot start microphone.");
 recognizer.deallocate();
 System.exit(1);
 } !

 view.mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 view.mainFrame.setSize(620, 512);
 view.mainFrame.setVisible(true);

 // loop the recognition until the window is not visible.
 // My Additions
 while (view.mainFrame.isVisible()) {
 System.out.println("Start speaking. Close window to quit.\n"); !
 Result result = recognizer.recognize(); !
 if (result != null) {
 String resultText = result.getBestFinalResultNoFiller();
 System.out.println("You Said: "+resultText);
 controller.heardString(resultText);
 view.mainFrame.repaint();
 } else {
 System.out.println("I can't hear what you said.\n");
 }
 }
 }
} !
Spmodel

! 50

package demo1; !
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.GregorianCalendar; !
import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.Clip;
import javax.sound.sampled.DataLine;
import javax.sound.sampled.LineUnavailableException;
import javax.sound.sampled.Mixer;
import javax.sound.sampled.UnsupportedAudioFileException; !!!!!
public class spmodel {

 /*the rodwy head image is the default for the start of the program*/
 private String[] imgFiles={"UTSA.jpg","dog4.jpg","horse.jpg","tiger.jpg","trtl.jpg","bird2.jpg"};
 private String[] imgCommand={"dog","horse","tiger","turtle","bird"};
 private String[]
audioFiles={"hello3.wav","Doing_Well.wav","Farewell_Friend.wav","Good_Morning.wav","Good_Afternoon.wav
","Good_Evening.wav","Good_Night.wav"
 ,"Ha_Ha_Ha.wav","I_Am_Doing_Fine.wav","Yes.wav","Goodbye.wav","A
re_You_There.wav","A_Team_Of_Electrical_Engineers.wav","My_Name_Is_Shushbot.wav"
 ,"Self_Aware_Reply.wav","Good_That_Makes_Two_Of_Us.wav","Reply_T
o_Breathing_Right_Now.wav","My_Creators_Are_Names.wav","Dr_Pranav.wav"
 ,"Baby_Don_39_t_Hurt_Me.wav","Purpose.wav","Ultron.wav","Presention
_Is_Over.wav"};
 private String[] listOfQuestions={"What is your Favorite Color?","Where are you from?","Is it nice
there?",};
 private String response;

 private int image_number;
 private int audio_number;
 private int talkingToPerson_i;
 private boolean playAudio;
 private boolean questionAsked;
 private boolean questions;
 private boolean conversation;
 private boolean aware;
 private boolean made;
 private boolean yesq;

 private ArrayList<prsmodel> listOfPeople;

 public static Mixer mixer;
 public static Clip clip; !
 /**
 * Initial Set up of model

! 51

 */
 public spmodel(){
 playAudio=false;
 image_number=0;
 audio_number=0;
 listOfPeople=new ArrayList<prsmodel>(); !
 questions=false;
 questionAsked=false;
 conversation=false;
 aware=false;
 made=false;
 yesq=false;
 Mixer.Info[] mixInfo = AudioSystem.getMixerInfo();
 for(Mixer.Info info: mixInfo){
 System.out.println(info.getName()+" "+info.getDescription());
 } !

 mixer = AudioSystem.getMixer(mixInfo[1]);

 DataLine.Info dataInfo= new DataLine.Info(Clip.class, null);
 try{
 clip = (Clip) mixer.getLine(dataInfo);
 }catch(LineUnavailableException e){
 e.printStackTrace();
 }

 }

 /**
 * Return the image name base of the image_number
 * @return
 */
 public String getImageName(){
 return imgFiles[image_number];
 } !!
 /**
 * this function compares the String in to the imgCommand.
 * If it finds a match it will return the i value + one to the
 * Corresponding imgNameList.
 * If it cannot find anything it will default to 0;
 * @param in
 */
 public void setImageName(String in){
 System.out.println("In Model : "+in);
 System.out.println(in.length());
 in.toLowerCase();
 int i;
 //Fix this loop because its wrong!!!! :(
 for(i=0;i<5;i++){

 if(in.equals(imgCommand[i])){
 image_number=i+1;
 }

! 52

 }
 if(i==6){
 image_number=0;
 }

 }/*end of setimageName*/

 public String getResponse(){
 return response;
 }

 public void procesString(String in){
 in.toLowerCase();
 if(conversation){
 if(questions){
 if(yesq){
 if(questionAsked){
 answerToQuestion(in);

