
Autonomous Navigation and Simultaneous 3D Mapping with a UGV in an

Open-Ended Environment

by

Ragib Rownak
B.S., Islamic University of Technology, 2022

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Mechanical Engineering

in the Graduate College of the
University of Illinois at Chicago, 2025

Chicago, Illinois

Defense Committee:
Prof. Pranav Bhounsule, Chair and Advisor
Prof. Jonathan Komperda
Prof. Ahmet Enis Cetin, Electrical and Computer Engineering

Copyright by

Ragib Rownak

2025

To my parents, MD Anisur Rahman Mondal and Farida Yeasmin. Thank you.

iii

ACKNOWLEDGMENT

I am grateful to my advisor, Professor Pranav Bhounsule, whose unwavering guidance and

mentorship have been instrumental throughout my Master’s journey. Your wisdom, patience,

and steadfast support have shaped not only my academic pursuits but also my professional

growth in ways that will resonate throughout my career.

My heartfelt appreciation to all my cherished lab mates—both past and present— Prasaanth,

Abhisekh, Subramanian, Salvador, Daniel, Chun-Ming, Jim, Safwan, Luca, Simone, and Suleiman:

your friendship, intellectual exchanges, and unwavering camaraderie have enriched this journey

immeasurably. The countless hours of discussion, shared challenges, and mutual support have

made even the most demanding moments meaningful and memorable.

Finally, my deepest gratitude belongs to my family, whose unconditional love, understand-

ing, and sacrifices have made this achievement possible. Your faith in my dreams and your

patience during the most challenging times have been my greatest source of strength. Thank

you all!

Ragib Rownak

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Unmanned Ground Vehicles (UGVs) 1
1.2 Thesis Contribution . 3

2 BACKGROUND AND RELATED WORK 5
2.1 Autonomous Ground Vehicle Platforms 5
2.1.1 Clearpath A200 Husky Platform 6
2.2 Deep Learning and Computer Vision for Autonomous Navi-

gation . 10
2.2.1 Convolutional Neural Networks (CNNs) for Object Detection 11
2.2.2 Detectron2 Framework and Instance Segmentation 12
2.2.3 Panoptic Feature Pyramid Network (FPN) 13
2.3 ROS . 14
2.3.1 ROS 1 vs ROS 2 Evolution . 16
2.4 SLAM . 17
2.4.1 SLAM Toolbox Integration . 18
2.4.2 3D SLAM and RTABMap Implementation 21
2.5 Nav2 Motion Planning . 25
2.5.1 Nav2 Architecture and System Structure 25
2.5.2 Global Path Planning . 27
2.5.3 Local Trajectory Planning and Control 28
2.5.4 Costmap Generation and Multi-Sensor Integration 31
2.6 Intel Realsense Camera . 33
2.7 SICK LMS Lidar . 35

3 DEEP LEARNING TRAINING AND INTEGRATION WITH
ROS . 37
3.1 Detectron2 . 37
3.1.1 Neural Network Architectures in Detectron2 37
3.1.2 Feature Pyramid Network Architecture 39
3.1.3 Installation and System Requirements 41
3.2 Dataset Structure and Training 42
3.2.1 Dataset Architecture and Annotation Frameworks 43
3.2.2 Sequential Training Strategy and Implementation 45
3.2.3 Training Implementation and Computational Requirements . 50
3.3 Validation and Optimization 51
3.3.1 Model Architecture Optimization Strategies 53

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3.3.2 Adaptive Performance Management 56
3.3.3 Thermal and Power Management 58
3.4 Integration with ROS for Autonomous Navigation 59
3.4.1 Vision-to-Laser Scan Conversion Methodology 60
3.4.2 Sensor Data Integration and Processing 71
3.4.3 Transform Frame Management and Coordinate Systems . . . 72
3.4.4 Navigation Framework Integration Strategy 73

4 SETUP AND METHOLDOLOGY . 78
4.1 Simulation Setup . 78
4.1.1 Modifying the robot.yaml file 82
4.1.2 Installing Clearpath Simulator 84
4.1.3 Simulation Execution . 85
4.1.4 SLAM Implementation and Integration 87
4.1.5 Nav2 Implementation and Integration 88
4.1.6 RTAB-Map Integration for 3D SLAM 88
4.1.7 Integrated Launch System Architecture 93
4.1.8 GPS-Based Navigation Integration with Nav2 96
4.2 Hardware Setup and Implementation 99
4.2.1 Multi-Host Distributed Computing Architecture 99
4.2.2 Robot.yaml Multi-Host Configuration and Data Transport . 101
4.2.3 Hardware Pipeline Data Flow and Processing 103
4.2.4 Remote Access and Computer Connections 106
4.2.5 Clearpath-SLAM and Nav2 Hardware Deployment 107
4.2.6 Modified Vision + Lidar Based Launch System Coordination

and Startup Sequence . 108
4.2.7 Off-Board Visualization and Remote Monitoring 111
4.2.8 System Integration Validation and Performance Monitoring . 112

5 RESULTS . 116
5.1 Panoptic Segmentation Class-Specific Performance Results . 116
5.1.1 Cityscapes Dataset Class Performance Results 116
5.1.2 COCO Dataset Relevant Class Performance Results 116
5.1.3 Detection Performance Analysis Summary 121
5.2 Navigation Results . 123
5.2.1 Simulation Results . 124
5.2.2 Hardware Results . 126
5.2.3 Navigation Speed vs Detection Performance 131
5.3 Mapping Results . 134
5.3.1 2D Mapping using Clearpath 2D SLAM 135
5.3.2 3D Mapping using RTAB-Map 137
5.4 Discussion . 140

vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

6 CONCLUSION AND FUTURE WORK 149
6.1 Remarks . 150
6.2 Future Work . 150

REFERENCES . 153

VITA . 160

vii

LIST OF TABLES

TABLE PAGE
I Key Packages and Their Roles for ros2 launch clearpath gz sim-

ulation.launch.py . 81
II Cityscapes Dataset Class-Specific Performance Results 117
III COCO Dataset Navigation-Relevant Class Performance Results -

Part 1: Active Detection Classes . 118
IV Performance Improvements with Sequential Training 121
V Performance Comparison Across Deployment Pipeline 123
VI Hardware Validation Results Between LiDAR-Only vs Vision+LiDAR

Navigation Systems . 129
VII Vision-Based System Comparison with Traditional 2D LiDAR . . . 131

viii

LIST OF FIGURES

FIGURE PAGE
1 Unmanned Ground Vehicles overview [1] 6
2 UIC02 HUSKY . 8
3 Structure of Convolutional Neural Networks (CNNs) 11
4 Overview of the SLAM system [2] . 18
5 Real-Time Appearance-Based Mapping Front and Back End [3] 23
6 Nav2 ROS2 Structure . 26
7 Global and Local Planners in Action . 29
8 Intel RealSense RGB-D camera [4] . 33
9 SICK LMS111 2D LiDAR sensor . 35
10 Detectron2 Panoptic Segmentation . 38
11 A Robust Pipeline for Panoptic Bottom-Up Segmentation [5] 40
12 Systematic directory structure of COCO dataset 44
13 Laser Scan Generation Pipeline . 65
14 Costmap generation from both the Lidar and Camera Scan 74
15 Modifying the robot.yaml to match the real robot 83
16 6 worlds that were used to do simulated experiments. 86
17 Launching Clearpath SLAM . 88
18 Terminal Commands to install rtabmap 89
19 RTAB-Map RViz . 91
20 Viewing the Saved RTAB-map database 92
21 Launching Detectron2 . 94
22 Complete Pipeline of the Integrated Launch System 95
23 Autonomous Navigation Using Panoptic Segmentation and Nav2, where

the panoptic segmentation is transferring both thing and stuff class data
to Nav2 through Laser Scan data, which is then used to generate the
Local and Global Costmaps. 96

24 Terminal Commands for launching the GPS-based Navigation 98
25 3D-printing the Camera Mount . 104
26 Complete Pipeline of the Modified Vision + Lidar Based Launch System 110
27 Rviz Visualization . 111
28 GPS-Based Navigation Launch Commands 115
29 Panoptic Segmentation Performance on both Simulation and Real World 122
30 Costmap Generation from the Laser Scan Data Coming from the Panop-

tic Data . 130
31 Trajectory Path Comparison between Odometry(IMU) and Ground Truth

as GPS to show the Robot Path Planning Efficiency in Simulation . . . 132
32 Trajectory Path Comparison between Odometry(IMU) and Ground Truth

as GPS to show the Robot Path Planning Efficiency in the Real World. 133

ix

LIST OF FIGURES (Continued)

FIGURE PAGE

33 Detection Performance vs Variable Navigation Speed 134
34 2D Map of the UIC Quad . 136
35 3D map of the UIC Quad . 138

x

SUMMARY

The focus of this research is the development of an advanced autonomous navigation sys-

tem that integrates Detectron2’s Panoptic FPN model with multi-sensor fusion and simulta-

neous 3D mapping for the Clearpath Husky A200 UGV operating in complex environments.

By combining panoptic segmentation for comprehensive scene understanding with ROS Nav-

igation Stack and RTABMap for real-time 3D mapping, a robust perception, mapping, and

path planning framework is developed that enables simultaneous localization, mapping, and

obstacle avoidance capabilities. The system utilizes sensor fusion between LiDAR and camera

data, where both instance objects and stuff/background classes detected by the Panoptic FPN

model are classified and converted to laser scan format for seamless integration with the nav-

igation costmap while concurrently building detailed 3D environmental maps. Experimental

validation in both simulation and real-world environments demonstrates the effectiveness of

the proposed panoptic segmentation-based system with concurrent 3D mapping in achieving

collision-free navigation through complex scenarios. The framework successfully integrates De-

tectron2’s comprehensive scene understanding capabilities with traditional LiDAR sensing and

RTABMap’s SLAM functionality to create a robust perception and mapping system operat-

ing at real-time frequencies, showing significant improvements in obstacle detection accuracy,

navigation reliability, and environmental understanding compared to traditional approaches.

This work contributes to autonomous robotics by providing a scalable framework that lever-

xi

SUMMARY (Continued)

ages complete scene understanding and 3D mapping for intelligent navigation in unstructured

environments, with applications spanning industrial automation to service robotics.

xii

CHAPTER 1

INTRODUCTION

1.1 Unmanned Ground Vehicles (UGVs)

The field of autonomous robotics has witnessed remarkable evolution in ground-based mobile

platforms, transforming from simple remote-controlled vehicles to sophisticated autonomous

systems capable of complex decision-making and environmental interaction [6]. Among the

most compelling developments in this domain is the emergence of Unmanned Ground Vehicles

(UGVs), which have revolutionized applications ranging from military reconnaissance to civilian

service robotics [7]. With their robust mobility and advanced sensing capabilities, these remark-

able machines possess an extraordinary ability to navigate and operate in environments that are

challenging, dangerous, or inaccessible to humans. Take, for instance, the remarkable coordi-

nation between multiple UGVs in search and rescue operations [8], enabling them to efficiently

cover vast areas and tackle complex mapping tasks. The endless potential that autonomous

ground vehicles have to push innovation in robotics and other fields is just astounding.

Manufacturing procedures and sensor technologies have advanced to a remarkable degree

of precision in the exciting new era, producing exceptionally complex mobile platforms [9].

Simultaneously the development of computer vision and artificial intelligence is paving the

way for the development of fully autonomous navigation systems. Furthermore, the ongoing

evolution of communication technologies and cloud computing simplifies the coordination be-

1

2

tween multiple vehicles, making fleet operations more seamless and efficient [10]. Considering

all of this, it is clear that research on autonomous ground vehicles is progressing remarkably.

Known as ”UGVs,” these adaptable robotic systems have recently shown promise in a variety

of applications, offering intriguing challenges to tackle a range of global problems.

Imagine rugged UGVs with advanced sensors patrolling agricultural fields to monitor crop

health and optimize irrigation systems [11]. Likewise, compact inspection UGVs could ma-

neuver through industrial facilities, navigating narrow corridors and hazardous areas to detect

equipment malfunctions or safety violations. In disaster scenarios, all-terrain UGVs could as-

sist in emergency response efforts by mapping damaged infrastructure and delivering critical

supplies to inaccessible locations [12]. In urban environments, delivery UGVs could revolution-

ize last-mile logistics [13], while security patrol UGVs monitor large facilities and campuses,

providing continuous surveillance and rapid response capabilities.

