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DYNAMIC PROGRAMMING OF A TORSO ACTUATED RIMLESS WHEEL ROBOT

Robert Brothers, M.Sc.
The University of Texas at San Antonio, 2018

Supervising Professor: Pranav Bhounsule, Ph.D.

This thesis presents the variable speed walking of a rimless wheel robot. The rimless wheel is a

dynamic walking template that consists of a wheel whose rim has been removed (a discrete wheel).

By swinging the torso forward beyond the contact point of the leading foot with respect to the

gravity vector, the robot is able to move forward. We use Dynamic Programming for optimizing

the energy usage when achieving the speed transition. One issue, however, is that the accuracy

of the Dynamic Programming solution depends on the fineness of the grid. This is particularly

problematic for systems with high degrees of freedom, where a fine state-space discretization will

lead to exponential growth in the computation and storage. To circumvent this issue, we use the

step-to-step map, also known as the Poincaré map to discretize the system. The Poincaré map

relates the velocity of the rimless wheel robot at the mid-stance (the state) and the fixed torso

angle per step (the control variable) to the velocity at mid-stance of the next step (the new state).

Using this map, we set up a Dynamic Programming problem to minimize a weighted sum of the

normalized squared deviation from the desired speed and the normalized squared actuator effort.

The problem is then solved using a combination of value- and policy- iteration for computational

efficiency. We demonstrate that it is possible to switch from a mid-stance speed of 2 rad
s

to 3 rad
s

in

6 steps. Our results suggest that Poincaré map based Dynamic Programming is a computationally

efficient paradigm for solving high dimensional problems in legged locomotion.
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CHAPTER 1: INTRODUCTION

This thesis presents a deliberation in the application of Dynamic Programming for the variable

speed control of a simplified model of the Rowdy Runner II, a torso actuated rimless wheel robot.

Rowdy consists of a torso sandwiched between two rimless wheels. By applying a torque between

the torso and wheels, forward motion is produced when the torso’s center of mass protrudes beyond

the contact point of the leading foot with respect to the gravity vector. Currently, the Rowdy

Runner II is capable of controlling the angle of the torso during motion to maintain a constant

velocity. The work presented in this thesis uses Dynamic Programming for optimizing the energy

usage for achieving the speed transition. One issue, however, is that the accuracy of the Dynamic

Programming solution depends on the resolution of the grid. In practice, Dynamic Programming

is known to require disproportionally larger amounts of computational time as the complexity of

a problem grows, a relation known as the Curse of Dimensionality. This creates a dilemma: on

the one hand, a fine grid is essential for good controller performance while on the other, finding

these optimal policies at higher resolution require a rather large amount of time. To circumvent this

issue, a step-to-step map, also known as the Poincaré map, is used to discretize system’s state. The

Poincaré map relates the mid-stance velocity of the rimless wheel (the state) and the fixed torso

angle per step (the control variable) to the mid-stance velocity at the next step (the new state).

Using this map, a Dynamic Programming problem to minimize a weighted sum of the square

of the deviation from the desired speed and the actuator effort is set up. This approach reduces

the number of states to consider, simplifying the Dynamic Programming problem and reducing

computational time. The optimal policies for speed transitions are then found using a combination

of policy- and value- iteration for computational efficiency. The results of this work show that it is

possible to switch from a mid-stance velocity of 2 rad
s

to 3 rad
s

in less than 6 steps.
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1.1 Introduction to Dynamic Programming

Dynamic Programming is a set of mathematical tools used to reduce an optimization problem to a

set of sequential decisions and, from them, determine optimal policies. First proposed by Richard

Bellman, Dynamic Programming applies his Principle of Optimality in combination with Marko-

vian Decision Processes to recursively extract optimal policies from nested problems i.e. problems

within problems. To better understand the process of Dynamic Programming and eventually de-

vise a method for its implementation the traditional approaches to generating and solving Dynamic

Programming are evaluated in a “shortest path” example of a man optimizing his route to work [1].

1.1.1 Example: Man Biking to Work
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Figure 1.1: Nodal network of man biking to work

Each day, John travels to work on his bicycle. With some exploration each day, he realizes

there are a number of different routes that get him there, each requiring different amounts of time.

He would, of course, like to find the route that will get him to work the in the shortest amount

of time. For this, he spends some time evaluating different paths, and after recording information

about all the available paths to work, he organizes a network of nodes interconnected by arcs. In

this network, arcs represent streets while the nodes, represent the intersections of streets. Next to

each arc (street) he denotes the amount of time required to travel the street and reach the next node.

Assuming he can only travel forward, he drafts Figure 1.1 depicting a network of routes to work
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available to John. From it, the objective is to find the fastest route or, temporally, the shortest path.

Traditionally there are 2 methods used find the shortest path for a network of this form: value- and

policy- iteration. These iterative methods are known as Markov Decision Processes.

Value Iteration

Value iteration is a decision making process where the optimal policy is found by searching the

network for the optimal value function [2, 3]. This process works as described in Algorithm 1.1

Algorithm 1.1 Value iteration algorithm
1: Initialize Value Function
2: while ε ≤ V (s)−minaQ(s, a) do
3: for all s ∈ S do
4: for all a ∈ A do
5: Q (s, a) := J (s, a) + V (s′)
6: V (s) := minaQ(s, a)

[4]. First initialize the value function at the goal state to zero. This value function is a Bellman

Equation and for deterministic systems, is expressed as shown in Equation 1.1. Literally this

equation translates to: the value of transitioning from state s to the goal state is equal to the sum of

the expected cost J (s, a) accrued by applying action a to transition to state s’ and the value V (s′)

at s’. At the goal state because there is no subsequent state there is no transition cost therefore the

value function at the goal state is equal to zero.

V (s) = J(s, a) + V (s′) (1.1)

Begin at some state s, use Equation 1.1 to express the value gained by taking action a. If the

value V (s′) is known calculate the solution, otherwise evaluate the value function V (s′) to find

V (s′) = V (s′, a, V (s′′)) i.e. that the value function V (s′) is a function of the state s′, the action

a, and the value function of the subsequent state V (s′′). Repeatedly perform this operation this

until arriving a value function whose V (si) has a numerical solution. Then cascading backwards

until reaching the nucleate value function V (s) solve the value functions. An iteration is considered

3



complete when the all the states in the network have been evaluated. This approach, though straight

forward, requires a large amount of working memory.