 }
 else {
 askQuestions();
 }
 }
 else if (in.equals("yes")|in.equals("ok")){
 if(!yesq){
 yesq=true;
 if(questionAsked){
 answerToQuestion(in);

 }
 else {
 askQuestions();
 }
 }

 }
 else if(in.equals("no")){
 conversation=false;
 questions=false;
 yesq=false;
 response="Ok, ask me something else.";
 }
 else {
 response="I did not hear you correctly";
 }
 }
 else if(aware){
 if(in.equals("yes")||in.equals("maybe")){
 conversation=false;
 aware=false;
 playAudio=true;
 audio_number=15;
 }
 else if(in.equals("no")){
 playAudio=true;
 audio_number=16;
 response="You are now breathing manually";

! 53

 }
 }
 else if(made){
 if(in.equals("what are their names")||in.equals("their names")){
 playAudio=true;
 audio_number=17;
 conversation=false;
 made=false;
 }
 else {
 conversation=false;
 made=false;
 response="Im stuck, say anything.";
 }

 }
 }

 else if(ifName(in));

 else greetings(in);
 }
 !

 /**
 *
 * @param Answer
 */
 private void answerToQuestion(String Answer){
 if(Answer.equals("no more questions")){//Stop asking question and return to normal mode
 questions=false;
 questionAsked=false;
 conversation=false;
 yesq=false;
 response="Ok no more Questions";
 }
 else if(listOfPeople.get(talkingToPerson_i).answerAllQuestions){
 response="Questions are Done, say \"Next\"";
 }
 else {
 if(listOfPeople.get(talkingToPerson_i).onQuestion==0){
 listOfPeople.get(talkingToPerson_i).setCOLOR(Answer);
 response="Your Favorite Color is "+listOfPeople.get(talkingToPerson_i).getCOLOR()+".
Say \"next\"";
 questionAsked=false;
 listOfPeople.get(talkingToPerson_i).onQuestion++;
 }
 !!
 } !
 }

 /**

! 54

 * This function sets the response to a question in the listOfQuestions array in the model
 * Based on the number of question available from the prsmodel
 * it sets questionsAsekd to true so that the next string is the answer to the questioned asked
 */
 private void askQuestions(){

if(listOfPeople.get(talkingToPerson_i).numberOfQuestions==listOfPeople.get(talkingToPerson_i).onQuestion){
 listOfPeople.get(talkingToPerson_i).answerAllQuestions=true;
 questions=false;
 conversation=false;
 yesq=false;
 response="Question are done, say something else.";
 }
 else {
 response=listOfQuestions[listOfPeople.get(talkingToPerson_i).onQuestion];
 questionAsked=true;
 }
 }

 /**
 * checkNames checks the list of people in listOfPeople
 * if the list is empty then it will create a new person and add them.
 * if the name is in the list it will turn question to true. When "question"
 * is true it will ask the user questions until it is done or the user says no more questions
 *
 * if the person is found it will create a new person and add them.
 *
 * in all case the program will go to the ask questions state whenever questions is true
 *
 */
 private void checkNames(String name){
 if(listOfPeople.isEmpty()){
 prsmodel person=new prsmodel(name);
 listOfPeople.add(person);
 response=response+" Can i ask you questions?";
 conversation=true;
 questions=true;//Start asking question about person and will stay in this mode until all
question are answered
 }
 else{
 boolean personFound=false;
 int size=listOfPeople.size();
 for(int i=0;i<size;i++){
 if(listOfPeople.get(i).getName().equals(name)){
 personFound=true;
 talkingToPerson_i=i;
 response="Hello "+listOfPeople.get(i).getName();
 if(!listOfPeople.get(talkingToPerson_i).answerAllQuestions){
 response=response+" Can i ask you questions?";
 conversation=true;
 questions=true;
 } !
 break;
 }
 }

! 55

 if(!personFound){
 prsmodel person=new prsmodel(name);
 listOfPeople.add(person);
 talkingToPerson_i=listOfPeople.size()-1;
 response=response+" Can i ask you questions?";