These incredible platforms are classified according to their mobility systems and operational

environments: indoor navigation, outdoor terrain traversal, or hybrid capabilities that span

both domains [14]. For the purpose of this thesis, we will focus on outdoor-capable platforms

with advanced navigation systems. In terms of locomotion, UGVs fall primarily into several

categories: wheeled, tracked, and hybrid systems. A notable example of wheeled UGVs is the

Clearpath Husky A200 platform [15], which combines robust four-wheel drive capability with

sophisticated sensor integration, enabling precise autonomous navigation in diverse terrains and

weather conditions.

3

1.2 Thesis Contribution

This thesis explores the integration of panoptic segmentation with SLAM-based autonomous

navigation to address critical limitations in outdoor robotic navigation where traditional 2D

mapping and obstacle detection methods fail. The primary contribution lies in developing

a comprehensive perception and navigation framework that combines computer vision-based

obstacle detection with simultaneous localization and mapping (SLAM) capabilities for robust

outdoor autonomous navigation [16].

Detectron2’s most innovative Panoptic FPN model is utilized to perform both instance

and stuff segmentation, enabling the robot to detect not only discrete objects but also critical

terrain features such as grass, earth, and other surfaces that conventional LiDAR sensors cannot

reliably identify due to poor laser reflection properties. This panoptic approach provides a

more complete environmental understanding by capturing both ”things” (countable objects

like people, vehicles, tools) and ”stuff” (uncountable regions like terrain, vegetation, surfaces)

that are essential for safe navigation in unstructured outdoor environments.

The segmentation output is strategically converted into laser scan data format to seam-

lessly integrate with the Nav2 navigation stack’s costmap generation system [17]. This ensures

that areas identified as obstacles or non-traversable terrain are properly marked in the robot’s

planning algorithms, preventing the robot from attempting to navigate over unsuitable surfaces

that LiDAR alone might classify as free space.

A critical advancement of this work is the implementation of mapless navigation combined

with real-time 3D mapping using RTAB-Map SLAM [3]. Unlike traditional 2D SLAM ap-

4

proaches that struggle with localization in outdoor environments when relying solely on LiDAR

and IMU sensors, this framework leverages the fusion of Intel RealSense camera data with

SICK LMS 2D LiDAR to achieve robust localization and mapping. The 3D mapping capabil-

ity not only provides richer environmental representation but also significantly improves the

robot’s ability to localize itself in GPS-denied or challenging outdoor scenarios where visual

and geometric features are essential for accurate pose estimation.

This integrated approach addresses the fundamental challenge of autonomous outdoor nav-

igation, where environmental complexity, varied terrain types, and the limitations of individual

sensors create significant obstacles to reliable robot operation. The system’s ability to simulta-

neously build detailed 3D maps while navigating using enhanced perception capabilities makes

it particularly valuable for applications in unstructured environments such as agricultural fields,

construction sites, search and rescue operations, and outdoor inspection tasks where prebuilt

maps are unavailable and terrain variability is high.

The framework’s robustness in handling diverse outdoor conditions, combined with its map-

less operation capability, opens new possibilities for deploying autonomous robots in previously

challenging scenarios where traditional navigation approaches would fail, thereby expanding

the practical applications of mobile robotics in real-world outdoor environments.

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Autonomous Ground Vehicle Platforms

Autonomous ground vehicles have received substantial attention from researchers in last

few years due to their customizability and versatility in diverse operational environments [14].

These platforms are more adept at traversing complex terrains and executing autonomous

navigation in unpredictable and unstructured environments compared to traditional remote-

controlled systems [6]. Recently, these type of robots have showed significant potential for real-

world practical applications in a variety of sectors such as construction surveillance, education,

delivery services, and search and rescue operations [11].

The evolution of mobile robotics platforms has been driven by the convergence of several

technological advances: advanced sensor technologies, improved computational capabilities,

and sophisticated software frameworks [10]. Modern autonomous ground vehicles must bal-

ance mechanical robustness, computational efficiency, and sensor integration to achieve reliable

autonomous operation across diverse environments [7].

5

6

Figure 1: Unmanned Vehicles [1]

2.1.1 Clearpath A200 Husky Platform

The Clearpath A200 Husky represents a state-of-the-art research platform specifically de-

signed for autonomous ground vehicle applications [15]. This platform features a four-wheel dif-

ferential drive configuration with enhanced robustness for outdoor applications, making it par-

ticularly suitable for real-world autonomous navigation research [17]. Unlike laboratory-based

platforms that are confined to controlled environments, the Husky bridges the gap between

academic research and field deployable systems [9], offering researchers a reliable foundation for

developing and testing autonomous algorithms in challenging real-world conditions [18].

7

The Clearpath Husky A200 represents a remarkable achievement in UGV design, featuring a

rugged aluminum chassis capable of carrying substantial payloads while maintaining exceptional

maneuverability [15]. This platform, weighing approximately 50 kg with a payload capacity of

75 kg, harnesses advanced sensor fusion techniques to achieve remarkable autonomous navi-

gation capabilities [19]. The Husky’s modular design allows for extensive customization with

various sensors, including LiDAR, cameras, GPS, and IMU systems, creating a versatile foun-

dation for research and commercial applications [20].These UGVs overcome the limitations of

conventional indoor-only robotic platforms by combining strong mechanical design with ad-

vanced perception systems, which allow them to navigate challenging outdoor environments

with remarkable reliability.

The platform has gained widespread adoption in academic institutions worldwide due to

its proven reliability and comprehensive integration capabilities [21]. Universities and research

centers have successfully deployed Husky platforms for diverse applications ranging from Mars

analog studies in Utah’s desert environments to tactical operations research [12], demonstrating

its versatility across different operational contexts. This broad acceptance stems from the

platform’s ability to maintain consistent performance while supporting complex sensor suites

and computational payloads required for advanced research applications [22].

Platform Specifications and Design

The A200 Husky model features a four-wheel differential drive configuration, theoretically

similar to other research platforms, but with enhanced robustness for outdoor applications

[15]. The platform’s mechanical design incorporates robust gear motors with integrated wheel

8

Figure 2: UIC02 HUSKY

encoders, providing reliable locomotion across diverse terrain conditions [14]. Specifically, the

chassis includes a comprehensive power management architecture with multiple voltage rails

(VBat: 24-29V, fused at 5A; 24V, fused at 3A; 12V, fused at 7.5A) that, for the same power

budget used, maximizes the capability to support heterogeneous payload configurations [23].

The drivetrain utilizes a zero-maintenance belt system connecting brushed DC gear motors

to 330mm lug-tread wheels, delivering continuous 400W of drive power distributed as 100W per

wheel [15]. This configuration eliminates traditional steering mechanisms in favor of differential

wheel speeds for directional control, enabling precise maneuverability, including zero-radius

turning capabilities [18]. The mechanical specifications center on rugged outdoor operation

9

with overall dimensions of 990×670×390mm, weighing 57.69kg in base configuration, while

supporting maximum payloads of 20kg through standardized mounting interfaces [9].

The platform needs to be analyzed at two separate levels: the low level, which consists of

the sensor data acquisition and actuator control; and the high level, composed of the navigation

and decision-making algorithms [19]. Each level has unique characteristics and behaviors, which

must be considered for effective system integration [7]. The low-level control operates through

a 32-bit microcontroller that manages deterministic motor control, power distribution, and

sensor acquisition with sub-10ms command latency [24], while the high-level processing handles

complex autonomous behaviors and sensor fusion algorithms [25].

Computational Architecture

The platform’s computational architecture typically centers around either Mini-ITX single-

board computers or NVIDIA Jetson modules, both supporting ROS 2 Humble with real-time

processing capabilities [10]. The overall performance resembles a scalable system and, for con-

figurations close to optimal resource allocation, achieves efficient operation. Mini-ITX systems

utilize Intel x86/amd64 processors with 4-32GB RAM configurations, providing the computa-

tional foundation for complex autonomous algorithms and sensor processing tasks [26].

NVIDIA Jetson integration represents a significant advancement in onboard AI processing

capabilities, spanning from Jetson Nano (472 GOPS) through Jetson Orin AGX (275 TOPS),

depending on research requirements [27]. This distributed computational architecture enables

real-time processing of multiple sensor streams while maintaining deterministic control of critical

safety functions [28]. The behavior of the platform’s computational performance depends on the

10

specific processing requirements of integrated algorithms, with basic operations demonstrating

linear behavior under normal conditions [17].

While basic operation demonstrates linear behavior under normal operating conditions, the

system becomes more complex when advanced sensor payloads are integrated, and the overall

performance becomes a combination of mechanical and computational capabilities [29]. The

integration of multiple high-bandwidth sensors such as 3D LiDAR, cameras, and navigation

sensors requires careful consideration of computational resource allocation and data flow man-

agement [20]. Both mechanical and computational subsystems have similar operational con-

straints, exhibiting linear behavior under normal operating conditions and high non-linearity

when approaching system limits [6].

2.2 Deep Learning and Computer Vision for Autonomous Navigation

Deep Learning and Computer Vision for Autonomous Navigation represents a transfor-

mative paradigm shift in robotics perception systems, enabling robots to understand their

environment with unprecedented semantic richness beyond traditional geometric sensing ap-

proaches. Modern autonomous navigation has evolved from purely reactive obstacle avoidance

to intelligent scene understanding, where deep learning models can distinguish between different

object categories, terrain types, and navigational contexts. Computer vision techniques, partic-

ularly panoptic segmentation, provide comprehensive scene parsing that combines instance-level

object detection with semantic segmentation to create detailed environmental understanding

crucial for safe and efficient autonomous navigation. This integration of artificial intelligence

with robotics perception systems enables autonomous vehicles to make informed decisions based

11

Figure 3: Structure of Convolutional Neural Networks (CNNs)

not only on geometric constraints but also on semantic meaning, leading to more robust and

intelligent navigation behaviors in complex real-world environments.

2.2.1 Convolutional Neural Networks (CNNs) for Object Detection

Convolutional Neural Networks have revolutionized computer vision tasks, particularly in

object detection and scene understanding for autonomous navigation systems [30]. CNNs lever-

age hierarchical feature learning through convolutional layers, pooling operations, and fully

connected layers to extract meaningful representations from visual data [31]. In autonomous

ground vehicle navigation, CNNs enable real-time obstacle detection, semantic segmentation,

and scene understanding that complement traditional geometric sensors [32].

12

The evolution of CNN architectures from AlexNet [33] to ResNet [34] and beyond has

significantly improved detection accuracy and processing speed. Modern CNN frameworks

like YOLO (You Only Look Once) [35] and R-CNN families [36] provide different trade-offs

between speed and accuracy. YOLO architectures prioritize real-time performance with single-

pass detection, making them suitable for autonomous navigation where low latency is critical

[35]. The YOLOv7 architecture [37], demonstrates superior performance in both speed and

accuracy compared to earlier versions, achieving approximately 65 ms processing times while

maintaining high detection accuracy.

2.2.2 Detectron2 Framework and Instance Segmentation

Detectron2 represents Facebook AI Research’s next-generation object detection and seg-

mentation platform, built on PyTorch [38] with modular design principles that enable flexible

model configuration and deployment [28]. The framework is particularly helpful in achieving

thorough scene understanding in autonomous navigation since it supports various computer

vision tasks, such as detection of objects, instance segmentation, semantic segmentation, and

panoptic segmentation [29].

In addition to the classification of branches and also bounding box regression, Mask R-CNN

[39] expands the Faster R-CNN architecture [40] by including a branch for segmentation mask

prediction on each Region of Interest (RoI). This architecture enables pixel-precise instance

segmentation, allowing autonomous vehicles to distinguish between individual objects of the

same class [39]. The two-stage detection process first generates object proposals through a

13

Region Proposal Network (RPN) [40], then refines these proposals, and generates masks through

the second stage.

For autonomous navigation, Mask R-CNN provides several advantages: precise object

boundaries for accurate obstacle avoidance, differentiation between multiple instances of the

same object class (e.g., multiple pedestrians), and detailed shape information for path planning

around complex obstacles [39]. The instance-level understanding enables more sophisticated

navigation behaviors, such as predicting pedestrian movement patterns or identifying passable

gaps between vehicles.

2.2.3 Panoptic Feature Pyramid Network (FPN)

Panoptic segmentation combines both the distinct tasks of semantic segmentation and in-

stance segmentation [29]. So the Panoptic Feature Pyramid Network represents a significant

advancement in scene understanding by providing both semantic and instance segmentation

capabilities within a single unified framework [29].