Policy Iteration

Another method of finding the fastest route to work is using policy iteration. Policy iteration is a

decision making process that finds the optimal path by directly manipulating the policy [3,5]. The

Algorithm 1.2 Policy iteration algorithm
1: Choose an Arbitrary policy π
2: while π 6= π′ do
3: Compute the Value for the policy π
4: for all s along policy π do
5: Vπ′(s) = J (s, π) + Vπ (s′)
6: if Vπ′(s) < Vπ(s) then
7: π = π′

Algorithm 1.2 works by first choosing an arbitrary policy from the current state to the goal [3, 4].

Then working backwards from the goal along the current policy searching for better policies. In

the search try different actions and calculate a value for the new policy created by that action. If

the new policy performs better than the current best policy update the policy.

Ricard Torres published a MATLAB script implementing both policy- and value- iteration [4].

Torres’ work provides insight to how to programmatically find the optimal policies once the net-

work is known but the organization of the network is done in a non programmatic manner. The

approach devised and presented in this thesis builds on his work. First by developing a way to

programmatically organize the Dynamic Programming problem in to a cost network. Second by

organizing the connections between the nodes of network into a hierarchically organized network

of connections, a connection network, to reduce computational time.

1.2 The Rowdy Runner

The Rowdy Runner is a torso actuated rimless wheel robot. Originally developed by the under-

graduate senior design team FOA, the Rowdy Runner’s purpose is to facilitate research on rimless
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wheels as a method of legged locomotion. FOA’s Rowdy Runner consisted of 2 rimless wheels

locked in rotation by a single axle. The torso of Rowdy was mounted on the axle by freely rotating

bearings. Coupled to the axle via a toothed output sprocket through an untensioned belt was a sin-

gle motor mounted in the torso. This version of Rowdy was able to produce motion by controling

its body angle. The current iteration of the Rowdy Runner is able to produce these motions at a

higher resolution and with greater reliability.

Consider the case where the Rowdy Runner is a black box where the observe or actor sees

only the input and response. This thesis presents a Dynamic Programming approach to determine

optimal control policies that provide inputs to the black box, given some response, to produce

a desired response. The test case is a model of Rowdy where the wheels are locked in rotation

and Rowdy is capable of controlling the angle of its torso, allowing motion in only one plane.

While this level of control is sufficient to produce an indirect method of controlling its speed, the

objective is to directly control speed. This research targets a 2D planar model of the Rowdy Runner

II, an iteration on FOA’s contribution, to investigate the application of Dynamic Programming

as a method of speed control and further, as a standard to which the performance other control

methods may be evaluated.The current Rowdy Runner was developed by Eric Sanchez. It is an

independently torso-actuated rimless wheel robot. It is the second iteration of its design. It consist

of two rimless wheels, each actuated by a motor housed in the torso.
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CHAPTER 2: LITERATURE REVIEW

Dynamic Programming is a complex set of mathematical tools used to find optimal paths between

the states of a discrete system. First described by Richard Bellman, Dynamic Programming uses a

“divide and conquer” approach to separate complex problems to multiple simpler problems which

represent states of the complex problem [6]. The solution to these simpler problems is the optimal

policy to the larger problem. It is the found via an understanding that

“An optimal policy has the property that whatever the initial state and initial decision are, the

remaining decisions must constitute an optimal policy with regard to the state resulting from the

first decision” [7, 8].

This is referred to the Principle of Optimality [7]. Commonly, these decision making problems

with which Dynamic Programming deals are organized into a network of states whose decisions

transition them to other states. The optimal paths through these network are found using Markovian

Decision Process to recursively solve Bellman Equations [1, 3, 6].

The discretization method used in this thesis is similar to the one described in Chis Atkeson’s

paper [9]. Here he and others applied Dynamic Programming to solve the problem of velocity

control for a 2-D bipedal walker with a torso. They circumvented the “Curse of Cimensionality”

by reducing the number of states, considering only an instance of the robots periodic state orbit.

With this reduced state model, he used the velocity of the robot at the mid-stance as the target

variable in optimization. An interesting concept presented in this paper is the composition of the

the cost function, where input torque, mid-stance velocity, and, more interestingly, the acceleration

of the swinging leg as a function of step time are considered. When applied this method as stated

“can handle starting from zero velocity, and can achieve a range of velocities.” The performance

of the control policies between these velocities depends on the optimization criteria expressed in

the cost function and the resolution of the grid. One of the shortcomings mentioned about this

approach, was that certain dynamical behaviors had to be overlooked in the reduction of state.

Examples include the contribution of the torso to the system’s dynamical behavior and the ankle

6



push off in each step. In conclusion Atkeson states that complex nonlinear control laws can be

produced in solutions to Dynamic Programming problems.

This reduction of state approach can be seen again in Pranav Bhounsule and Ezra Ameperosa

2016 ASME paper [10] where they used a dead-beat controller to target a poincare map for quicker

response in correcting disturbances in the gaits of rimless wheels. By switching among the limit

cycles, the walker was able to quickly change its speed. This work also takes inspiration from their

approach to the modeling and simulation of a rimless wheel robot. In their paper they break up

the rimless wheel robot’s equations of motion in to two phases: single stance and heel strike. The

problem with dead-beat control is that it is very sensitive to modeling errors.

Bhounsule and Zamani proposed an exponential orbital stabilization controller that reduces

the modeling errors exponentially over a few steps rather than in a single step [11, 12]. Their

exponential orbital stabilization controller is robust to the modeling errors unlike the dead-beat

controller.

One way to change speed of a walker is to create multiple limit cycles and switch among them

as in the work by Bhounsule et al [13]. In their work, they create a sufficient number of limit cycles

corresponding to different velocities between the start speed and the goal speed.