 }
 }
 }

 /**
 * isName checks if a name was said.
 * So far the name are only a few butcheckNames(temp[len-1]); will grow large
 * If a name is found it will return true otherwise false
 * For expanding the idea maybe call other function that
 * have the names in alphabet order
 * @param in
 * @return
 */
 private boolean ifName(String in){
 if(in.contains("name")&&!in.contains("your")){
 String temp[]=in.split("\\s+");
 int len=temp.length;

 if(temp[len-1].startsWith("j")){
 if(nameStartWith_J(temp[len-1])){
 checkNames(temp[len-1]);
 return true;
 }
 return false;
 }
 else if(temp[len-1].startsWith("r")){
 if(nameStartWith_R(temp[len-1])){
 checkNames(temp[len-1]);
 return true;
 }
 return false;
 }
 else if(temp[len-1].startsWith("s")){
 if(nameStartWith_S(temp[len-1])){
 checkNames(temp[len-1]);
 return true;
 }
 return false;
 }
 else if(temp[len-1].startsWith("t")){
 if(nameStartWith_T(temp[len-1])){
 checkNames(temp[len-1]);
 return true;
 }
 return false;
 }
 !
 } !
 return false;

! 56

 }

 /**
 * the following nameStartWith_(letter)
 * compares all possible names that start with some letter and return
 * true if a name is found
 * false otherwise
 *
 * @param in
 * @return
 */ !

 private boolean nameStartWith_J(String in){
 if(in.equals("javier")){
 response="Hello Javier ;)";
 return true;
 }
 return false;
 }
 private boolean nameStartWith_R(String in){
 if(in.equals("roberto")){
 response="Hello Roberto";
 return true;
 }
 return false;
 }
 private boolean nameStartWith_S(String in){
 if(in.equals("stacy")){
 response="Hello Stacy";
 return true;
 }
 return false;
 }
 private boolean nameStartWith_T(String in){
 if(in.equals("thilo")){
 response="Hello Thilo";
 return true;
 }
 return false;
 }

 !
 /**\
 * response will compare a String in to various other strings
 * if their is a match it will set response to that string
 * Other actions can be made such as playAudio or displaying an image.
 * @param in
 */
 private void greetings(String in){
 //in.toLowerCase();

 if(in.startsWith("hello")){
 if(in.equals("hello")){
 playAudio=true;
 audio_number=0;
 response="Hello!";

! 57

 }
 else if(in.equals("hello it is pranav")){
 playAudio=true;
 audio_number=18;
 response="Hello Dr. Pranav";
 } !
 else{
 response="I could not hear you.";
 }

 }
 else if(in.equals("what is your purpose")){
 playAudio=true;
 audio_number=20;
 response="World Domination!";
 }
 else if(in.equals("who is your savior")){
 playAudio=true;
 audio_number=21;
 response="Ultron!!!";
 }
 else if(in.equals("greetings")){
 response="Greetings!";
 }
 else if(in.equals("now what")){
 playAudio=true;
 audio_number=22;
 response="Senior Design is Over!!!";
 }
 else if(in.startsWith("good")&&!in.equals("goodbye")){
 if(in.equals("good morning")){
 playAudio=true;
 audio_number=3;
 response="Good Morning";
 }
 else if(in.equals("good afternoon")){
 playAudio=true;
 audio_number=4;
 response="Good Afternoon";
 }
 else if(in.equals("good evening")){
 playAudio=true;
 audio_number=5;
 response="Good evening to you.";
 }
 else{
 playAudio=true;
 audio_number=6;
 response="Good night";
 }
 }
 else if(in.equals("what is your name")){
 playAudio=true;
 audio_number=13;
 response="I am Shushbot";
 }
 else if(in.contains("who")){

! 58

 if(in.equals("who made you")){
 playAudio=true;
 audio_number=12;
 response="Senior Eletrical Engineering Students";
 conversation=true;
 made=true;
 }
 else if(in.equals("who are you")){
 playAudio=true;
 audio_number=13;
 response="I am Shushbot";

 }
 }

 else if(in.contains("are")){
 if(in.contains("how")){
 if(in.equals("how are you")){
 response="Im doing well thank you for asking.";
 }
 else if(in.equals("how are you doing")){
 playAudio=true;
 audio_number=1;
 response="Doing well";
 } !
 }
 else if(in.equals("are you self aware")){
 conversation=true;
 aware=true;
 playAudio=true;
 audio_number=14;
 response="Hard to say, are you?";
 }
 else if(in.equals("are you doing well")){
 playAudio=true;
 audio_number=8;
 response="Im doing fine, thanks!";
 }
 else {
 response="what did you say?";
 }
 } !!
 else if(in.equals("doing well")){
 playAudio=true;
 audio_number=9;
 response="Yes!!!";
 }
 else if(in.equals("what is love")){
 playAudio=true;
 audio_number=19;
 response="Dont hurt me no more";
 } !
 else if(in.equals("goodbye")){
 playAudio=true;