Unified Scene Understanding

The panoptic segmentation approach provides both thing classification (individual object

instances) and stuff classification (background regions), offering complete scene understanding

essential for semantic-enhanced navigation [29]. This comprehensive scene understanding en-

ables autonomous ground vehicles to make informed decisions about navigable areas (roads,

sidewalks) versus obstacles (buildings, vehicles, pedestrians) while simultaneously tracking in-

dividual object instances for precise collision avoidance [41].

14

The Panoptic FPN architecture combines the strengths of both semantic and instance seg-

mentation by sharing a common backbone network and Feature Pyramid Network [42], then

branching into separate heads for semantic and instance predictions. A fusion module reconciles

conflicts between the two predictions, ensuring each pixel is assigned to exactly one semantic

class and at most one instance class which provides holistic scene interpretation that informs

higher-level navigation decisions [29].

The semantic-to-geometric conversion process involves projecting detected object instances

and semantic regions onto a 2D occupancy representation [43]. This process considers object

permanence, navigational relevance, and temporal consistency to generate reliable obstacle

representations for path-planning algorithms [17].

2.3 ROS

The Robot Operating System (ROS) constitutes an open-source, meta-operating system

framework specifically designed for the development of robotic applications [44]. The system

furnishes essential operating system services, encompassing hardware abstraction layers, low-

level device control mechanisms, inter-process message-passing protocols, and comprehensive

package management utilities [21]. Additionally, ROS incorporates sophisticated tools and li-

braries that facilitate code development, compilation, and execution across distributed comput-

ing environments. As ROS functions as a middleware layer rather than a standalone operating

system, its deployment necessitates installation upon an existing operating system platform,

such as Ubuntu or alternative Linux distributions.

15

The Robot Operating System has emerged as the dominant framework for robotics develop-

ment, fundamentally transforming how robotics software is designed, developed, and deployed

across research and industry [10]. ROS functions provide essential services while remaining

hardware-agnostic and facilitating distributed computing [44]. The fundamental design prin-

ciples include maintaining a thin framework that doesn’t constrain application architecture,

supporting language-independent libraries with clean functional interfaces, and enabling code

reuse through a distributed framework of loosely coupled processes [21].

• Nodes: ROS nodes are fundamental computational units, each responsible for specific

tasks such as device management or algorithm execution. These nodes communicate

through topics and services, with software organized into packages that typically focus on

single-task functionality and may contain multiple interconnected nodes.

• Messages: Messages are structured data containers enabling inter-node communica-

tion. The message specification framework supports diverse data types including inte-

gers, floating-point numbers, and arrays, facilitating transmission of sensor data, control

commands, and system state information.

• Topic Communication: Topics establish named data streams for information exchange

between nodes, primarily used for continuous message transmission such as sensor mea-

surements or motor control signals. Each topic maintains a unique identifier and prede-

fined message format, allowing nodes to publish or subscribe without restrictions on the

number of participating nodes, though individual nodes cannot simultaneously publish

and subscribe to the same topic.

16

• Service Interface: Services provide synchronous request-response communication mech-

anisms enabling direct node-to-node interaction. Each service defines paired message

structures for requests and responses, making them ideal for operations requiring imme-

diate feedback and confirmation.

2.3.1 ROS 1 vs ROS 2 Evolution

ROS 1

ROS 1 employs a master-centric architecture built around a central coordination node called

the ROS Master (roscore) that serves as a registry and discovery service, maintaining informa-

tion about all active nodes, topics, and services in the system [44]. Communication occurs

through custom protocols—primarily TCPROS for reliable TCP-based messaging and UD-

PROS for low-latency UDP communication. However, this centralized master architecture

creates single points of failure, lacks real-time support, and has security vulnerabilities from

unencrypted communication [10].

ROS 2

ROS 2 represents a fundamental architectural redesign that eliminates the centralized mas-

ter concept in favor of a fully distributed system built on the Data Distribution Service (DDS)

middleware standard [10]. ROS 2 enables nodes to discover each other autonomously through

multicast discovery protocols while introducing sophisticated Quality of Service (QoS) poli-

cies for fine-grained control over communication reliability, durability, and timing constraints

[45]. The enhanced architecture introduces actions for long-running tasks, node lifecycle man-

agement, and domain isolation through DDS domain IDs. The most significant advancement

17

lies in ROS 2’s middleware abstraction layer (RMW) built upon DDS standards, leveraging

standardized Real-Time Publish Subscribe (RTPS) protocols through multiple DDS implemen-

tations including Fast DDS, Cyclone DDS, and RTI Connext [10].

Performance benchmarks demonstrate that ROS 2 can achieve sub-millisecond latency while

supporting 1000+ robot systems compared to ROS 1’s practical limit of approximately 100

robots [10]. ROS 2 provides native real-time support, enterprise-grade security through DDS-

Security specification with PKI-based authentication, and native multi-platform support in-

cluding Windows 10/11, macOS, and embedded systems. ROS development began in 2005

with ROS 1 reaching end-of-life in May 2025, while ROS 2 development commenced in 2014,

with growing adoption showing 39.82% of package downloads in 2022 [10]. The migration

leverages the ros1 bridge for gradual transition, with approximately 70% of ROS 1 packages

already ported to ROS 2, establishing ROS 2 as a foundational technology for next-generation

cyber-physical systems.

Navigation by mobile robots commonly requires solutions to three different problems: map-

ping, localization, and route planning [6]. We will discuss how these key problems will be solved

in the later slides.

2.4 SLAM

SLAM stands for Simultaneous Localization and Mapping, which is a fundamental algorithm

that allows robots to build maps of unknown environments while simultaneously determining

their own location within those environments [16]. This capability is essential for autonomous

navigation, as it allows robots to operate in previously unexplored areas without relying on

18

pre-existing maps or external positioning systems [25]. When integrated with path planning

algorithms, SLAM enables robots to navigate complex, unknown, or partially known environ-

ments autonomously, making it a cornerstone technology for mobile robotics applications.

Figure 4: Overview of the SLAM system [2]

2.4.1 SLAM Toolbox Integration

The SLAM Toolbox implements multiple SLAM approaches optimized for different opera-

tional requirements.

SLAM Toolbox serves as the primary 2D mapping solution with optimization backend pro-

viding robust loop closure detection, real-time mapping capabilities supporting online operation,

and lifelong mapping features enabling map updates and expansion over multiple sessions.

19

Configuration Management utilizes the unified configuration approach where SLAM param-

eters are managed through the clearpath config system, automatic topic remapping based

on robot namespace, and parameter validation ensuring consistent operation across different

robot configurations.

It also has Map Management, which provides automatic map saving and loading, database

persistence for session continuity, and map sharing capabilities enabling multi-robot coordina-

tion in mapping tasks.

The SLAM problem involves two interconnected challenges: mapping the environment based

on sensor observations and localizing the robot within the map being constructed [16]. This

creates a chicken-and-egg problem where accurate mapping requires precise localization, and

accurate localization requires a reliable map. Modern SLAM algorithms address this challenge

through probabilistic approaches that maintain estimates of both the robot’s pose and the

environmental map, updating both simultaneously as new sensor data becomes available [6].

ROS provides comprehensive SLAM capabilities through various packages, with the Navi-

gation Stack serving as the primary framework for integrated navigation functionality [46]. The

most commonly used SLAM implementations include Gmapping [47] and Hector Mapping [48],

both of which generate occupancy grid maps while the robot moves through the environment.

These packages enable mobile platforms to create maps of unknown environments and contin-

uously update existing maps as conditions change, providing the foundation for autonomous

navigation in dynamic environments.

20

2D SLAM Implementation

The Clearpath A200 Husky platform traditionally employs 2D SLAM algorithms that utilize

data from 2D LiDAR sensors to generate occupancy grid maps. Gmapping [47], one of the

most widely adopted 2D SLAM algorithms in the ROS ecosystem, processes laser scan data in

combination with odometry information to create accurate 2D maps of the environment. This

approach takes advantage of the platform’s wheel encoders and IMU data to improve mapping

accuracy by incorporating knowledge of robot kinematics and movement constraints.

The gmapping algorithm operates by maintaining a particle filter representation of possible

robot trajectories, with each particle containing a potential map and robot path [47]. As

new laser scan data arrives, the algorithm updates particle weights based on how well the

observed data matches the predicted observations from each particle’s map. This probabilistic

approach allows the system to handle uncertainty in both sensor measurements and robot

motion, producing robust maps even in the presence of sensor noise and odometry drift.

Hector mapping [48] offers an alternative 2D SLAM approach that relies primarily on laser

scan data without requiring odometry information. This scan-matching technique estimates

robot motion by aligning consecutive laser scans, making it particularly suitable for platforms

with unreliable odometry or flying robots where wheel-based odometry is unavailable. The

algorithm builds maps by incrementally adding laser scan data to a growing occupancy grid,

using scan-to-map matching to determine robot pose changes between measurements.

However, 2D SLAM approaches face significant limitations when deployed in outdoor envi-

ronments with the Clearpath platform. The reliance on 2D laser scanners means that obstacles

21

at different heights cannot be distinguished, leading to incomplete environmental representa-

tions. Overhanging branches, elevated structures, or terrain variations that do not intersect

the laser plane remain invisible to the mapping system, potentially causing navigation failures

or unsafe robot behavior. Outdoor environments present unique challenges that expose these

fundamental limitations, as natural terrains often feature complex three-dimensional structures

such as rocks, vegetation, and uneven surfaces that cannot be adequately represented in 2D

occupancy grids.

Vegetation presents a particularly challenging scenario for 2D SLAM systems, where tree

branches, bushes, and tall grass may obstruct robot movement at various heights but remain

undetected if they do not intersect the 2D laser plane. Dynamic outdoor environments further

complicate performance through moving vegetation, changing lighting conditions, and weather

factors like rain, snow, and fog that can interfere with laser measurements. These limitations

highlight the need for more robust sensing modalities that can provide comprehensive three-

dimensional environmental information.

2.4.2 3D SLAM and RTABMap Implementation

Three-dimensional SLAM addresses the fundamental limitations of 2D approaches by incor-

porating depth information and vertical structure into the mapping process, enabling detection

and mapping of obstacles at various heights for a more complete environmental representation

[25]. This capability is particularly valuable for outdoor robotics applications where terrain

variations and three-dimensional obstacles are common. The transition from 2D to 3D SLAM

enables detection of overhanging obstacles, terrain slopes, and multi-level structures that would

22

be missed by traditional 2D approaches, leading to more reliable path planning and safer au-

tonomous navigation in complex outdoor environments.

3D SLAM algorithms typically process point cloud data from sensors such as 3D LiDAR

or RGB-D cameras, creating three-dimensional representations of the environment using octree

or voxel-based data structures to efficiently store and process large amounts of 3D spatial

information. Modern 3D SLAM implementations can achieve real-time performance on capable

computational platforms, making them practical for deployment on research platforms like the

Clearpath A200 Husky, particularly when equipped with NVIDIA Jetson modules that provide

sufficient processing power for real-time 3D mapping operations.

RTABMap (Real-Time Appearance-Based Mapping) [22] represents a state-of-the-art ap-

proach to 3D SLAM that combines visual and geometric information to create comprehensive

three-dimensional maps. This algorithm integrates data from multiple sensor modalities, in-

cluding RGB-D cameras and 2D LiDAR, to generate detailed environmental representations

that surpass the capabilities of traditional 2D SLAM approaches. The core innovation of

RTABMap lies in its appearance-based loop closure detection mechanism, which uses visual

features to identify when the robot has returned to previously visited locations, enabling global

map optimization that significantly improves mapping accuracy compared to purely geometric

approaches [22].

The RGB-D camera provides detailed texture information and dense depth measurements

at close range, while the 2D LiDAR offers precise long-range measurements and consistent per-

formance across varying lighting conditions. This combination results in 3D maps that are both

23

Figure 5: Real-Time Appearance-Based Mapping Front and Back End [3]

geometrically accurate and visually rich, supporting applications that require detailed environ-

mental understanding. RTABMap’s memory management system enables efficient handling of

large-scale environments by maintaining a working memory of recent observations while trans-

ferring older data to long-term memory, allowing continuous operation in large environments

without memory overflow while maintaining loop closure detection capabilities [22].

The implementation of RTABMap on the Clearpath platform demonstrates significant im-

provements in mapping quality compared to traditional 2D SLAM approaches. The three-

dimensional maps generated by RTABMap provide comprehensive environmental information

that enables more sophisticated path planning algorithms and improved obstacle avoidance

capabilities, while the visual components support human interpretation and mission planning,

24

making RTABMap a valuable tool for research applications requiring detailed environmental

documentation.