Tad McGeer conducted research on passive dynamic walking machines that had groundbreak-

ing results [14]. McGeer found and described a class of bipedal machines that have natural dy-

namic modes of walking and capable of passively walking using only gravitational potential energy

provided by the environment. He began his research analyzing and studying rimless wheels. He

looked at the behavior of a rimless wheel throughout its gait and described its motion before and

after collision using a now ubiquitous approach where he assumes that angular momentum is con-

served by considering the ground-foot collisions are inelastic impulses. The equations he derived

described the dissipative nature of the rimless wheel’s steps. These equations are modified for use

in this work. McGeer pioneered the field of dynamic walking with his paper [14]. This thesis

builds on McGeer’s work by adding an actuated torso to rimless wheels exploiting its natural dy-

namic mode to produce dynamic walking on level ground and change speeds with some measure

7



of agility.

8



CHAPTER 3: APPROACH

This chapter of this document covers the 3-step methodology devised to organize a Dynamic Pro-

gramming problem and find globally optimal policies. The development of this methodolgy was

grossly motivated by the use of MATLAB’s parallel computing toolbox and MATLAB’s proffi-

ciency in handling 2D matrices. Also discussed in this chapter are the insights gained from the

application of this methodology to two different systems along with the short comings of Dynamic

Programming and methods used to circumvent these faults.

3.1 Generating the Cost Network

Step 1 of the 3-step methodology is generating the cost network. The cost network is an organized

network of interconnected nodes that represent states of a model, hold information about the states

and available transitions from the states.

3.1.1 Nodes of a Network

Algorithm 3.1 Class nNode
DATA MEMBERS

1: ID = []
2: state = []
3: connections = {[]}
4: optimal_value = []
5: optimal_policy = []

Nodes of a network are discrete containers composed of 5 data members: a node ID, a state, an

optimal policy, an optimal value, and connections. The node ID data member is a value or an array

of values are used to reference the node’s position within the network. This node ID correlates to

the state data member. The state is a unique combination of discrete and indevisible state variable

values used to describe the model’s configuration. The optimal policy is a data member which

stores the ID of the node that correlates to the subsequent state in the globally optimal policy. The

optimal value data member is a container which stores the total cost to go from the current node

9



to the goal node. The values of the optimal policy and optimal value data members are set and

updated in the evaluation of the cost and connection network step. The connection data member

is a container that stores information about connections to subsequent nodes/states in the form: {

[state ID] (action) (cost)}, where cost is the cost accrued during the transition from the current state

to the state stored in the node referenced by state ID when applying the action stored in action.

3.1.2 Cost Network Generation

The first step in generating the cost network is developing a simple yet sufficient model of the

system that captures its interesting behaviors. For physical systems like the Rowdy Runner we are

most interested in their dynamics. Generally, to create a model begin by observing the system in

a coordinate frame, determine how many variables are necessary to describe its unique state, and

define equations that describe the evolution of its state through time i.e. the equations of motion

of the system. In order to reduce modeling errors, a simple approach is to compare the behaviors

of the model and the system and define and constrain the state space of the model to a region

in which the equations of motion and the behavior of the physical system agree with minimal

error. This region is referred to as the region of feasibility. From here there are three choice that

produce grossly different results. One, discretize the feasible space using the state variables and

allow time as a variable. Two discretize the equations of motion using time allowing variable time

between states. The third choice which could possible overconstrain the problem is to discretize

both time and state truncating differences. Each of these approaches will produce a finite number

of states in a bounded space. Also by taking only the action that produces the lowest cost action

necessary to transition between states that is capable of being produced by the system the number

of actions i.e. connections to later evaluate is reduced. After discretizing the feasible space and

the actions the cost network is generated using a process described by Algorithm 3.4. Generate a

blank N1×N2× · · ·×N(n−1)×Nn network of nodes for n state variables where Ni is the number

of nodes that correlate to Si representing every discrete increment in the feasible space along that

state variable. Evaluate each unique state-action combination using the transition function and

10



Algorithm 3.2 Compare Connections
INPUT (connection c, Node n)

1: for all conn ∈ N([s, s]).connections do
2: i = i + 1
3: if conn[1] == connection[1] then
4: if conn[3] > connection[3] then
5: The connection to the state in c is of lower cost. Update it.
6: return i
7: else
8: The connection to the state in c is of higher cost. Leave the currently stored connection.
9: return NULL

10: The connection to the state in c does not exist so add it.
11: return i

Algorithm 3.3 costEval
INPUT (state s, states S, actions A, network N)

1: dims = size(S)
2: if dims[2] > 1 then
3: for all s ∈ S(:,1) do
4: costEval([s, s], S(:,2:end), A)
5: else if dims[2] = 1 then
6: for all s ∈ S do
7: for all a ∈ A do
8: i = 1
9: (s′, J) = T([s, s], a)

10: connection = {s′, a, J}
11: for all conn ∈ N([s, s]).connections do
12: i = i + 1
13: if conn[1] == connection[1] then
14: if conn[3] > connection[3] then
15: N([s, s]).connections[i] = connection
16: else
17: continue
18: N([s, s]).connections[i] = connection
19: else
20: break

Algorithm 3.4 Generate Cost Network
INPUT(states S, path/to/file to store the Cost Network)

1: network = N1 ×N2 × · · · ×N(n−1) ×Nn for n = # of state variables
2: for all s ∈ S(:,1) do
3: costEval([s, s], S(:,2:end), A, N)

11



calculate the cost accrued by the transition to state s′. Then populate the data in the node storing

the lowest cost unique connection for every state-action-state combination {s, a, s′}.

3.2 Generating the Connection Network

Step 2 of the 3-step methodolgy is the generation of the connection network. The Connection

Network is a hierarchically organized network of connections between nodes arranged in stages

of immediately connected nodes. At the head of the network or the 0th stage is the goal node.