! 59

 audio_number=2;
 response="Farewell friend";
 }
 else if(in.equals("farewell")||in.equals("bye")){
 playAudio=true;
 audio_number=10;
 response="Goodbye";
 }
 else if(in.equals("later")){
 response="Later homes!!!";
 } !
 else if(in.contains("time")){
 response="The time is"+getTime();

 }
 else{
 playAudio=true;
 audio_number=11;
 response="Are you their?";
 }
 }

 /**
 * Gets the time from the Computer
 * @return a string of the time.
 */
 private String getTime(){
 GregorianCalendar time=new GregorianCalendar();
 int hour=time.get(Calendar.HOUR);
 int min=time.get(Calendar.MINUTE);
 int dayoftime=time.get(Calendar.AM_PM);
 String mint=min+"";
 if(min<10){
 mint="0"+mint;
 }
 if(hour==0){//Zero is 12
 hour=12;
 }
 if(dayoftime==1){
 return " "+hour+":"+mint+" PM";
 }
 return " "+hour+":"+mint+" AM";
 }

 /**
 * Plays audio file if playAudio is true
 */
 public void playAudio(){
 if(playAudio){

 //read in file
 try {

 String getFile="myAudio/"+audioFiles[audio_number];//Keep all files in
myaudio

! 60

 File soundFile=new File(getFile);
 AudioInputStream audioStream =
AudioSystem.getAudioInputStream(soundFile);
 clip.open(audioStream);

 }catch(LineUnavailableException e){
 e.printStackTrace();
 }catch(UnsupportedAudioFileException u){
 u.printStackTrace();
 }catch(IOException i){
 i.printStackTrace();
 }

 //Play file
 clip.start();
 do{
 try{
 Thread.sleep(50);
 }catch(InterruptedException ie){
 ie.printStackTrace();

 }
 }while(clip.isActive());
 clip.stop();
 clip.close();//Close file
 playAudio=false;
 }
 }
} !
Spview
package demo1; !!
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.io.File; !
import javax.imageio.ImageIO;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel; !
public class spview extends JFrame{

 /**
 *
 */
 private static final long serialVersionUID = 1L;
 public JFrame mainFrame;
 private String myImage="UTSA.jpg";
 private JLabel label;
 private JLabel textLabel;
 private JPanel mainPanel;

! 61

 private String textString;
 /**
 * Initiales the view
 */
 public spview(){
 !
 mainFrame=new JFrame("Human Interaction");

 label=new JLabel();
 mainPanel=new JPanel();
 mainPanel.setLayout(new BoxLayout(mainPanel,BoxLayout.X_AXIS));

 textString="Start Talking :)";

 textLabel = new JLabel(textString);
 drawMyImage();
 mainPanel.add(label);
 mainPanel.add(textLabel);
 mainFrame.add(mainPanel);

 }

 /**
 * Draws the new image in the same frame
 */
 private void drawMyImage(){

 BufferedImage img=null;
 try{
 img=ImageIO.read(new File("myImg/"+myImage));
 }
 catch(Exception e){
 System.out.println("spview: Error did not open \n"+e);
 }
 BufferedImage img2= new BufferedImage(256,256,BufferedImage.TYPE_INT_RGB);
 Graphics2D g=img2.createGraphics();

 g.drawImage(img,0,0,256,256,null);
 g.dispose(); !
 ImageIcon imgIcon=new ImageIcon(img2);

 label.repaint();
 label.setIcon(imgIcon);

 //mainFrame.getContentPane().add(label,BorderLayout.CENTER);
 //mainPanel.add(label);

 }

 /**
 * updates the image in the frame
 */
 public void updateImage(String in,String text){
 System.out.println("In view heard :"+in+"\n ");
 myImage=in;

! 62

 System.out.println(myImage);
 drawMyImage();
 textLabel.setText(text);
 //mainPanel.add(textLabel);
 !
 }
} !