AMCL Localization

The localization component utilizes the Adaptive Monte Carlo Localization (AMCL) al-

gorithm [49] implemented through the amcl package, which employs a particle filter-based

probabilistic approach for tracking a robot’s position and orientation within a known 2D map.

The AMCL system operates by distributing particles across the map space, with each parti-

cle representing a potential robot pose hypothesis. Through continuous sensor observations

and motion updates, these particles converge toward areas of higher probability, with particle

density indicating the likelihood of the robot’s actual location.

The AMCL configuration employs a likelihood field laser model with parameters optimized

for accurate localization performance [49]. The system maintains between 500 and 2000 particles

dynamically, with resampling occurring at regular intervals to maintain computational efficiency

while preserving localization accuracy. Key motion model parameters including alpha values

(0.2) define the noise characteristics of the robot’s odometry, while sensor model parameters

such as z hit (0.5) and sigma hit (0.2) control the weighting of laser scan observations. The

algorithm processes laser scan data from the sensors/lidar2d 0/scan topic with a maximum

range of 100 meters and utilizes up to 60 beams for computational efficiency. The system

maintains coordinate frame relationships between the map, odom, and base link frames, with

transform tolerance set to 1.0 seconds to accommodate potential delays in the system. Position

updates are triggered when the robot moves a minimum distance of 0.25 meters or rotates

25

0.2 radians, ensuring continuous localization while avoiding excessive computational overhead

during stationary periods.

2.5 Nav2 Motion Planning

Navigation2 (Nav2) represents the second-generation navigation framework for ROS 2 [17],

providing a comprehensive autonomous navigation system that has been successfully deployed

across diverse robotic platforms, including differential drive robots, omnidirectional platforms,

and Ackermann-steered vehicles. The framework has demonstrated robust performance in appli-

cations ranging from warehouse automation and service robotics to autonomous ground vehicles

and agricultural robots, establishing itself as the de facto standard for mobile robot navigation

in the ROS ecosystem. Nav2’s modular architecture and behavior tree-based coordination en-

able sophisticated autonomous behaviors while maintaining compatibility with existing ROS

navigation paradigms and supporting seamless integration with custom robotic platforms.

2.5.1 Nav2 Architecture and System Structure

Nav2 employs a sophisticated modular architecture that separates navigation functionality

into distinct yet coordinated components, each responsible for specific aspects of autonomous

navigation [17]. The system architecture consists of five primary servers working in coordina-

tion: the Planner Server generates collision-free paths from current position to goal using global

environmental knowledge, the Controller Server executes local trajectory planning and velocity

commands for path following, the Behavior Tree Navigator orchestrates high-level navigation

behaviors and recovery actions, the Behavior Server handles specialized maneuvers such as

26

Figure 6: Nav2 ROS2 Structure

spinning and backing up, and the Smoother Server refines generated paths for smoother robot

motion.

The Nav2 framework integrates seamlessly with SLAM systems to provide comprehensive

autonomous navigation capabilities. The system relies on SLAM-generated maps and localiza-

tion data to establish the global coordinate frame and environmental representation necessary

for path planning and obstacle avoidance. The integration typically involves map data from

SLAM systems such as SLAM Toolbox [19] or RTAB-Map [3] providing static environmen-

tal representations, pose estimates from SLAM localization enabling accurate robot position

tracking within the map frame, and dynamic obstacle information from real-time sensor data

27

complementing the static map with current environmental conditions. This SLAM-navigation

integration ensures that robots can navigate autonomously within previously mapped environ-

ments while maintaining awareness of dynamic obstacles and environmental changes.

The behavior tree framework enables sophisticated navigation coordination through modu-

lar action and condition nodes that can be composed into complex autonomous behaviors. The

bt navigator component coordinates between planning, control, and recovery behaviors with a

comprehensive plugin system including navigation actions (NavigateToPose, NavigateThrough-

Poses), path computation and smoothing capabilities, recovery behaviors for obstacle avoidance

and error recovery, and conditional logic for adaptive navigation decision-making. The behav-

ior tree loop operates at 10 Hz with a 20-second default server timeout, providing responsive

navigation control while allowing sufficient time for complex navigation operations.

2.5.2 Global Path Planning

The global path planner operates on the global costmap to generate optimal long-term

navigation paths from the robot’s current position to specified goal locations. The planner

server executes at an expected frequency of 20.0 Hz and utilizes the GridBased planner plugin,

implementing the nav2 navfn planner/NavfnPlanner algorithm. This implementation employs

Dijkstra’s algorithm [50] rather than A* (use astar: false) to compute collision-free paths across

the discretized grid representation of the environment, providing robust path generation with

guaranteed optimality for the given cost function.

The global planner processes costmap data at 0.06-meter resolution, incorporating static

map information, real-time obstacle data, and inflation zones to identify traversable regions.

28

The system accepts a goal tolerance of 0.5 meters, providing flexibility in goal achievement while

maintaining navigation precision. The planner configuration allows navigation through un-

known regions (allow unknown: true), enabling exploration and operation in partially mapped

environments where complete environmental knowledge may be unavailable.

Path generation occurs by evaluating grid cells from start to goal positions expressed in x and

y coordinates within the map frame, with the algorithm computing minimum-cost routes that

avoid obstacles while considering inflated safety margins around detected objects. The global

planner integrates with the broader navigation stack through the behavior tree navigator, which

coordinates path computation with local trajectory following and recovery behaviors. This

hierarchical approach enables robust navigation by providing high-level route guidance that is

subsequently refined by local planners for immediate obstacle avoidance and smooth motion

execution.

2.5.3 Local Trajectory Planning and Control

The local path planner operates through the controller server to provide real-time trajectory

generation and obstacle avoidance capabilities. The system executes at 20.0 Hz using the DW-

BLocalPlanner plugin, which implements the Dynamic Window Approach (DWA) algorithm

[51] for local trajectory optimization. This planner receives global path segments from the

global planner and generates feasible velocity commands that follow the planned route while

respecting the robot’s kinematic and dynamic constraints.

The Dynamic Window Approach converts position control into velocity control by sampling

multiple velocity combinations in velocity space and predicting their corresponding trajectories

29

Figure 7: Global and Local Planners in Action

based on the robot’s dynamics model [51]. The algorithm evaluates these predicted trajectories

using multi-objective scoring functions to select optimal velocity commands that balance path

following, obstacle avoidance, and goal achievement. The robot motion model underlying DWA

assumes uniform motion over small sampling periods, with position updates calculated using

kinematic equations that account for linear and angular velocity constraints.

The robot motion model underlying DWA assumes uniform motion over small sampling

periods ∆t, with position updates calculated as:

30

x(t) = x(t− 1) + v(t) · ∆t · cos(θ(t− 1)) (2.1)

y(t) = y(t− 1) + v(t) · ∆t · sin(θ(t− 1)) (2.2)

θ(t) = θ(t− 1) +w(t) · ∆t (2.3)

where x(t), y(t), and θ(t) represent the robot’s pose in the world coordinate system at time

t, while v(t) and w(t) denote the linear and angular velocities respectively.

The DWA implementation evaluates trajectory samples within the robot’s velocity space,

generating 20 linear velocity samples, 5 lateral velocity samples, and 20 angular velocity sam-

ples over a 1.7-second simulation horizon. Velocity constraints are configured for differential

drive kinematics with maximum linear velocity of 0.25 m/s, maximum angular velocity of 0.2

rad/s, and acceleration limits of 0.5 m/s² for both linear and angular motion. The planner

maintains trajectory granularity of 0.05 meters for linear components and 0.025 radians for

angular components, ensuring smooth motion generation.

The trajectory evaluation employs multiple critics, including RotateToGoal, Oscillation,

BaseObstacle, GoalAlign, PathAlign, PathDist, and GoalDist, each weighted to balance com-

peting objectives. The BaseObstacle critic receives minimal weighting (0.02) to allow close nav-

igation near obstacles, while PathAlign and RotateToGoal critics are heavily weighted (32.0)

to maintain path following accuracy. Goal alignment and distance critics (24.0) ensure precise

goal approach behavior. The system incorporates progress checking through a SimplePro-

31

gressChecker requiring 0.5-meter movement within 10-second intervals, with goal achievement

verified by SimpleGoalChecker tolerances of 0.3 meters for position and 0.3 radians for orien-

tation.

2.5.4 Costmap Generation and Multi-Sensor Integration

Nav2 employs a dual-costmap architecture with distinct global and local costmaps serving

different navigation purposes. The global costmap maintains a comprehensive view of the

environment for path planning, operating in the map frame with 1.0 Hz update frequency and

incorporating static map layers, obstacle detection, and inflation zones. The local costmap

provides immediate obstacle information for reactive control, operating in the odom frame with

5.0 Hz update frequency using a rolling window approach (5×5 meters) that moves with the

robot to maintain current environmental awareness.

Both costmaps integrate multiple sensor sources through layered plugin architectures that

enable sophisticated environmental representation. The global costmap utilizes static layer for

pre-existing map data, obstacle layer for real-time obstacle detection, and inflation layer for

safety margin generation around obstacles. The local costmap employs static layer, voxel -

layer for 3D obstacle representation, and inflation layer with different parameters optimized for

immediate navigation decisions.

The critical innovation in this implementation lies in the integration of vision-based laser

scan data alongside traditional LiDAR sensing within Nav2’s costmap framework. Both costmaps

are configured to accept multiple observation sources, enabling seamless fusion of panoptic seg-

mentation results with conventional range sensing. The obstacle and voxel layers process dual

32

sensor inputs: traditional LiDAR data from the laser sensor (/a200 1093/sensors/lidar2d 0/s-

can) configured with 2.5-meter obstacle detection range and 3.0-meter raytracing range, and

vision-derived laser scan data from the panoptic segmentation pipeline (/a200 1093/sensors/-

camera/scan) configured with extended 8.0-10.0 meter detection range to leverage superior

long-range vision capabilities.

The sensor fusion strategy employs differentiated parameters for each sensor modality: the

camera scan configuration utilizes extended range parameters with infinity value handling (inf -

is valid: true) to properly process vision-based obstacle data, while preventing erroneous clear-

ing of obstacles at maximum detection range (clear on max reading: false). The voxel layer

processes both sensor streams with 3D obstacle representation crucial for outdoor navigation,

using z resolution of 0.05 meters and 16 voxel layers up to 2.0 meters height. The elevated min-

imum range for camera scan data (0.5 meters) accounts for terrain-level obstacles that may not

require immediate avoidance, while the extended maximum range leverages the vision system’s

superior detection capabilities for advance obstacle identification.

This multi-sensor integration enables the navigation system to benefit from both the pre-

cision of LiDAR sensing and the semantic understanding provided by panoptic segmentation,

creating a robust perception framework for autonomous outdoor navigation. The combined

costmap data provides comprehensive environmental information for path planning and real-

time obstacle avoidance, demonstrating the successful integration of computer vision intelligence

with traditional robotics navigation systems.

33

Figure 8: Intel RealSense [4]

2.6 Intel Realsense Camera

The Intel RealSense camera serves as a critical perception component for the robotic sys-

tem, providing RGB-D sensing capabilities that enable depth perception and 3D environmental

understanding [52]. The configuration utilizes the Intel RealSense D435i model, which combines

color imaging, depth sensing, and inertial measurement capabilities in a compact form factor

suitable for mobile robotic applications [52]. The RealSense D435i camera is mounted on a

custom-designed mount attached to the sensor arch, positioned at coordinates (-0.2, 0.0, 0.725)

relative to the sensor arch link, providing optimal field of view coverage for navigation and

obstacle detection tasks. The camera’s physical dimensions of 90mm width, 25mm height, and

25mm depth make it well-suited for integration with the UGV platform without significantly

impacting the vehicle’s mobility or aerodynamics.

34

The camera system operates with configurable resolution settings, currently set to 320x240

pixels for both RGB and depth streams at 30 frames per second to optimize bandwidth and

processing requirements. The depth sensing range extends from 0.3 meters to 100 meters with

a horizontal field of view of 1.25 radians (approximately 71.6 degrees), providing comprehensive

environmental coverage for navigation applications. The integrated IMU component enhances

the camera’s utility for visual-inertial odometry and sensor fusion applications. The RealSense

camera integrates seamlessly with the ROS ecosystem through dedicated driver nodes [53] that

publish sensor data on standardized topics, generating multiple data streams including color

images, depth maps, and point clouds, with frame IDs properly configured for coordinate frame

transformations within the navigation stack. The system employs FFMPEG compression [54]

with ultrafast encoding presets and 1 Mbps target bit rate to minimize network bandwidth

requirements while maintaining acceptable image quality for real-time processing.