The next stage is home to the connections linking the nodes immediately connected to the goal

node, stored in the form {s′i, aj, sgoal}. The second stage is composed of the connections of nodes

with immediate connections to nodes with connections in the first stage, {s′′i , aj, s′k}. Repeatedly

following this line of succession the tail stage is composed of the connections of nodes furthest

disconnected from the goal node at the head, {sni , aj, sn−1
k }. The Algorithms 3.5 and 3.6 outline

the process of programmatically building a connection network. Archetypically, the connec-

Algorithm 3.5 Network search and retrieve
INPUT State: s∗, Cost Network: S
OUTPUT Connection Network Stage C

1: for all s ∈ S do
2: for all a ∈ A do
3: if T(s, a) = s∗ and {s, a} 6∈ C then
4: C .append({s , a})

tion network is generated by repeatedly searching the cost network for nodes with connections to

nodes who have connection stored in the previous stage. If the connections found are not already

recorded in the cost network store them in the current stage. This step in the process of Dynamic

Programming is motivated in an effort to reduce computational time by parallelizing the process

of evaluating networks. It was observed that connections on the same stage are independent from

one another and may be evaluate simultaneously. This idea proved fruitful.
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Algorithm 3.6 Connection network generation
INPUT Cost Network: S
OUTPUT Connection Network C

1: i = 1
2: Initialize goal state value function: V (s∗) = 0
3: C[i ] = NetworkSearchAndRetrieve(s∗, S )
4: i = i+ 1
5: Ncos = numberOfConnectionsIn(S)
6: Ncon = length(C[i])
7: while Ncon < Ncos do
8: for all c ∈ C[i− 1] do
9: C.append(NetworkSearchAndRetrieve(s∗, S))

10: C[i] = C
11: Ncon = Ncon + length(C)

3.3 Evaluating the Connections

The final step in this process is to evaluate the cost and connection networks in tandem to find an

optimal policy. This method is considered to use a combination of policy- and value- iteration to

find the optimal policy.

Instead of recursively generating value functions that are functions of other value functions

like in value iteration. Connecion evaluation instead looks only for nodes that have an optimal

value set. This is possible as a result of the heirarchical structure of the connection network.

Since each stage of the connection network is composed of the connections that are immediately

connected to the next previous stage, the connections contained in each stage are independent

of one another. Therefore, they may be evaluated simultaneously. This also means that when

following the heirarchy there will be no need for generating nested value functions and the required

active memory will be reduced.

Algorithm 3.7 Evaluate the cost and connection network
INPUT Connection: {s, a, s′}, Cost Network: S
OUTPUT connection: c∗

1: if V (s, a) < V (s, a∗) then
2: c∗ = {s, a, s′}
3: else
4: c∗ = NULL
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Algorithm 3.8 Evaluate the cost and connection network
INPUT Cost Network: S, Connection Network: C
OUTPUT Updated Cost Network: S∗

1: for all n ∈ C do
2: i=1
3: for all m ∈ C[n] do
4: C[i] = evaluateConnection(C[n][m], S)
5: i = i+ 1
6: for all c ∈ C do
7: if c 6= NULL then
8: set the action at state c[1] equal to c[2]

The process goes, for each connection in the connection network, compare the value of that

connection with the value of the current connection stored. If the new connection produces a better

value, update the optimal\_policy and optimal\_value stored at that node in the network otherwise

skip it.
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CHAPTER 4: APPLCATION OF METHODS

4.1 Pendulum Upswing

The goal in this exhibition of Dynamic Programming is to determine a globally optimal control

policy to perform an upswing from 0° to 180° on a simple torque-controlled pendulum. The pur-

pose for this digression is to better visualize and understand Dynamic Programming’s process and

results. The actuated simple pendulum was chosen because “the dynamics of a single pendulum

are rich enough to introduce most of the concepts from nonlinear dynamics” and the pendulum

relatability to our system [15, 16].

Beyond verifying that the problem has a substructure capable of being optimized Dynamic

Programming requires 4 components; S a set of discrete states that describe the configuration of

the system, A a finite set of actions the system is capable of making, a transition function T(s, a)

that when given a state-action pair returns the next state, and a Cost function that penalizes the

system for undesired behaviors [9, 16].

4.1.1 Generating the Cost Network for a Simple Pendulum

Here we generate the equations of motion that give a mathematical description the behavior of

the system. As expressed in Figure 4.1 the pendulum consist of a mass M at then end of a long

massless rod of length l attached to a frictionless pin joint. The joint’s positive direction of rotation

is along the y-axis î× ẑ restricting the motion of the pendulum to the x-z-plane. A 0◦ angle is set

where the pendulum points along the positive z-axis. An actuator is placed at the pin joint has a

bidirectional maximum output τmax. The pin joint is a frictionless.

With the model as described in Figure 4.1 Lagrangian mechanics was found to be best suited

for deriving the equations of motion rather than Newtonian for two reasons. First, all the forces

described in the model are conservative. Second, while Lagrangian and Newtonian approaches are

both capable handling conservative systems, due to the scalar nature of the Lagrangian approach

it isn’t so cumbersome when working with the polar coordinate systems other than cartesian [17,
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Figure 4.1: Model of simple pendulum

18]. The polar coordinate system was chosen because with polar coordinates the pendulum’s state

can be described by two variables
(
θ, θ̇
)

rather than the four (x, ẋ, y, ẏ) required by cartesian

coordinate system.

Pendulum Equations of Motion

The Lagrangian is equal to the difference between the kinetic and potential energy of the pendulum

as shown in Equations 4.1. The potential energy of the system is a function of the pendulum’s angle

θ defined as the product of the mass, the gravitational acceleration constant, and the cosine of the

pendulum’s angle with respect to the z-axis as described in Equations 4.2. The kinetic energy of the

system is also a function only of θ defined as half of the pendulum’s inertia times the pendulum’s

squared rotational velocity as described in Equations 4.3.

L = T − V (4.1)

V = mg l sin (θ) (4.2)

T = m

(
θ̇L
)2

2
(4.3)
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L = m

(
θ̇L
)2

2
−mg l sin (θ) (4.4)

The next steps in derivation of the equations of motion are to use Equations 4.5 to derive the forces

acting within the system. The result of this step is shown in Equations4.6.

d

dt

(
dL

dθ̇

)
− dL

dθ
= 0 (4.5)

mL2 θ̈ (t) +mg L sin(θ) = 0 (4.6)

The torque output by the actuator Next add the forces acting within the system to the actuator for

acting on the system to produce the finalized equations of motion that will be used as the transition

function in Dynamic Programming to form Equations 4.7.

mL2θ̈(t) +mg L sin(θ(t)) = τact(t)× ~r (4.7)

xk+1 =

∫ t+∆t

t

 θ̇ (t)

−g
l
sin (θ (t))− τ

l

 dt (4.8)

Afterwards we discretize the equations of motion using time by integrating the equations of mo-

tion over the increment of time ∆t to produce the time-discretized equations of motion shown in

Equations 4.8.