! 63

Listener/Mobile Program !
Listener Code
#include "ros/ros.h"
#include "std_msgs/String.h"
#include <move_base_msgs/MoveBaseAction.h>
#include <actionlib/client/simple_action_client.h> !
typedef actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> MoveBaseClient; !
void chatterCallback(const std_msgs::String::ConstPtr& msg)
{
 ROS_INFO("I am going to move [%s]", msg->data.c_str());
 MoveBaseClient ac("move_base", true);
 while(!ac.waitForServer(ros::Duration(5.0))){
 ROS_INFO("Check your map file path if More than 5 Seconds!");
 }
 move_base_msgs::MoveBaseGoal goal;
 goal.target_pose.header.frame_id = "base_link";
 goal.target_pose.header.stamp = ros::Time::now();
 goal.target_pose.pose.position.y = .5;
 goal.target_pose.pose.orientation.w = .5;
 ac.sendGoal(goal);
 ac.waitForResult();
 if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED)
 ROS_INFO("Hooray, I moved in the +y Direction!");
} !
void chatterCallback2(const std_msgs::String::ConstPtr& msg)
{
 ROS_INFO("I will now [%s] Degrees ", msg->data.c_str());
 MoveBaseClient ac("move_base", true);
 while(!ac.waitForServer(ros::Duration(5.0))){
 ROS_INFO("Check your map file path if More than 5 Seconds!");
 }
 move_base_msgs::MoveBaseGoal goal;
 goal.target_pose.header.frame_id = "base_link";
 goal.target_pose.header.stamp = ros::Time::now();
 goal.target_pose.pose.position.y = -.5;
 goal.target_pose.pose.orientation.w = ;
 ac.sendGoal(goal);
 ac.waitForResult();
 if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED)
 ROS_INFO("Hooray, I moved in the -y direction!");
} !
void chatterCallback3(const std_msgs::String::ConstPtr& msg)
{
 ROS_INFO("I will now move in the [%s] Direction", msg->data.c_str());
 MoveBaseClient ac("move_base", true);
 while(!ac.waitForServer(ros::Duration(5.0))){
 ROS_INFO("Check your map file path if More than 5 Seconds!");

! 64

 }
 move_base_msgs::MoveBaseGoal goal;
 goal.target_pose.header.frame_id = "base_link";
 goal.target_pose.header.stamp = ros::Time::now();
 goal.target_pose.pose.position.x = .5;
 ac.sendGoal(goal);
 ac.waitForResult();
 if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED)
 ROS_INFO("Hooray, I moved in the +x Direction!");
} !
void chatterCallback4(const std_msgs::String::ConstPtr& msg)
{
 ROS_INFO("I will now move in the [%s] direction", msg->data.c_str());
 MoveBaseClient ac("move_base", true);
 while(!ac.waitForServer(ros::Duration(5.0))){
 ROS_INFO("Check your map file path if More than 5 Seconds!");
 }
 move_base_msgs::MoveBaseGoal goal;
 goal.target_pose.header.frame_id = "base_link";
 goal.target_pose.header.stamp = ros::Time::now();
 goal.target_pose.pose.position.x = -.5;
 goal.target_pose.pose.orientation.w = .5;
 ac.sendGoal(goal);
 ac.waitForResult();
 if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED)
 ROS_INFO("Hooray, I moved in the -x Direction!");
} !
int main(int argc, char **argv)
{
 ros::init(argc, argv, "listener");
 ros::NodeHandle n;
 ros::Subscriber sub = n.subscribe("chatter", 1, chatterCallback);
 ros::Subscriber sub2 = n.subscribe("chatter2", 1, chatterCallback2);
 ros::Subscriber sub3 = n.subscribe("chatter3", 1, chatterCallback3);
 ros::Subscriber sub4 = n.subscribe("chatter4", 1, chatterCallback4);
 ros::spin(); !
 return 0;
} !
Batter & Auto-Dock Code
#include <ros/ros.h>
#include <move_base_msgs/MoveBaseAction.h>
#include <actionlib/client/simple_action_client.h>
#include <std_msgs/Empty.h>
#include <kobuki_msgs/Led.h>
#include <stdio.h>
/*** Program to put robot to bed via coordinates and auto-dock **/
typedef actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> MoveBaseClient;
typedef ros::Publisher blink_publisher;
int main(int argc, char** argv){