Within the navigation framework, the RealSense camera contributes to both local and global

costmap generation through its depth sensing capabilities. The camera data is processed to

generate laser scan messages that integrate with the existing LiDAR-based obstacle detection

pipeline, providing complementary sensing modalities for robust environmental perception. The

elevated mounting position and wide field of view enable detection of overhead obstacles and

terrain features that may not be captured by ground-level 2D LiDAR systems, enhancing the

overall safety and capability of autonomous navigation operations while supporting advanced

perception tasks such as object recognition, semantic mapping, and visual simultaneous local-

ization and mapping (VSLAM) applications [25].

35

2.7 SICK LMS Lidar

The SICK LMS-111 serves as the primary perception sensor for environmental mapping and

obstacle detection in the robotic system, providing high-precision 2D laser scanning capabilities

essential for autonomous navigation [55]. This Ethernet-connected single-beam LiDAR operates

at a scanning frequency of 50 Hz with an angular resolution of 0.5 degrees, covering a field of

view from -135 to +135 degrees (-2.35619 to +2.35619 radians) to provide comprehensive 270-

degree environmental coverage. The sensor delivers range measurements from 0.05 meters to

25 meters with millimeter-level accuracy, enabling precise obstacle detection and mapping for

both indoor and outdoor applications.

Figure 9: SICK LMS111 2D LiDAR sensor

36

The LMS-111 integrates seamlessly with the ROS 2 ecosystem through standardized sensor -

msgs/LaserScan messages [53] published on the /a200 1093/sensors/lidar2d 0/scan topic at the

configured update rate. The sensor’s compact design and robust construction make it well-suited

for mobile robotic applications, while its Ethernet connectivity at IP address 192.168.131.20

ensures reliable high-bandwidth data transmission. The LiDAR’s frame ID is configured as

lidar2d 0 laser, maintaining proper coordinate transformations within the navigation stack’s

sensor fusion framework.

Within the navigation architecture, the SICK LMS-111 data feeds directly into both local

and global costmap generation processes, providing real-time obstacle detection capabilities

that complement the Intel RealSense camera’s depth sensing. The sensor’s high update rate

and wide field of view enable the Dynamic Window Approach local planner [51] to perform

effective obstacle avoidance maneuvers while maintaining smooth trajectory execution. The

LiDAR’s precision and reliability make it particularly valuable for creating accurate occupancy

grid maps [43] through simultaneous localization and mapping algorithms [16], supporting both

autonomous navigation tasks and environmental monitoring applications in complex indoor and

outdoor environments.

CHAPTER 3

DEEP LEARNING TRAINING AND INTEGRATION WITH ROS

3.1 Detectron2

Detectron2 represents Facebook AI Research’s comprehensive computer vision framework

built on PyTorch, providing state-of-the-art implementations of object detection, instance seg-

mentation, and panoptic segmentation algorithms [28]. This chapter examines the framework’s

neural network architectures, model implementations, and provides a systematic installation

methodology for Ubuntu 22.04 systems.

3.1.1 Neural Network Architectures in Detectron2

Modern computer vision tasks in Detectron2 leverage sophisticated CNN architectures that

have evolved from AlexNet’s foundational 8-layer design to contemporary deep networks ex-

ceeding 100 layers [33; 34]. The framework implements hierarchical feature extraction where

early layers detect low-level features (edges, textures), middle layers identify patterns (shapes,

objects), and deep layers recognize high-level concepts essential for scene understanding [56].

The architectural progression demonstrates consistent improvements in accuracy and effi-

ciency. VGG networks introduced deeper architectures with 3× 3 filters, proving that multiple

small convolutions achieve equivalent receptive fields with fewer parameters than larger filters

[57]. ResNet’s revolutionary skip connections solved the vanishing gradient problem through

37

38

Figure 10: Detectron2 Panoptic Segmentation

residual learning formulation H(x) = F(x)+x, enabling gradient flow through identity mappings

and creating ”gradient highways” essential for deep network optimization [34].

Two-Stage Detection Models

Detectron2’s Faster R-CNN implementation combines Region Proposal Networks (RPN)

with classification and regression heads, supporting multiple backbone configurations includ-

ing ResNet-50, ResNet-101, and ResNeXt variants [40]. The framework achieves significant

performance improvements through optimized anchor generation and enhanced Non-Maximum

Suppression algorithms.

39

Mask R-CNN extends Faster R-CNN by adding pixel-level segmentation capabilities through

parallel mask prediction branches [39]. The implementation incorporates improved RoI Align

operations for better feature alignment and optimized mask head architectures that reduce

computational overhead while maintaining segmentation accuracy.

Single-Stage Detection Models

RetinaNet implementation addresses class imbalance through focal loss mechanisms α(1 −

pt)
γ · CE(pt), down-weighting easy examples while focusing training on challenging cases [58].

The single-stage architecture eliminates region proposals, enabling faster inference while main-

taining competitive accuracy through Feature Pyramid Network integration.

FCOS (Fully Convolutional One-Stage) represents anchor-free detection approaches predict-

ing objects through per-pixel predictions [59]. The architecture predicts classification scores,

bounding box coordinates, and centerness measures for each spatial location, particularly effec-

tive for objects with extreme aspect ratios.

3.1.2 Feature Pyramid Network Architecture

Feature Pyramid Networks address multi-scale object detection challenges by creating se-

mantically strong features at all scales [42]. Detectron2’s FPN implementation combines

bottom-up pathways (standard CNN forward propagation) with top-down pathways (feature

upsampling) connected through lateral connections, enabling effective multi-scale feature rep-

resentation.

The bottom-up pathway utilizes CNN backbone architectures, extracting features at multi-

ple spatial resolutions, typically producing features at 1/4, 1/8, 1/16, and 1/32 input resolution

40

Figure 11: A Robust Pipeline for Panoptic Bottom-Up Segmentation [5]

scales. The top-down pathway begins with the highest-level feature maps and progressively up-

samples features while adding lateral connections from corresponding bottom-up levels through

1×1 convolutions [42].

Panoptic FPN Extensions

Detectron2’s Panoptic FPN extends standard FPN architecture by incorporating semantic

segmentation branches alongside instance detection components [29]. The semantic branch pro-

cesses FPN features at multiple scales through progressive upsampling, generating pixel-level

semantic predictions. This unified architecture enables simultaneous semantic segmentation

and instance detection through a shared FPN backbone, achieving approximately 50% compu-

tational reduction compared to separate networks while maintaining equivalent accuracy [29].

41

Detection heads operate across all FPN levels with shared parameters while processing fea-

tures at different scales. The Region Proposal Network generates proposals at each pyramid

level, enabling comprehensive object candidate generation [40]. Classification and regression

heads process RoI features extracted from appropriate pyramid levels based on RoI size, ensur-

ing optimal feature resolution for each detection task [42].

3.1.3 Installation and System Requirements

The implementation requires NVIDIA GPU with compute capability 3.7+ and PyTorch

framework for optimized tensor operations [38]. Hardware verification confirms system com-

patibility through CUDA compiler and driver functionality, ensuring proper GPU acceleration

for deep learning inference tasks.

Platform Requirements

Two deployment targets are supported:

• Development: Linux systems with NVIDIA GPU (compute capability 3.7+), 16GB

RAM, Ubuntu 22.04

• Edge Deployment: NVIDIA Jetson AGX Orin with JetPack 6

Linux Installation

Standard installation involves hardware verification, CUDA-enabled PyTorch setup, and

Detectron2 framework installation can be found on https://detectron2.readthedocs.io/

en/latest/tutorials/install.html.

42

Jetson Deployment

ARM64 deployment requires system dependencies installation, CUDA integration verifi-

cation, specialized PyTorch wheels from the NVIDIA repository, and source compilation for

ARM64 optimization. Compilation typically takes 10-15 minutes with automatic CUDA kernel

optimization.

System Validation

The integrated environment provides:

• Optimal GPU utilization and CUDA acceleration

• Efficient memory management within platform constraints

• Real-time inference performance for navigation applications

• Thermal stability during sustained operation

After downloading and installing Detectron2, you can download the demo 1 folder and the

models in the link https://github.com/RagibRownak/Object-Detection-using-CNN-ROS to

set up everything to run on both the simulation and hardware.

3.2 Dataset Structure and Training

Panoptic segmentation represents a unified computer vision task that combines semantic

segmentation of “stuff” classes (amorphous regions like sky, road, vegetation) with instance

segmentation of “thing” classes (countable objects like cars, people, buildings) [29]. This com-

prehensive approach to scene understanding requires sophisticated dataset architectures and

training methodologies that can effectively handle the dual nature of panoptic annotations

43

[29]. This section examines the dataset structures utilized in our implementation, analyzes

the annotation frameworks, and presents the detailed sequential training procedure developed

specifically for autonomous navigation applications.

The complexity of panoptic segmentation necessitates careful consideration of dataset or-

ganization, annotation formats, and training strategies that differ significantly from traditional

semantic or instance segmentation approaches [32]. Our implementation specifically addresses

the challenges of autonomous navigation by employing a two-stage training strategy that be-

gins with urban scene understanding and expands to comprehensive object recognition with

selective class filtering to optimize for navigation-relevant tasks [41].

3.2.1 Dataset Architecture and Annotation Frameworks

COCO Dataset Structure and Panoptic Annotations

The COCO (Common Objects in Context) dataset [60] serves as the primary benchmark

for panoptic segmentation research, featuring 164,000 images with comprehensive annotations

covering 80 thing classes and 91 stuff classes [61]. The dataset’s sophisticated annotation

schema enables unified training of both semantic and instance segmentation tasks within a

single framework [29].

COCO employs a systematic directory structure that is crucial because it separates image

data from annotation files while maintaining clear relationships between components [60]. This

organization facilitates efficient data loading during training while enabling separate access to

different annotation types when needed for specialized training procedures [28].

44

Figure 12: Systematic directory structure of COCO dataset

Cityscapes Dataset Architecture

Cityscapes [41] provides high-resolution urban scene understanding with 2,975 training im-

ages and 500 validation images captured at 2048×1024 resolution across 50 German cities.

The dataset’s focus on autonomous driving scenarios creates different challenges compared to

COCO’s diverse natural scenes [41].

Cityscapes employs a structured naming convention that encodes capture metadata using

the format {city} {sequence} {frame} {type}.{extension}, where components specify loca-

tion, sequence number with six digits, frame number with six digits, and data type information

[41]. The dataset provides multiple annotation levels, including fine annotations with dense

45

pixel-level labels for 5,000 images across 30 semantic classes, with instance-level annotations

for 8 thing classes, including person, rider, car, truck, bus, train, motorcycle, and bicycle [41].

3.2.2 Sequential Training Strategy and Implementation

Training Pipeline Overview

Our training approach employs a carefully designed two-stage transfer learning methodology

[62] specifically developed to address the evolving requirements of autonomous navigation sys-

tems. The strategy begins with establishing robust urban scene understanding capabilities and

subsequently expands to comprehensive object recognition while filtering non-essential classes

for navigation tasks [63].

Stage 1: Cityscapes Foundation Training

The initial training focused exclusively on the Cityscapes dataset to establish robust urban

scene understanding capabilities [41]. This foundational stage was conducted on an NVIDIA

RTX 4090 GPU [64] with 24GB VRAM, providing the computational resources necessary for

high-resolution training at 2048×1024 resolution.

The Cityscapes training provided essential navigation-relevant features, including [41]:

• High-resolution urban scene parsing capabilities

• Specialized object detection for navigation-critical entities, including vehicles, pedestrians,

and traffic infrastructure

• Structured environment representation optimized for path planning algorithms [17]

46

• Reduced class complexity with only 8 thing classes, enabling focused learning of core

navigation concepts

The training configuration for the Cityscapes stage involves establishing a comprehensive

framework using the Detectron2 implementation [28]. The configuration process begins by

importing the DefaultTrainer class from detectron2.engine module, the configuration manage-

ment system from detectron2.config, and the model zoo repository from detectron2. The base

configuration is initialized and merged with the pre-trained Mask R-CNN model using ResNet-

50 backbone with Feature Pyramid Network architecture, specifically the three-times training

schedule variant designed for COCO instance segmentation.