Pendulum State Space

Now with a function that describes the behavior and evolution of the system over time we must

define boundaries to eliminate unnecessary computation [9, 16]. We will refer to the region within

the boundaries as the region of feasibility [19]. This term describes a state space where all included

states the satisfy all the imposed constraints. Outside this region, for real systems, the system may

fail to behave as described by the equations of motion and produce modeling error. There are two

state variables that make up this region the angular position and the rate of change of the angular
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Pendulum Type Angle θ (rad) Angular velocity θ̇ ( rad
s

) Actuator (N m)
∆t(s)

min max grid min max grid min max grid
Strong 0 2π 150 -6 6 150 -10 10 200 0.1
Weak 0 2π 300 -10 10 300 -1.5 1.5 30 0.05

Table 4.1: Pendulum parameters

position. Positionally, the pendulum has the ability to move freely between any 0 and 2 π radi-

ans. There are no “real” positional limitations i.e. the feasible space is bound but infinite. This is

because in a real circle all positions between and including 0 and 2π are equivalent all positions

between and including 2nπ and 2 π (n+ 1) where n is any integer value. Numerically, angular

positions which lie outside these bounds are wrapped to the range {0, 2π}. The pendulum’s angu-

lar velocity state variable θ̇’s feasible region is between angular velocities ranging from -10 to 10

rad
s

, about 95 rpm.

Using the equations of motion we use time to discretize the Equations of motion and produce a

transition function, T (s, a), that when given a state and an action produces a new state. With this

transition function and the discretized state space we can now build our cost network.

Two classifications of pendulum are considered for optimization: sufficiently actuated and

weakly actuated. The sufficiently actuated will not require a complex nonlinear control law to reach

the goal. The sufficiently actuated pendulum has a maximum output torque capable of holding the

1 kg mass at 90◦. The weakly actuated pendulum is only able hold the 1 kg mass about 10◦ in

respect to the gravity vector.

4.1.2 Generating the Connection Network for a Simple Pendulum

Following the process described in section 3.1 the pendulums cost network generated using the

values recorded in Table 4.1. Figures 4.2 provide a visual representation of the blank cost network.

Here the z axis of the cylinder represents the pendulums velocity and the angle away from 0

cylinder
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Template Cost Network on a Disk

Figure 4.2: Low resolution pendulum network template represented on a cylinder and disk

4.1.3 Evaluating the Connection Network for a Simple Pendulum

To find the optimal paths from all of the states in the network to the goal, evaluate the cost and

connection networks using the process previously described. Woring in a top down manner visiting

each stage of the connection network and comparing the connection stored there with the currently

stored value. In the case that this connection produces a policy with a lower cost to go to the goal

we update the network. For the pendulum there are a large number of connections to evaluate

especially in the case of the sufficiently actuated pendulum which has 200 possible actions per

state. Due of the higher number of decisions it is expected that it will require more iterations

evaluating the cost and connection netowrks to reach the stopping criteria expect this to require

more cost and connection network evaluation iterations to wholly refine a globally optimal policy.

4.2 Rowdy the Rimless Wheel Robot

The Rowdy Runner is a torso actuated rimless wheel robot. Originally developed by the under-

graduate senior design team FOA the Rowdy Runner’s purpose is to facilitate research on rimless

wheels as a method of legged locomotion. The Rowdy Runner is only capable of controlling its

body angle to produce which is an indirect method of controlling its speed. This research refer-

ences an iteration on FOA’s contribution, The Rowdy Runner II, to investigate the application of

Dynamic Programming as a method of speed control and further, a standard to which the perfor-
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Figure 4.3: Model of torso actuated rimless wheel robot

mance other control methods may be evaluated.

4.2.1 Model of Rowdy

The Rowdy Runner is a torso actuated rimless wheel robot. Originally developed by the under-

graduate senior design team FOA the Rowdy Runner’s purpose is to “facilitate research on rimless

wheels as a method of legged locomotion” [20]. The Rowdy Runner is capable of controlling

its body angle to produce motion but currently there is no direct method for speed control. This

research references an iteration on FOA’s contribution, The Rowdy Runner II, developed by Se-

bastian Sanchez and UTSA’s RAMLab to investigate the application of Dynamic Programming as

a method of speed control and further, a standard to which the performance other control methods

may be evaluated. The rimless wheel robot was modeled as shown in Figure 4.3. The rimless

wheel is a discrete wheel with N = 10 massless spokes each of length l and a mass of m centered

at the hub. The torso is modeled as a point mass held at length L away from the axis through the

wheel hubs.
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4.2.2 Equations of Motion

The dynamical behavior of Rowdy can be described in 2 phases; the stance phase, and the heel-

strike phase. The stance phase is characterized by Rowdy having only one foot in contact with the

ground.

Stance Phase

During this period Rowdy pivots about the foot of the stance leg in the forward direction. This

motion is analogous to the behavior of an inverted double pendulum. The equations of motion of

the system during the stance phase were derived by balancing its angular momentum about the

contact foot. The results are presented in Equations 4.9,4.10,4.11.

Aθ̈ = bss (4.9)

A = M l2 + l2m− LM l cos (α− θ) (4.10)

bss = (M g l + g l m) sin (θ) + LM l θ̇2 sin (α− θ)− LM g sin (α) (4.11)

Heel Strike

The heel-strike phase begins when the leading foot collides with the ground. During this phase a

change of support occurs and the leading foot becomes the stance foot. The collision that initiate

this phase is considered to be in elastic and impulsive [9,13,14,21]. By performing an angular mo-

mentum balance about the collision location, the angle leg angle after heel-strike can be described

by Equation 4.12 and the angular rate after heel-strike can be described by {4.13, 4.14, 4.15} .