! 65

int flag = 0; // to check for auto-docking success or failure
//Initialize Program
 ros::init(argc, argv, "go_to_bed");
 MoveBaseClient ac("move_base", true);
 //wait for the action server to come up and check map file is loading
 while(!ac.waitForServer(ros::Duration(5.0))){
 ROS_INFO("Waiting for the move_base action server to come up. Check your map file path!!!");
 }
 move_base_msgs::MoveBaseGoal goal;
 /* we'll send a goal to the robot to go to bed. The x and y position coordinates represent A location
close enough to the charging dock for the ir sensors to work */
 goal.target_pose.header.frame_id = "map";
 goal.target_pose.header.stamp = ros::Time::now();
 goal.target_pose.pose.position.x = -0.919494390488;
 goal.target_pose.pose.position.y = 0.334971427917;
 goal.target_pose.pose.position.z = 0.0;
 goal.target_pose.pose.orientation.x = 0.0;
 goal.target_pose.pose.orientation.y = 0.0;
 goal.target_pose.pose.orientation.z = 0.00624722190278;
 goal.target_pose.pose.orientation.w = 0.999980485919;
 // Print to terminal command has been issued
 ROS_INFO("Shushbot! Go to bed!");
// Send the goal position to Kobuki base
 ac.sendGoal(goal);
// Wait for confirmation goal was reached
 ac.waitForResult();
// If goal was reached activate auto docking program
 if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED){
// Print to screen showing auto docking has been activated
 ROS_INFO("Shushbot is heading to bed!");
 flag = system("roslaunch kobuki_auto_docking activate.launch");
 if(flag){
// Print to screen that auto-docking was successful
 }
 else{
// Auto-docking was NOT successful. Need to physically check robot.
 }
 }
 else{
// Goal was never reached. Need to physically check robot.
 ROS_INFO("The Shushbot failed to find his bed");
 }
 return 0;
} !!
Starter-Up Program
#!/bin/bash
Turtlebot Startup Script !
echo "Launch Minimal"
xterm -hold -e roslaunch turtlebot_bringup minimal.launch &
sleep 15

! 66

!
echo "Launch Autodocking Algorithm"
xterm -hold -e roslaunch kobuki_auto_docking minimal.launch &#--screen !
sleep 5 !
echo "Load Map"
xterm -hold -e roslaunch turtlebot_navigation amcl_demo.launch map_file:=/home/turtlebot/Desktop/MyMap4.yaml
& !
sleep 5 !
echo "Load Battery Program"
xterm -hold -e rosrun turtle batListen & !
sleep 15 !
echo "rosrun USB"
xterm -hold -e rosrun rosserial_python serial_node.py _port:=/dev/ttyACM0 & !
sleep 15 !
echo "roschatter"
xterm -hold -e rostopic echo chatter &
sleep 2
xterm -hold -e rostopic echo chatter2 &
sleep 2
xterm -hold -e rostopic echo chatter3 &
sleep 2
xterm -hold -e rostopic echo chatter4 & !!!! !!!!!!!!!!

Sound Sensor Program
Arduino Sensor Program
/*
 * rosserial Code for Shushbot moving
 * Prints "Move in xyz-direction"
 */

! 67

//#define USE_USBCON
#include <ros.h>
#include <std_msgs/String.h> !
ros::NodeHandle nh; !
std_msgs::String str_msg;
ros::Publisher chatter("chatter", &str_msg); //This is for Stacy's program to turn & move in the direction of the noise
ros::Publisher chatter2("chatter2", &str_msg);// Turn 180 means the sound is behind the robot
ros::Publisher chatter3("chatter3", &str_msg);
ros::Publisher chatter4("chatter4", &str_msg);
ros::Publisher chatter5("chatter5", &str_msg);
ros::Publisher chatter6("chatter5", &str_msg); !!
//Sensor1=front sensor=LED2
//Sensor2=rear sensor=LED3
//Sensor3=right sensor=LED4
//Sensor4=left sensor=LED5 !
int i; !
const int sampleWindow = 1000; // Sample window width in mS (50 mS = 20Hz)
unsigned int sample1;
unsigned int sample2;
unsigned int sample3;
unsigned int sample4; !
double SensorValue1=0.0; //Set the 4 sensor readings to null
double SensorValue2=0.0;
double SensorValue3=0.0;
double SensorValue4=0.0; !
//int M1=A0; //Naming the analog inputs to microphone sensors
//int M2=A2;
//int M3=A4;
//int M4=A6; !
double Threshmin = 1.5;// This value is dependent on the sensitivity of the sensor SET TO 3 for normal talking
voice !
double Threshmax = 2.00; // This value is dependent on the sensivitiy of the sensor !
char Forward[] = "Forward";//Sensor 1
char Turn_180[] = "Turn_180";// Sensor 2
char Right[] = "Right";//Sensor 3
char Left[] = "Left";//Sensor 4
char SHUSH[] = "SHUSH";//Quiet Program
char Scan[] = "Scan"; //Scan Again !!
void setup()
{
 nh.initNode();
 nh.advertise(chatter);// THe advertise function is what allows Stacy's program to listen for this specific command
 nh.advertise(chatter2);
 nh.advertise(chatter3);
 nh.advertise(chatter4);