The dataset configuration specifies the Cityscapes training split as the primary training

dataset and the Cityscapes validation split for performance evaluation. The data loading

pipeline employs two worker threads to manage input processing efficiently while preventing

bottlenecks during training operations.

Model initialization utilizes transfer learning by loading pre-trained weights from the COCO-

trained Mask R-CNN model, providing a robust foundation for urban scene understanding [63].

The training hyperparameters are carefully calibrated with a batch size of two images per

training iteration, accommodating the substantial memory requirements of processing high-

resolution Cityscapes images. The base learning rate is conservatively set to 0.00025 to ensure

stable convergence when fine-tuning from pre-trained weights.

The training duration is limited to 1,000 iterations, representing a focused approach suitable

for the smaller Cityscapes dataset size. The model architecture is specifically configured for

47

Cityscapes with eight thing classes representing the navigation-relevant objects present in urban

driving scenarios. The training process is initiated using the DefaultTrainer framework with

resumption disabled, ensuring a complete training cycle from the specified starting weights.

Stage 2: Selective COCO Expansion Training

Following the initial Cityscapes training, we identified the need for expanded object recog-

nition capabilities to handle diverse real-world scenarios beyond structured urban environments

[60]. However, preliminary analysis revealed that many COCO classes are irrelevant or poten-

tially detrimental to autonomous navigation performance [65]. Consequently, we implemented

a selective training approach that excludes specific class categories from COCO training.

Class Filtering Strategy for Navigation Optimization

Our class filtering strategy removes categories that do not contribute to navigation safety

or path planning [17]. This approach reduces training complexity while focusing computational

resources on navigation-critical objects [31].

Excluded Thing Classes (27 categories)

• Sports equipment: baseball bat, skis, baseball glove, skateboard, tennis racket, snow-

board

• Accessories: handbag, tie, suitcase, remote, cell phone, umbrella

• Indoor furniture: dining table, toilet, laptop, mouse, keyboard, TV

• Appliances: oven, toaster, microwave, sink, refrigerator

• Electronics: vase, clock, scissors, hair dryer, toothbrush, teddy bear

48

• Food items: bottle, cup, fork, knife, wine glass, spoon, bowl, apple, sandwich, banana,

orange, broccoli, carrot, hot dog, pizza, donut, cake

• Kitchen items: (covered in appliances and food categories)

Excluded Stuff Classes (2 categories)

• Food-related: food-other

• Textile: textile-other

This filtering reduces the training complexity from 80 thing classes to 53 navigation-relevant

thing classes, enabling more focused learning on objects that directly impact autonomous nav-

igation decisions [6].

The selective COCO training implementation builds upon the Cityscapes-trained foundation

through a sophisticated configuration management approach. The process begins by initializing

a new configuration object and merging it with the Panoptic FPN architecture, specifically

designed for panoptic segmentation tasks [29]. The model weights are initialized from the

previously trained Cityscapes model checkpoint, located in the output directory as the final

model state.

The dataset configuration employs filtered versions of the COCO training and validation

splits, where navigation-irrelevant classes have been systematically removed during preprocess-

ing. The training dataset is specified as the filtered COCO 2017 training panoptic dataset,

while validation uses the corresponding filtered validation split.

49

The model architecture accommodates fifty-three thing classes, representing the reduced

set after excluding twenty-seven categories deemed non-essential for autonomous navigation

applications. The training optimization employs a larger batch size of eight images per itera-

tion, taking advantage of the RTX 4090’s substantial memory capacity for improved gradient

estimation.

The learning rate is reduced to 0.0001 to facilitate fine-tuning from the Cityscapes check-

point, preventing catastrophic forgetting of previously learned urban navigation features [62].

The training duration extends to 90,000 iterations, providing sufficient exposure to the diverse

COCO dataset while maintaining the navigation-focused class filtering.

The class filtering implementation involves defining comprehensive lists of excluded cate-

gories. The excluded thing classes encompass sports equipment items, including sports balls,

baseball bats, baseball gloves, skateboards, skis, snowboards, and tennis rackets. Personal ac-

cessories comprise ties, suitcases, handbags, umbrellas, remote controls, and cell phones. Indoor

furniture categories include dining tables, toilets, televisions, laptops, computer mice, and key-

boards. Kitchen and household appliances encompass microwaves and various other domestic

items.

The excluded stuff classes specifically target food-other and textile-other categories, which

provide minimal contribution to navigation decision-making processes. This systematic ap-

proach ensures that computational resources focus on objects directly relevant to autonomous

navigation safety and efficiency.

50

3.2.3 Training Implementation and Computational Requirements

Hardware Configuration and Training Timeline

The complete training pipeline was executed on an NVIDIA RTX 4090 GPU [64] with 24GB

VRAM, providing sufficient computational resources for the sequential training approach. The

training process was divided into two distinct phases: 2 hours for Cityscapes foundation training

encompassing 1,000 iterations, and 12 hours for selective COCO expansion training spanning

90,000 iterations, totaling approximately 14 hours of training time [28].

The RTX 4090 platform enabled full-resolution training with optimal batch sizes and mem-

ory utilization [64]. Peak GPU memory usage reached approximately 18GB during batch size

8 operations, with training stability maintained throughout the process without memory over-

flow issues. The RTX 4090 environment established baseline performance metrics with infer-

ence speeds of 25-30 FPS at 800×600 resolution, 33-40ms processing time per frame, 8GB

memory utilization during inference, and 200W power consumption during training operations.

This high-performance baseline provided the foundation for subsequent optimization strategies

across different deployment platforms.

Training Benefits of Sequential Approach

The Cityscapes to selective COCO training strategy provides several theoretical and prac-

tical advantages [62]:

• Domain-specific initialization: Urban navigation features are well-established before

expanding to general object recognition [63], ensuring that the fundamental capabilities

51

required for autonomous navigation are solidly grounded in the model’s learned represen-

tations.

• Computational efficiency: Reduced class complexity leads to faster convergence and

lower memory requirements [31], enabling more efficient use of available computational

resources while maintaining high performance standards.

• Navigation focus: Maintains emphasis on safety-critical objects while avoiding confu-

sion from irrelevant classes [6], ensuring that the model’s attention remains concentrated

on elements that directly impact navigation decisions and safety considerations.

• Transfer learning benefits: Leverages Cityscapes’ high-quality urban annotations to

improve COCO feature extraction for similar environments [62], creating synergistic ef-

fects between the specialized urban dataset and the broader object recognition capabilities

of COCO.

The implementation of navigation-optimized Panoptic FPN models through this sequential

approach represents a methodology specifically designed for autonomous navigation applica-

tions [29], differing from traditional training approaches that typically focus on general object

recognition capabilities without consideration for the specific requirements of navigation sys-

tems [60].

3.3 Validation and Optimization

The deployment of Detectron2’s panoptic segmentation models across different computa-

tional platforms presents significant optimization challenges that require systematic adaptation

52

strategies [28]. Following the completion of training on high-performance hardware, the pro-

gression from RTX 4090 → RTX 3050 → Jetson AGX Orin represents a systematic reduction in

computational resources, necessitating different optimization strategies at each stage. Memory

architecture transitions from dedicated high-bandwidth GDDR6X (RTX 4090) to dedicated

GDDR6 (RTX 3050) to unified LPDDR5 (Jetson), affecting memory management strategies.

Processing power decreases significantly from desktop-class performance to mobile-optimized

efficiency, requiring architectural modifications. Power constraints evolve from unlimited

desktop power to laptop battery considerations to strict embedded power budgets. Thermal

management progresses from active cooling systems to passive thermal dissipation require-

ments.

Intermediate Validation on RTX 3050 Laptop Testing

Following training completion, initial deployment validation was conducted on a laptop

equipped with an NVIDIA RTX 3050 GPU (6GB VRAM) to assess model performance on

consumer-grade hardware. This intermediate testing phase served multiple purposes: validation

of model portability across different GPU architectures, assessment of performance degradation

on mid-tier hardware, identification of optimization requirements for memory-constrained en-

vironments, and establishment of performance benchmarks for consumer deployment scenarios.

The RTX 3050 testing environment demonstrated several key performance characteristics.

Baseline performance achieved 15-25 FPS for standard object detection models with input

resolutions up to 800×600 pixels, stable inference operation with 4-5GB VRAM utilization out

53

of 6GB available capacity, acceptable thermal performance during extended operation periods,

and successful model loading and execution without architecture-specific modifications.

Performance analysis revealed the need for optimization strategies including resolution scal-

ing to maintain acceptable frame rates, memory management to prevent VRAM overflow, and

thermal consideration for sustained operation. These findings informed the subsequent opti-

mization strategies developed for the Jetson AGX Orin deployment.

Target Deployment on Jetson AGX Orin Optimization

The final deployment target, NVIDIA Jetson AGX Orin [27], presents the most significant

computational constraints requiring comprehensive optimization strategies. The embedded

platform features a 2048-core NVIDIA Ampere GPU with 64 RT Cores, 12-core ARM Cortex-

A78AE CPU operating at 2.2 GHz, unified 32GB LPDDR5 memory architecture shared between

CPU and GPU, 204.8 GB/s memory bandwidth, and configurable power envelope ranging

from 15W to 60W. The shared memory architecture creates competition between CPU and

GPU for the same memory pool, while ARM instruction set differences from x86 development

environments introduce compatibility challenges. Thermal limitations requiring passive cooling

and reduced memory bandwidth compared to dedicated desktop GPU configurations necessitate

fundamental changes to standard Detectron2 deployment practices.

3.3.1 Model Architecture Optimization Strategies

Progressive Optimization Approach:

The optimization strategy evolved through the deployment pipeline, with each platform

informing optimization requirements for subsequent deployments. RTX 3050 validation revealed

54

memory bottlenecks and thermal considerations that guided Jetson optimization strategies. The

progressive approach enabled targeted optimizations addressing specific platform constraints

while maintaining model functionality.

Configuration-Level Modifications:

The optimization process begins with systematic modifications to Detectron2’s core con-

figuration parameters. Input resolution reduction represents the most significant performance

optimization, with minimum test size reduced from 800 to 400 pixels and maximum size reduced

from 1333 to 600 pixels. This modification alone provides approximately 60% performance im-

provement while maintaining adequate detail for navigation tasks.

Backbone freezing strategies involve freezing the first two ResNet layers (res1 and res2) [34]

to reduce computational overhead and memory requirements. Mixed precision computation

utilizing FP16 datatypes [66] leverages the Ampere architecture’s Tensor Cores, providing 40%

memory reduction and 2× inference speedup with minimal accuracy degradation.

Confidence threshold optimization involves setting consistent thresholds across RetinaNet,

ROI heads, and Panoptic FPN components to reduce false positive processing and improve

overall system efficiency. These modifications collectively reduce computational complexity

while preserving essential functionality for autonomous navigation applications.

Memory Management Optimization:

The unified memory architecture requires sophisticated memory management to prevent

GPU memory overflow while maintaining system stability. GPU memory fraction control al-

55

locates 70% of available memory to GPU operations, reserving 30% for system processes and

preventing out-of-memory conditions.

CUDA optimization [67] includes enabling benchmark mode for consistent input sizes, allow-

ing TF32 operations on Ampere architecture, and configuring memory pool settings to prevent

fragmentation. Periodic cache clearing every 10 frames prevents memory fragmentation during

extended operation periods.

Gradient computation disabling during inference and automatic mixed precision utilization

ensure optimal memory usage patterns. These strategies collectively reduce memory footprint

by approximately 40% compared to standard Detectron2 deployment while maintaining infer-

ence accuracy.

Architecture Component Modifications:

Backbone optimization involves freezing additional layers beyond standard configuration,

with freeze at parameter increased to 3 for enhanced speed. ROI head optimization reduces

batch size per image from 512 to 256 and adjusts positive fraction to 0.25 for reduced compu-

tational load.

Feature Pyramid Network optimization maintains standard 256 output channels while en-

suring efficient multi-scale feature processing. RPN optimization reduces pre-NMS and post-

NMS top-k values to 1000 for both training and testing phases, significantly reducing proposal

processing overhead.

56

Panoptic head optimization includes setting semantic segmentation classes to 133 (COCO

stuff + thing classes) [60], loss weight to 0.5 for balanced training, and group normalization for

enhanced stability during inference.

3.3.2 Adaptive Performance Management

Dynamic Resolution Scaling:

Real-time performance requirements necessitate adaptive resolution scaling based on com-

putational load and thermal constraints. The system monitors processing times across a sliding

window of 10 frames, calculating average processing time for performance assessment.