θafter = −θbefore (4.12)
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A θ̇after =
(

(M +m) l2Θ +M L lΦ
)
θ̇before (4.13)

Φ = cos(α) cos(θ) + sin(α) sin(θ) (4.14)

Θ = sin(θ) sin

(
θ +

2π

N

)
+ cos(θ) cos

(
θ +

2π

N

)
(4.15)

Phase Transition Criteria

This phase transition from single stance to heel strike occurs when the condition expressed in

Equation 4.16 is met. The poincare section of the limit cycle of the system is taken at the mid-

stance when θ = 0 as described by Equation 4.17.

l cos (θ)− l cos

(
θ +

2 π

N

)
= 0 (4.16)

θ = 0 (4.17)

Failure Criteria

There are four failure criteria which indicate a failed state transition or the transition to an im-

possible state or a state that immediately leads to one; Falling Back, Ground Penetration, and

Flight [10]. Only the forward motions of Rowdy are expressed in the model so rolling backwards

leads to a failed state. Falling Backwards is described by Equation 4.18. No part of model should

pass through the ground plane. The condition of Ground Penetration described in Equation 4.20

detects this and returns a failure flag it is met. A Flight Condition occurs when the ground reaction

forces in the y-direction are less than or equal to 0. Should this occurs Equation 4.19 flags the

failure state. During simulation each of the failure criteria are checked and prompt the observer

that they have occurred, not stopping integration. This is to gather information about the model

and equations of motion via visual representations.
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θ >
π

N
(4.18)

FY = (M +m)
(
−l cos (gam− q) u2 + g + l ud sin (gam− q)

)
(4.19)

θ <
π

N
(4.20)

Step to Step Discretization

In this approach we reduce the number of state variables required to define the system in a method

similar to the one described in Chris Atkeson’s paper [?]. We simplify the system state by targeting

Rowdy’s poincare map, effectively defining an interdependency between the current step and the

next step via the periodic orbit of the system’s state. The poincare map of the system is defined

using Equationss 4.9 - 4.17.

Simulation

Under these conditions we see the velocity asymptotically approach a constant value for a con-

stantly held torso angle, characteristic of the behavior of rimless wheels. This indicates an accurate

modeling of the dissipative collisions of steps.

4.2.3 Organizing the Dynamic Programming Problem for Rowdy’s Speed Control

Here we use the methods described earlier in this section to organize the Dynamic Programming

problem by first generating the cost and connection networks and subsequently evaluating those

network to find optimal paths. This planar torso-actuated rimless wheel robot is more complex than

the simple pendulum, with 2 degrees of freedom the total number of state variables 4. This higher

dimensionality would likely require much more computational time using the methods described

This process with its reduced state provided a the above describe equations of motion to for a

transition function that relates the mid-stance velocity at one step to that of the next.
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Speed of leg at mid-stance ( rad
s

) Input torso angle (◦)

min max grid min max grid
-4.9312 -0.0406 150 0 90 90

Table 4.2: Rimless wheel robot parameters

Generating Rowdy’s Cost Network

When trying to find a state space the computational time used while trying to find a good state space

was reduced by discretizing the feasible space and actions using the lowest possible resolution. We

chose a grid size of 1 degree increments between 0 and 90 degrees for the torso angle. After our

work with the pendulum we developed a method to find boundaries and discretize a state space

that would provide good network health. This term of network health will be discussed in detail in

the next subsection 4.2.3.

We arbitrarily chose large positive and negative rotational velocities, discretized the space at a

low resolution. Using the step-to-step equations of motion we evaluate the states with each control

action to determine if a state transition is possible (no failure criteria was triggered). We moved the

boundary inward maintaining the same grid size if possible transitions weren’t found at the edges

and expanded the boundary and increasing grid size if possible states were found. After pruning

states that were not reachable and did not connections to other state we found that a grid size of

150 for a boundary between 0.67 rad/s and -5.6 rad/s was a proper definition of the discretized

state space for this model.

The cost network for Rowdy is generated by discretizing the state space using the parameters

from Table 4.2

Generating Rowdy’s Connection Network

Rowdy If we used the same grid size as the in the pendulum this would produce N4 unique states

each with a set of actions A that need to be evaluated. For a pendulum, where the number of unique

states for a uniform grid of count N is N2 with N = 150 and 200 possible actions required 2 hrs

and 27 mins to populate the network with optimal policies.
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Figure 4.4: Network interconnectivity

leaves 4.5\,\times\,10^6 possible combination. Therefore some adjustment to out method is

necessary. Ideally we would like to reduce the number of state variables yet still be able to suc-

cessfully control the system.

Figure 4.4 depicts the interconnectivity of the rimless wheel robot’s cost network. Since net-

work evaluations and the refinement of policies will not affect the number of connections observing

the number of connections between states and with which states they occur may be a good mea-

sure of a networks health.This network health is believed to be related to the quality of a network’s

optimal substructure. An η too large and the network is over constrained and too low may be over

constrained. The each increment on the x axis represents some state s and the value on the y axis

is the number of other states S’ that have an immediate connection to state s.

This was found during generation of the connection network, by searching the network as

described in the Algorithm 3.5 we counted the number of states with actions that transitioned to

each state. We found that for the states that had fewer connections it was more likely that limit

cycles that allowed them to maintain their velocity between poincare sections would not be found.
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This is because there is no available action (torso angle applied over a complete step) that allows

that step to begin and end at the same velocities. These states with fewer connections lie in regions

bordering the unreachable boundary. Outside of this region there exist only states that are in fact

feasible but cannot be reached i.e. there are no states in the network that have actions capable of

reaching them. Therefore a healthy network would have a high number of connections though too

many connections produces the issue we’re attempting to avoid in targeting the poincaré section

for control. Too many connections would require more computational time since each connection

must be evaluated to conclusively find a globally optimal policy.