! 68

 nh.advertise(chatter5);

 //Serial.begin(9600);// Set the Baud rate for the Arduino
} !
void loop()
{
 unsigned long start= millis(); // Start of sample window
 unsigned int peakToPeak1 = 0; // peak-to-peak level
 unsigned int peakToPeak2 = 0; // peak-to-peak level
 unsigned int peakToPeak3 = 0; // peak-to-peak level
 unsigned int peakToPeak4 = 0; // peak-to-peak level
 unsigned int signalMax = 0;
 unsigned int signalMin = 1024;
 unsigned int signalMax1 = 0;
 unsigned int signalMin1 = 1024;
 unsigned int signalMax2 = 0;
 unsigned int signalMin2 = 1024;
 unsigned int signalMax3 = 0;
 unsigned int signalMin3 = 1024;
 unsigned int signalMax4 = 0;
 unsigned int signalMin4 = 1024;

 while (millis() - start < sampleWindow)
 {
 sample1 = analogRead(A0);
 sample2 = analogRead(A2);
 sample3 = analogRead(A4);
 sample4 = analogRead(A6);

// for (i=0;i<3;i++)
// {
// sample1 = sample1 + analogRead(A0); //Read the value of noise
// sample2 = sample2 + analogRead(A2);
// sample3 = sample3 + analogRead(A4);
// sample4 = sample4 + analogRead(A6);
//
// delay(500);
// }
 // Display the values of each of the sensor readings for the serial monitor

 //Serial.println(sample1);
 //Serial.println(sample2);
 //Serial.println(sample3);
 //Serial.println(sample4);
//
// sample1 = sample1/3;
// sample2 = sample2/3;
// sample3 = sample3/3;
// sample4 = sample4/3; !
// Serial.println(sample1);
// Serial.println(sample2);
// Serial.println(sample3);
// Serial.println(sample4);
// Serial.println("_______________");
// delay(1000);

! 69

 if (sample1 < 1024) // toss out spurious readings
 {
 if (sample1 > signalMax1)
 {
 signalMax1 = sample1; // save just the max levels
 //Serial.println(sample1);
 } !
 else if (sample1 < signalMin1)
 {
 signalMin1 = sample1; // save just the min levels
 //Serial.println(sample1);
 }
 }

 if (sample2 < 1024) // toss out spurious readings
 {
 if (sample2 > signalMax2)
 {
 signalMax2 = sample2; // save just the max levels
 //Serial.println(sample2);
 } !
 else if (sample2 < signalMin2)
 {
 signalMin2 = sample2; // save just the min levels
 }
 }

 if (sample2 < 1024) // toss out spurious readings
 {
 if (sample2 > signalMax2)
 {
 signalMax2 = sample2; // save just the max levels
 //Serial.println(sample2);
 } !
 else if (sample2 < signalMin2)
 {
 signalMin2 = sample2; // save just the min levels
 //Serial.println(sample2);
 }
 }

 if (sample3 < 1024) // toss out spurious readings
 {
 if (sample3 > signalMax3)
 {
 signalMax3 = sample3; // save just the max levels
 } !
 else if (sample3 < signalMin3)
 {
 signalMin3 = sample3; // save just the min levels
 }
 } !
 if (sample4 < 1024) // toss out spurious readings

! 70

 {
 if (sample4 > signalMax4)
 {
 signalMax4 = sample4; // save just the max levels
 } !
 else if (sample4 < signalMin4)
 {
 signalMin4 = sample4; // save just the min levels
 }
 }
 } !
 peakToPeak1 = signalMax1 - signalMin1; // max - min = peak-peak amplitude
 peakToPeak2 = signalMax2 - signalMin2; // max - min = peak-peak amplitude
 peakToPeak3 = signalMax3 - signalMin3; // max - min = peak-peak amplitude
 peakToPeak4 = signalMax4 - signalMin4; // max - min = peak-peak amplitude