When average processing time exceeds target thresholds (100ms for 10 FPS operation), reso-

lution automatically reduces by 10% increments until performance targets are met. Conversely,

when processing time falls below 80% of target time, resolution increases to improve detection

quality. Resolution bounds range from emergency minimum (320×240) to maximum quality

(800×600).

This adaptive approach ensures consistent frame rates under varying computational loads

while maximizing detection quality when processing headroom is available. The system main-

tains navigation safety by prioritizing consistent obstacle detection over maximum resolution

quality.

Frame Management and Processing:

Intelligent frame management implements adaptive frame skipping based on processing

performance. Initial frame skip value of 3 (processing every third frame) adjusts dynamically

based on processing time measurements. When processing time exceeds target thresholds, frame

57

skip increases to the maximum value of 8 frames. When processing performance improves, frame

skip decreases to a minimum value of 2 frames.

This approach maintains consistent navigation updates while optimizing computational re-

source utilization. Critical navigation data, such as laser scan information, receives priority

processing, while visualization data is processed at reduced frequency during high computa-

tional load periods.

Adaptive Frame Processing: Color frame processing implements adaptive frame skip-

ping with dynamic skip factor s(t) based on processing performance:

s(t+ 1) =



min(s(t) + 1, 8) if τproc(t) > τmax

max(s(t) − 1, 2) if τproc(t) < 0.8 · τmax

s(t) otherwise

(3.1)

where τproc(t) represents processing time at frame t and τmax = 500 ms defines the maximum

acceptable processing duration.

Navigation-relevant class filtering reduces computational overhead by excluding objects ir-

relevant to autonomous navigation. Classes such as personal items, sports equipment, kitchen

items, electronics, and household objects are filtered during inference, focusing processing power

on navigation-critical objects, including vehicles, people, infrastructure, and terrain features.

58

3.3.3 Thermal and Power Management

Thermal Monitoring and Response:

Active thermal monitoring prevents performance degradation through systematic temper-

ature tracking across CPU, GPU, and auxiliary thermal zones. Temperature readings from

system thermal sensors enable proactive thermal management before critical thresholds are

reached.

The system implements three thermal response levels: normal operation below 75°C allowing

full performance, warning level between 75-85°C implementing conservative throttling with

reduced frame skip and resolution, and critical level above 85°C activating emergency throttling

with minimum resolution and maximum frame skip.

Power mode configuration automatically adjusts between MAXN (maximum performance),

30W (balanced operation), and 15W (power conservation) modes based on thermal conditions

and performance requirements. This ensures system stability while maximizing performance

within thermal envelope constraints.

Memory Pool Optimization:

Efficient memory management prevents fragmentation and reduces allocation overhead

through pre-allocation of common tensor sizes corresponding to different resolution modes.

Memory pool configuration optimizes allocation patterns for typical inference workloads, re-

ducing dynamic allocation overhead during real-time operation.

Peak memory statistics monitoring enables proactive memory management, with cache

clearing triggered before memory pressure becomes critical. This approach maintains consis-

59

tent performance while preventing out-of-memory conditions that could interrupt autonomous

navigation operations.

This optimization framework establishes a foundation for deploying advanced computer

vision models across heterogeneous computing platforms, demonstrating that sophisticated

panoptic segmentation capabilities can be successfully adapted for real-world autonomous nav-

igation applications while operating within the power, thermal, and computational constraints

of embedded systems. The progressive deployment methodology provides a replicable approach

for similar cross-platform optimization challenges in autonomous robotics applications.

3.4 Integration with ROS for Autonomous Navigation

This section presents the methodological framework for integrating optimized Panoptic FPN

models with ROS2 navigation systems [53]. Building upon the sequential Cityscapes→COCO

training methodology and Jetson AGX Orin optimization strategies detailed in previous sec-

tions, this framework establishes systematic procedures for transforming deep learning-based

panoptic segmentation into navigation-compatible data streams.

The integration methodology encompasses vision-to-laser scan conversion algorithms, multi-

sensor fusion strategies, and navigation framework compatibility procedures. The approach

maintains spatial accuracy essential for navigation safety while incorporating semantic aware-

ness capabilities through systematic data processing and standardized interface compliance.

60

3.4.1 Vision-to-Laser Scan Conversion Methodology

System Architecture and Data Processing Framework

The vision-to-laser scan conversion methodology establishes a systematic approach for trans-

forming high-level visual understanding into navigation-compatible sensor data. The system

processes three primary data streams: RGB image streams providing visual texture information

at 640×480 pixel resolution, depth image streams delivering corresponding depth measurements

for 3D reconstruction, and camera calibration parameters containing intrinsic focal lengths and

principal points for geometric transformations.

The processing pipeline architecture implements five sequential transformation stages. The

methodology begins with RGB-D input acquisition, progresses through panoptic segmentation

analysis, advances to object classification procedures, continues with contour extraction oper-

ations, and concludes with geometric projection computations that generate laser scan output:

RGB-D Input → Panoptic Segmentation → Object Classification

→ Contour Extraction → Geometric Projection

→ Laser Scan Output

(3.2)

This systematic progression ensures complete transformation from visual understanding to

navigation-compatible sensor data while preserving spatial accuracy and semantic information.

61

Core Conversion Process Methodology

Segmentation Data Extraction Procedure: The conversion methodology begins by

extracting panoptic segmentation results from Detectron2 inference operations [28]. The process

retrieves pixel-level segmentation maps where each pixel contains a unique segment identifier,

obtains metadata providing class and instance information for each detected segment, and

accesses instance detection results containing bounding box coordinates and classification data.

The panoptic segmentation array represents a 2D structure where each pixel contains a segment

ID, while segment information provides metadata about each segment, including class and

instance information, and instances contain object detection results with bounding boxes.

Dual-Class Processing Strategy: The methodology implements distinct processing ap-

proaches for different object categories. “Thing” objects representing discrete entities such as

vehicles, people, and infrastructure undergo instance-based processing. The procedure identi-

fies instance IDs from segmentation metadata by iterating through filtered instances indices,

locates corresponding instance IDs from segment information where the segment is marked as a

thing and matches the instance ID, creates binary masks for individual objects using panoptic

segmentation equality operations, and applies OpenCV contour detection algorithms [68] with

external retrieval and simple approximation to extract precise object boundaries. The sys-

tem selects the largest contour based on contour area calculations to ensure robust boundary

representation.

“Stuff” segments representing terrain and background features require specialized process-

ing optimized for navigation awareness. The methodology processes non-thing segments by

62

iterating through segment information to find segments not marked as things, retrieving seg-

ment identifiers and category classifications, applying navigation-specific obstacle determination

algorithms through category ID analysis, and creating masks for terrain obstacles when iden-

tified. This approach enables the system to distinguish between navigable surfaces and terrain

features requiring avoidance.

Pixel-to-Laser Ray Conversion Process: The transformation methodology converts

pixel coordinates to laser scan format through systematic coordinate processing. For each con-

tour point sampled at regular intervals, the system extracts pixel coordinates from contour

point arrays and retrieves corresponding depth values from the depth image at specified row

and column positions. The process applies the pinhole camera model [69] to convert pixel loca-

tions to 3D camera coordinates using calibrated intrinsic parameters. The depth value serves

as the z-coordinate, while x-camera coordinates are calculated using the formula involving

column position, principal point, depth, and focal length. Subsequently, the methodology cal-

culates horizontal angles using arctangent functions and determines obstacle distances through

Euclidean distance calculations. The system maps these measurements to appropriate laser

scan array indices based on angular resolution parameters, updating range arrays when closer

obstacles are detected at each angular position.

Geometric Transformation Methodology

Camera Coordinate System Transformation: The geometric transformation method-

ology employs the standard pinhole camera model for coordinate conversion [69]. The first

63

transformation stage converts pixel coordinates to 3D camera coordinates using calibrated fo-

cal lengths and principal points:

xcam =
(col− cx)× depth

fx
(3.3)

ycam =
(row− cy)× depth

fy
(3.4)

zcam = depth (3.5)

Where (col, row) represent pixel coordinates in the image frame, (cx, cy) are the principal

points from camera calibration, (fx, fy) are the focal lengths from camera calibration, and depth

represents the depth value at the pixel location.

The second transformation stage projects 3D camera coordinates to polar coordinates suit-

able for laser scan representation:

angle = arctan 2(xcam, zcam) (3.6)

distance =
√
x2cam + z2cam (3.7)

This conversion calculates horizontal angles using arctangent functions and determines ob-

stacle distances through Euclidean distance calculations. The methodology projects 3D obstacle

points onto a 2D horizontal plane, matching navigation algorithm expectations.

64

Laser Scan Array Construction: The array construction methodology establishes pa-

rameters matching typical 2D LiDAR specifications. The system configures angular ranges

spanning 180 degrees from -90° to +90°, implements angular resolution of 0.01 radians pro-

viding approximately 0.57-degree precision per measurement, and creates arrays containing

314 range measurements. Range limits extend from 0.1-meter minimum detection distance to

30.0-meter maximum detection range.

The indexing strategy ensures accurate mapping of angular measurements to array positions.

The methodology calculates array indices based on angular positions relative to minimum angle

thresholds using integer division of the angle difference by angular increment. The system up-

dates range arrays with closest obstacle distances for each angular bin, applying range bounds

checking to ensure measurements fall within specified minimum and maximum detection lim-

its. This approach maintains spatial accuracy while providing comprehensive environmental

coverage.

Obstacle Classification Methodology

Semantic Classification Framework: The obstacle classification methodology catego-

rizes detected objects into navigation-relevant classes based on traversability and safety con-

siderations. The framework establishes three primary categories: obstacle classes requiring

avoidance including discrete objects and terrain features, navigable classes safe for traversal

encompassing ground surfaces and open areas, and ignored classes filtered from processing

including sky regions and small portable objects.

65

Figure 13: Laser Scan Generation Pipeline

66

Obstacle Classes requiring avoidance include discrete objects such as vehicles, people,

furniture, and large vegetation, as well as terrain features including grass, uneven terrain,

vegetation, and earth. Navigable Classes safe for traversal encompass ground surfaces such

as roads, pavements, floors, and paths, along with open areas like cleared ground and parking

lots. Ignored Classes filtered from processing include sky, distant background, and small

portable objects.

Semantic Classification for Navigation: Navigation relevance classification employs

mapping function ϕnav : C → {OBSTACLE,NAVIGABLE, IGNORE} where C represents the

set of detected classes:

ϕnav(c) =



OBSTACLE if c ∈ Cterrain ∪ Cobjects

NAVIGABLE if c ∈ Csurfaces

IGNORE if c ∈ Cbackground

(3.8)

where:

• Cterrain = {grass, earth, terrain, field, sand}

• Cobjects = {person, car, truck, bicycle, tree}

• Csurfaces = {road, sidewalk, path, pavement}

• Cbackground = {sky, building,wall, ceiling}

The classification logic implements priority-based decision making where terrain safety con-

siderations take precedence over object detection confidence scores. The methodology identifies

67

terrain classes such as grass, earth, and field as priority obstacles for navigation systems through

explicit category matching. The system retrieves class names from category IDs using meta-

data mappings and applies hierarchical classification logic. Priority obstacles receive immediate

classification as obstacles, while navigable surfaces and ignored classes undergo exclusion from

obstacle designation. Navigation-irrelevant objects undergo filtering to focus computational

resources on safety-critical elements.

Advanced Processing Methodologies

Gap Filling Algorithm Implementation: The gap-filling methodology addresses dis-

continuities in laser scan data through systematic interpolation procedures. The algorithm

identifies sequences of infinite values representing measurement gaps by iterating through range

arrays and detecting transition points. The system evaluates gap dimensions relative to max-

imum acceptable widths by tracking gap start and end positions and calculating gap width

measurements. For small gaps meeting size criteria (typically 5 angular bins or fewer), the sys-

tem applies linear interpolation between neighboring valid measurements to create a continuous

obstacle representation.

Discontinuities in laser scan data undergo systematic interpolation through gap analysis

and contextual filling. Gap identification locates sequences of infinite values representing mea-

surement voids:

G = {(istart, iend) : ranges[i] = ∞ for i ∈ [istart, iend]} (3.9)

68

For gaps with width w = iend − istart + 1 ≤ wmax = 5 bounded by valid measurements,

linear interpolation applies:

ranges[istart + k] = rleft +
k+ 1

w+ 1
(rright − rleft) (3.10)

where k ∈ {0, 1, ..., w− 1}, rleft = ranges[istart − 1], and rright = ranges[iend + 1].