Evaluating Rowdy’s Connection Network

Evaluation of Rowdy’s cost network required a single iteration, one initial iteration followed by

a second that verified that the optimal path had been found, in the case of optimal control policy

that transitioned from −2 rad
s

to −3 rad
s

. This may be an indication of an over constrained situation,

that too few policies between transitions exist. Dynamic Programming gives better performing

solutions where there are more competing policies.
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CHAPTER 5: RESULTS & DISCUSSION

The three step methodology discussed in the previous section was used to organize and solve a

Dynamic Programming problem for two system to minimize a weighted sum of the square of the

deviation from the desired state and the actuator effort. The first system is a simple pendulum

where the goal is to transition from {0, 0} to {π, 0}. Two variants of this system were created

by imposing different actuator constraints in order to visualize behavior of the cost network as

parameters are changed. The second, is the case of a planar torso-actuated rimless wheel robot

whose dynamics require more state variables to describe. The results of these trials in Dynamic

Programming show that for a full state pendulum we were able to determine the optimal policies

for the upswing of both a strongly and weakly actuated pendulum were able to be determined. One

issue, however, is that the accuracy of Dynamic Programming solution depends on the fineness of

the grid size. Though not insurmountably problematic for the simple pendulum the planar torso

actuated rimless wheel robot, with its 2 more degrees of freedom at grid as fine as the pendulum’s

would require a prohibitively large amount of time to organize and solve. To circumvent this

issue, we use a practice, common in the area of legged robotics, reducing the state by targeting the

solution to a poincaré section [9, 10].

5.1 Pendulum Results

In two separate cases of a simple actuated pendulum Dynamic Programming was used to determine

globally optimal control policies to perform upswings from 0° at 0 rad
s

to 180° at 0 rad
s

. Each of

the pendulum’s actuators were designed to hold their mass steady at some angle in the first quad-

rant when applying their respective maximum torques. The strong pendulum is sufficiently strong

such that it can hold its mass at any angle. In the case of the weak pendulum however, actuator

limitations are imposed such that the pendulum is only capable of holding steady at an angle no

greater than 10°. The considerations in the discretization of the state space from which the cost

and connection network were built are as stated. The velocity and speed resolutions should be
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Figure 5.1: Visualization of sufficiently actuated pendulum’s cost network on discoidal and cylin-
drical surfaces with optimal policy over laid in black

sufficiently small such that the smallest action integrated over the time step should produce a mea-

surable change. Here presents the dilemma, the higher the resolution the better the performance

but the greater the amount of time required to perform Dynamic Programming.

The results for the Dynamic Programming solution of the pendulum show the capabilities of

Dynamic Programming to find complex nonlinear solutions to difficult problems but also shine a

light on its the shortcomings.

5.1.1 Strong Pendulum

The resolutions of the strong pendulum are recorded in Table 4.1. Shown in the figures are the

cylindrical and discoidal representations of the cost network. The cylindrical representation of the

cost network 5.1 is an expression where: the the z-axis indicates rotational velocity, the angle made

by the ratio of the x and y axis, θ = arctan(x
y
), represents the angular position of the pendulum,

and radius r =
√
x2 + y2 represents the cost accrued by traveling along the optimal policy from

that state to the goal. The discoidal representation of the cost network where: the angle made by

the ratio of the x and y axis represents the angular position of the pendulum, the radius correlates

to the velocity where the innermost represents the lowest velocity and the outermost represents the
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Figure 5.2: Visualization of weakly actuated pendulum’s cost network on discoidal surface with
optimal policy over laid in black

Phase Time Required
Generating Cost Network 0h 16m 51s

Generating Connection Network 1h 38m 31s
Evaluation of Connections 31m 49s

Total Time Required 2h 27m 11s

Table 5.1: Computational time to organize and solve strong pendulum Dynamic Programming
problem
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max velocity. The computational time required to organize and solve the Dynamic Programming

problem is recorded above. Generating the cost network includes evaluating all the 150 × 150

states for all 200 actions. There are fewer connections in the connection network because there are

a number of different actions which transition to the same state.

5.1.2 Weak Pendulum

Figure 5.3: Visualization of weakly actuated pendulum’s cost network on cylindrical surface with
optimal policy over laid in black

The resolutions of the weakly actuated pendulum are recorded in Table 4.1. Shown in the

figures are the cylindrical and discoidal representations of the cost network. The cylindrical repre-

sentation of the cost network 5.3 as in the representations of the strong pendulum’s visualization

are expressed as: the the z-axis indicates rotational velocity, the angle made by the ratio of the x and

y axis, θ = arctan(x
y
), represents the angular position of the pendulum, and radius r =

√
x2 + y2

represents the cost accrued by traveling along the optimal policy from that state to the goal. The

discoidal representation of the cost network where: the angle made by the ratio of the x and y axis

represents the angular position of the pendulum, the radius correlates to the velocity where the

innermost represents the lowest velocity and the outermost represents the max velocity.
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Figure 5.4: Visualization of weakly actuated pendulum’s cost network on discoidal surface with
optimal policy over laid in black

Phase Time Required
Generating Cost Network 0h 10m 49s

Generating Connection Network 3h 30m 17s
Evaluation of Connections 50m 19s

Total Time Required 4h 31m 25s

Table 5.2: Computational time to organize and solve weak pendulum Dynamic Programming
problem
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5.2 Speed Control of the Rowdy Runner II

This approach produces a step-to-step map, also known as the Poincaré map. this is used to dis-

cretize system instead of time eliminating 3 state variables. The Poincare map relates the mid-

stance velocity of the rimless wheel (the state) and the fixed torso angle per step (the control

variable) to the mid-stance velocity at the next step (the new state). Using this map, we set up a

Dynamic Programming problem to minimize a weighted sum of the square of the deviation from

the desired speed and the actuator effort. The problem is then solved using a combination of value-

and policy- iteration for computational efficiency. We demonstrate that it is possible to switch

from a mid-stance speed of 2 rad
s

to 3 rad
s

in 6 steps. Our results suggest that Poincaré map based

Dynamic Programming is a computationally efficient.

In the model we use the parameters retrieved from the physical system measurements shown

in Table 5.3. The Masses of all components were extracted from the Solidworks model and later

verified using a scale. The torso length is the length from the axis of rotation at the hip to the

torso’s center of mass this result was also extracted from the cad file but later verified via knife

edge balancing. The length of the wheel is measured from the hip to the unsprung foot. Between

each simulation we changed β to produce different behaviors. The cost function in Equations 5.1

Parameter Value
Torso Mass 4.194 kg

Torso Length 0.048 m
Wheel Mass 2.320 kg

Wheel Length 0.260 m

Table 5.3: Modeling parameters

is defined as the weighted sum between 2 terms. the first is difference between the angular speed

of the leg taken at the poincaré section and the target mid-stance velocity. second is the normalized

torso angle, a measurement of the actuator effort. using this cost function we consider 3 cases

of different values for β. First β = zero, here there is no penalty set on actuator effort so more

aggressive action is rewarded by way of lower cost. In the case of β = 1 both the state taken at the
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Figure 5.5: Control signal (right) and response (left) for Rowdy at β = 0
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Figure 5.6: Control signal (right) and response (left) for Rowdy at β = 1

poincaré section and the actuator effort equally weighted forcing a less aggressive solution.