 SensorValue1 = (peakToPeak1 * 50.0) / 1024; // convert to volts NOTE: the 50V works as the amplification
 SensorValue2 = (peakToPeak2 * 50.0) / 1024; // convert to volts NOTE: the 50V works as the amplification
 SensorValue3 = (peakToPeak3 * 55.0) / 1024; // convert to volts NOTE: the 50V works as the amplification
 SensorValue4 = (peakToPeak4 * 45.0) / 1024; // convert to volts NOTE: the 50V works as the amplification
//
// Serial.println("_______________");
// Serial.print("Forward ");
// Serial.println(SensorValue1);
// Serial.print("Back ");
// Serial.println(SensorValue2);
// Serial.print("Right ");
// Serial.println(SensorValue3);
// Serial.print("Left ");
// Serial.println(SensorValue4);

 //Start the noise detection algorithim
 //if (SensorValue1||SensorValue2||SensorValue3||SensorValue4>=Threshmin)
 //{
 //The algorithim will compare the different sensor inputs and turn in the
 //diretion of the highest threshold sensor

 if (SensorValue2>Threshmin)
 {
 if (SensorValue2>SensorValue1 && SensorValue2>SensorValue3 && SensorValue2>SensorValue4)
 {
 str_msg.data = Turn_180;
 chatter2.publish(&str_msg);

 Serial.println("I Turn 180");
 Serial.println(SensorValue2);
 delay(4000);
 //Check if it has reached its max Thus activating SHUSH Func.
 if(SensorValue2>=Threshmax)
 {
 str_msg.data = SHUSH;
 chatter5.publish(&str_msg);

 Serial.println("SHUT UP HUMAN");//The Stop of Stacys' program will happen here and activate Robertos'
SHUHSH Func.
 delay(1000);

! 71

 }
 else{}
 }
 else
 {
 SensorValue2=0.00;
 }
 }
 else
 {
 SensorValue2=0.00;
 }

 if (SensorValue3>Threshmin)
 {
 if(SensorValue3>SensorValue1 && SensorValue3>SensorValue2 && SensorValue3>SensorValue4)
 {
 str_msg.data = Right;
 chatter3.publish(&str_msg);

 Serial.println("I Move Right");
 Serial.println(SensorValue3);
 delay(4000);
 //Check if it has reached its max Thus activating SHUSH Func.
 if(SensorValue3>=Threshmax)
 {
 str_msg.data = SHUSH;
 chatter5.publish(&str_msg);

 Serial.println("SHUT UP HUMAN");
 delay(1000);
 }
 else{}
 }
 else
 {
 SensorValue3=0.00;
 }
 }

 else
 {
 SensorValue3=0.00;
 }
 if (SensorValue4>Threshmin)
 {
 if (SensorValue4>SensorValue1 && SensorValue4>SensorValue2 && SensorValue4>SensorValue3)
 {
 str_msg.data = Left;
 chatter4.publish(&str_msg);

 Serial.println("I Move Left");
 Serial.println(SensorValue4);
 delay(4000);
 //Check if it has reached its max Thus activating SHUSH Func.
 if(SensorValue4>=Threshmax)
 {
 str_msg.data = SHUSH;

! 72

 chatter5.publish(&str_msg);

 Serial.println("SHUT UP HUMAN");
 delay(1000);
 }
 else{}
 }
 else
 {
 SensorValue4=0.00;
 }
 }

 else
 {
 SensorValue4=0.00;
 }

 if (SensorValue1>=Threshmin)
 {
 if(SensorValue1>SensorValue2 && SensorValue1>SensorValue3 && SensorValue1>SensorValue4)
 {
 str_msg.data = Forward;
 chatter.publish(&str_msg);

 Serial.println("I Move Forward");
 Serial.println(SensorValue1);
 delay(4000);
 //Check if it has reached its max Thus activating SHUSH Func.
 if(SensorValue1>=Threshmax)
 {
 str_msg.data = SHUSH;
 chatter5.publish(&str_msg);

 Serial.println("SHUT UP HUMAN");
 delay(1000);
 }
 else{}
 }
 else
 {
 SensorValue1=0.00;
 }
 }
 else
 {
 SensorValue1=0.00;
 }
// else
// {
// str_msg.data = Scan;
// chatter6.publish(&str_msg);
// Serial.print("I wont move");
// delay(1000);
// }

 Serial.println("_______________");
 Serial.print("Forward ");

! 73

 Serial.println(SensorValue1);
 Serial.print("Back ");
 Serial.println(SensorValue2);
 Serial.print("Right ");
 Serial.println(SensorValue3);
 Serial.print("Left ");
 Serial.println(SensorValue4);

 nh.spinOnce();
 delay(500);
} !

! 74