J =
n∑
k

( θ̇k − θ̇d
θ̇max

)2

+ β

(
φk
φmax

)2
 (5.1)

5.2.1 Control and Response

The optimal control law was implemented in simulation of Rowdy using a look up method. The

body angle of Rowdy is assumed to be exact in that when an angle is commanded the inverse

kinematics is used to determine the forces necessary to hold the body steady at the commanded

angle. there were three simulations done using optimal control laws from cost networks generated

with three different values of β. Shown in the figures below are the commanded velocity, the torso

angles found by Dynamic Programming to best produce those velocities, and the velocity at mid-

stance response for values of β equal to {0,1}. Recorded in Tables 5.4 and 5.5 are the control

signal (commanded torso angle) and the response when initially transition from a zero velocity
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Figure 5.7: Periodic orbit of rimless wheel state for commanded speed transition from
−2.005 rad

s
to −3.00 rad

s
at β = 0 (left) and β = 1 (right)

Value of β 0th 1st 2nd

0 1.396 0.681 0.593
1 1.257 0.716 0.593

1e4 0.436 1.169 0.663

Table 5.4: Control signal from take off 0 rad
s

to steady state and -2.005 rad
s

at launch first achieve a steady state at first desired speed. Recorded in Tables 5.6 and 5.7 are

the control signal and the response when immediately after a desired speed change from −2 rad
s

to

−3 rad
s

until steady state was achieved. Notice the less aggressive change in mid-stance velocity

produced by the higher values of β.

Value of β 0th 1st 2nd

0 -1.886 -2.014 -1.997
1 -1.848 -2.028 -2.006

1e4 -0.832 -1.931 -2.023

Table 5.5: State taken at poincare section from take off at 0 rad
s

to steady state and -2.005 rad
s
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Value of β 0th 1st 2nd 3rd 4th 5th 6th

0 0.646 1.396 1.396 1.396 1.396 1.396 1.396
1 0.593 1.396 1.396 1.396 1.396 1.396 1.396

1e4 0.593 1.396 1.396 1.396 1.396 1.396 1.396

Table 5.6: Control signal during speed change from −2.005 rad
s

to −3.51 rad
s

Value of β 0th 1st 2nd 3rd 4th 5th 6th

0 -1.999 -2.045 -2.513 -2.779 -2.941 -3.043 -3.109
1 -2.016 -1.998 -2.488 -2.764 -2.932 -3.037 -3.105

1e4 -2.017 -1.999 -2.488 -2.764 -2.932 -3.037 -3.105

Table 5.7: State taken at poincare section during speed change from −2.005 rad
s

to −3.51 rad
s
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CHAPTER 6: CONCLUSIONS & FUTURE DIRECTIONS

In conclusion, we developed a method to generate Dynamic Programming problems for physical

systems and find optimal control policies quickly using parallel computing. This method was

subsequently tested on two dynamically different system using different modeling approaches.

One, using a full state approach and the other, using a reduced state approach. Both producing

optimal policies driving the system to the goal state in a globally optimal manner as described by

the cost function. The power of Dynamic Programming is displayed in its ability to create complex

yet elegant nonlinear solutions to difficult problems. The robustness of Dynamic Programming

seen in its ability to solve many problems with a single approach yet there exist a caveat: the Curse

of Dimensionality.

6.1 Full State Low Resolution Approach

Dynamic Programming requires a disproportionally large amount of time to organize the problem

and find optimal policies as complexity of the problem grows. There exist alternative algorithms

which are significantly faster yet produce solutions comparable in performance. Many of these

algorithms require some initial value or policy on which they can improve. In these cases low

resolution Dynamic Programming considering the full state can be performed in a relatively short

amount of time to produce an optimal policies given the resolution. This low resolution policy can

then be refined at higher resolutions with faster algorithms to produce better performing policies

at lower termporal cost.

6.2 Slow Decent Adaptive Model to Reduce Modeling Errors

Another issue in the application of Dynamic Programming policies, is that they are susceptible

to modeling errors. In the case of the Rowdy Runner, modeling errors mostly present as steady

state errors, sometimes driving the system to infeasalble states. To remedy this issue better models

need to be created. There are two approaches to generating better models: either gather better data
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and more of it, or use an adaptive model. Focusing on the adaptive model approach, Dynamic

Programming is a continually updating process. In leu of this fact, it is suspected that a Dynamic

Programming cost function that considers the error in the model for a model that changes at slow

rate could be used to eliminate modeling errors. Dynamic Programming on a more accurate model

would produce better performing policies in practice. One possible way to implement this approach

would be develop an offline policy from the current model for the system to follow initially, then

refine that policy using policy iteration online.

6.2.1 Launch Control

Currently Rowdy requires an initial push to start walking. This is due to the location of its center

of mass. In the current design, Rowdy’s centor of mass cannot be extended beyond the contact

point at its leading foot when at rest. There are two possible solutions to this problem. The first, a

redesign of the torso, redistributing the mass further from the axis of rotation. The second, rather

than a design change, a programmatic solution would be to use Dynamic Programming considering

all states of the system at rest to develop a launch controller. This controller would maximize the

angular momentum in a specific direction considering the system as a simple pendulum and apply

a counter torque to overcome the activation energy required to begin motion.

6.2.2 Stopping

The approach to variable speed control described in this document considers only the poincaré map

of Rowdy. This map does not include a zero velocity state at mid-stance [9]. One possible solution

is to use Dynamic Programming targeting the full state of the system to find the best input actions

to produce a decaying limit cycle. Another possible solution is to apply torso angles to produce

counter torques slowing the robot and apply a counter torque to the torso to suddenly reduce the

moment.
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