The interpolation process locates valid measurements on both sides of identified gaps through

directional neighbor search operations. The methodology calculates proportional distance val-

ues for intermediate positions using linear interpolation formulas with alpha blending coeffi-

cients based on position within the gap. This approach maintains conservative obstacle detec-

tion characteristics while providing more continuous environmental representation essential for

navigation algorithm performance.

Temporal Smoothing Implementation: The temporal smoothing methodology applies

exponential weighted averaging across multiple frame histories to reduce noise and improve

navigation stability. The system maintains scan history buffers with configurable depth (typi-

cally 3 frames) and applies exponential weight distributions emphasizing recent measurements

while incorporating historical data for stability. Weight distributions follow patterns such as

[0.6, 0.3, 0.1] for current, previous, and older measurements, respectively.

The smoothing process evaluates each range measurement across temporal sequences by

collecting valid finite values from corresponding angular positions across the frame history.

The methodology calculates weighted averages for finite values while preserving infinite mea-

69

surements representing clear areas. Normalization procedures ensure that weight distributions

sum to unity when valid measurements are available, maintaining mathematical consistency in

temporal filtering operations.

The exponential smoothing formula applies weighted averaging:

dsmooth(t) = α · draw(t) + (1− α) · dsmooth(t− 1) (3.11)

where α represents the smoothing factor and d represents depth measurements.

Depth Enhancement Procedures: The depth enhancement methodology addresses

missing or invalid depth measurements through neighboring pixel analysis. The system identi-

fies pixels with missing depth information by detecting zero or NaN values in depth images and

applies progressive radius search algorithms to locate valid neighboring measurements. The

search procedure expands from radius 1 to maximum radius (typically 10 pixels), examining

neighborhood windows around missing pixels.

Stage 3: Depth Integration and Validation Framework

For each sampled contour point at pixel coordinates (uj, vj), depth value extraction from

synchronized depth image D(u, v) undergoes validation:

dvalid(uj, vj) =



D(uj, vj) if dmin < D(uj, vj) < dmax

finterp(uj, vj) if D(uj, vj) ≤ dmin

∞ otherwise

(3.12)

70

where dmin = 0.05 m and dmax = 10.0 m define valid depth bounds.

The neighbor interpolation function searches within radius r for valid depth measurements:

finterp(uj, vj) =
1

|N (uj, vj)|

∑
(u,v)∈N (uj,vj)

D(u, v) (3.13)

whereN (uj, vj) = {(u, v) : ∥(u, v)−(uj, vj)∥2 ≤ r and D(u, v) > dmin} represents neighboring

pixels with valid depth measurements within radius r = 10 pixels.

When sufficient valid neighbors are identified (minimum 3 neighbors typically required), the

methodology calculates median depth values for robust estimation resistant to outlier influences.

The progressive search continues until adequate neighbor density is achieved or maximum radius

is reached. This approach ensures comprehensive depth coverage essential for accurate obstacle

distance determination while maintaining robustness against sensor noise and environmental

variations.

Object Tracking Integration: The methodology implements object tracking to main-

tain consistent identification across frames using Intersection over Union (IoU) based matching

with configurable thresholds for association (typically 0.3 minimum threshold). The tracking

association algorithm computes IoU between current detections and tracked objects:

IoU(A,B) =
|A ∩ B|

|A ∪ B|
(3.14)

71

where A and B represent bounding boxes from consecutive frames. Tracking history ex-

tends across multiple frames with exponential age decay to handle temporary occlusions while

preventing indefinite memory accumulation.

3.4.2 Sensor Data Integration and Processing

RGB-D Sensor Integration: RGB-D sensor integration combines color and depth in-

formation through synchronized callbacks that maintain temporal alignment between sensor

modalities. Color frame processing implements adaptive frame skipping with configurable skip

factors, dynamically adjusting based on processing performance to maintain consistent frame

rates.

Depth frame processing utilizes optimized OpenCV operations [68] for mask-based depth

extraction, implementing gap-filling algorithms to handle missing depth values common in RGB-

D sensors. The system employs progressive radius search with minimum neighbor requirements

to ensure robust depth estimation for object instances.

Camera Parameter Optimization: Camera calibration parameters are cached upon ini-

tialization to avoid repeated lookups during high-frequency processing cycles. Default intrinsic

parameters provide fallback operation when camera information messages are unavailable, en-

suring system robustness during sensor initialization phases.

Camera parameter caching eliminates repeated intrinsic matrix access during coordinate

transformations, storing focal lengths (fx, fy) and principal points (cx, cy) for efficient camera-

to-world coordinate conversion. This optimization reduces computational overhead during laser

scan generation, where thousands of pixel-to-3D transformations occur per frame.

72

The transformation from pixel coordinates (u, v) to 3D coordinates (x, y, z) follows the

standard pinhole camera model [69]:

x =
(u− cx) · z

fx
(3.15)

y =
(v− cy) · z

fy
(3.16)

where z represents the depth value obtained from the RGB-D sensor.

3.4.3 Transform Frame Management and Coordinate Systems

The implementation establishes proper coordinate frame relationships essential for naviga-

tion stack integration. Static transform broadcasting publishes relationships between base -

link, camera optical frames, and laser scan frames with consistent timestamps to prevent

temporal synchronization issues.

Transform specifications include camera mounting configurations and proper orientation

quaternions ensuring correct spatial relationships. The base scan frame aligns with standard

ROS navigation conventions [53], enabling direct compatibility with navigation path planning

algorithms.

Frame ID management maintains consistency across all published topics, with color frames

using camera color optical frame, depth frames using camera depth optical frame, and

laser scans using camera scan to match navigation stack expectations.

The static transform tree establishes the following relationships:

73

• base link → camera link: Translation configuration

• camera link → camera color optical frame: Rotation alignment

• camera link → camera depth optical frame: Rotation alignment

• base link → camera scan: Identity transform

3.4.4 Navigation Framework Integration Strategy

The Nav2 integration methodology [17] implements systematic multi-sensor fusion approaches

that combine traditional LiDAR sensing with vision-derived laser scan data through standard-

ized navigation framework interfaces. The integration strategy maintains full compatibility with

existing navigation algorithms while extending environmental perception capabilities through

semantic awareness.

Multi-Sensor Costmap Integration

The navigation system employs sophisticated multi-sensor integration to generate both local

and global costmaps by fusing traditional LiDAR sensing with vision-based laser scan data from

the panoptic segmentation pipeline. The local costmap utilizes a voxel layer (nav2 costmap -

2d::VoxelLayer) for 3D obstacle representation, processing dual observation sources with dif-

ferentiated parameters: the traditional LiDAR scan (/a200 1093/sensors/lidar2d 0/scan)

configured with a 2.5-meter obstacle detection range and 3.0-meter raytracing range for precise

short-range obstacle detection, and the camera-derived scan (/a200 1093/sensors/camera/s-

can) configured with an extended 8.0-meter obstacle detection range and 10.0-meter raytracing

range to leverage superior long-range vision capabilities. The global costmap employs an obsta-

74

cle layer (nav2 costmap 2d::ObstacleLayer) with similar dual-sensor configuration, where the

camera scan utilizes a 10.0-meter detection range with infinity value handling (inf is valid:

true) to properly process vision-based obstacle data.

Figure 14: Costmap generation from both the Lidar and Camera Scan

In the above picture, we can see that the costmap for both the local and global planners is

taking the laser scan data coming from the camera and lidar. The camera laser scan generation

from the panoptic segmentation has been discussed broadly in Section 3.5, integration with

ROS. This multi-sensor fusion strategy enables the navigation system to benefit from both the

precision and reliability of LiDAR sensing for immediate obstacle avoidance and the semantic

75

understanding plus extended detection range provided by panoptic segmentation for advanced

path planning. The combined costmap data provides the planner server with comprehensive en-

vironmental information, allowing the nav2 navfn planner/NavfnPlanner to generate robust

collision-free paths that account for both geometrically detected obstacles and semantically

classified terrain features, while the local controller (dwb core::DWBLocalPlanner) [51] uti-

lizes the fused obstacle information for real-time trajectory optimization and dynamic obstacle

avoidance during path execution.

The costmap integration methodology employs voxel layers configured with dual observa-

tion sources for comprehensive environmental representation. The local costmap configuration

establishes observation sources combining traditional LiDAR data with camera-derived laser

scan information. Traditional LiDAR sources provide close-range precision with conservative

detection ranges (2.5 meters obstacle detection, 3.0 meters raytracing) and limited raytracing

capabilities, while vision-based sources extend detection ranges (8.0 meters obstacle detection,

10.0 meters raytracing) and enhance raytracing capabilities for long-range environmental aware-

ness.

The global costmap methodology extends dual-sensor approaches to long-range planning

through obstacle layer configurations that process both sensor modalities. Camera scan sources

utilize extended detection ranges (10.0 meters for both obstacle detection and raytracing) with

full raytracing capabilities and specialized handling for infinite values characteristic of vision-

based measurements. The configuration implements conservative marking thresholds and pre-

76

vents false clearing operations through appropriate parameter settings including infinity value

validation and maximum reading clearing prevention.

Quality of Service Optimization Framework

The QoS optimization methodology employs differentiated service profiles tailored for navi-

gation performance requirements. Navigation-critical data streams utilize reliable delivery poli-

cies with increased history depth (typically 5 message depth) to maintain temporal consistency

for laser scan information. Visualization data streams employ best-effort delivery with minimal

latency optimization (1 message depth) for real-time display applications without compromising

navigation safety.

The QoS framework ensures reliable data delivery for critical navigation decisions while

optimizing communication efficiency through appropriate policy selection. Navigation laser

scan data maintains persistent history for temporal correlation through transient local durabil-

ity policies, while visualization streams prioritize minimal latency through volatile durability

settings for responsive user interfaces.

The message publishing framework utilizes standard topic interfaces ensuring direct com-

patibility with existing navigation algorithm implementations.

The generated laser scans maintain compatibility with multiple navigation system compo-

nents, including:

• Nav2 navigation stacks for direct integration with path planning and obstacle avoidance

• SLAM algorithms including visual SLAM systems

77

• Automatic integration with local and global costmaps for comprehensive navigation plan-

ning

• Localization systems for pose estimation

The integration methodology successfully bridges high-level semantic understanding with

traditional navigation frameworks through systematic data processing and standardized inter-

face compliance. The approach maintains geometric accuracy essential for navigation safety

while providing semantic awareness capabilities that enhance environmental understanding

beyond traditional sensor limitations, establishing a comprehensive framework for deploying

advanced perception capabilities within existing navigation systems.

CHAPTER 4

SETUP AND METHOLDOLOGY

4.1 Simulation Setup

The Clearpath Robotics ecosystem provides seamless simulation-to-reality deployment for

autonomous mobile robots through integrated ROS2 packages. Its unified configuration ap-

proach uses a single robot.yaml file to drive the entire system from simulation setup through

navigation deployment.

Gazebo Core Package Architecture and Dependencies

The Clearpath simulator uses Gazebo Fortress for physics-based robot simulation, support-

ing Clearpath Config and multiple simultaneous robots. Gazebo data bridges to ROS 2 through

dedicated bridge nodes generated at launch, enabling identical configurations between physical

and virtual robots. The simulation environment implements sophisticated physics modeling

with ODE Physics Engine, providing maximal coordinate solver configuration, appropriate

step sizes for high-fidelity simulation, high update rates for real-time performance, and contact

modeling for realistic wheel-ground interaction. Advanced Rendering Pipeline utilizes modern

Physically Based Rendering materials, scene broadcasting for multi-client synchronization, and

server-side sensor rendering for headless automated testing.

78

79

Sensor Plugin Integration

Comprehensive sensor simulation maintains identical APIs to real hardware through spe-

cialized plugins which is stated below:

LiDAR Simulation employs ray-casting algorithms for accurate range measurements, noise

modeling for realistic characteristics, and intensity value simulation with material-based reflec-

tion properties, providing configurable resolution and update rates matching hardware specifi-

cations.

Camera Integration implements RGB-D plugins with synchronized color/depth streams,

pointcloud generation matching sensor specifications, and IMU simulation. Plugins support

configurable resolution, frame rates, and camera intrinsic parameters for accurate simulation.

GPS and IMU Simulation provides NavSat plugin integration with realistic noise model-

ing, coordinate frame transformations supporting UTM and geographic coordinates, and IMU

plugins with configurable bias, noise, and update rates matching sensor specifications.

Essential Clearpath Packages

The ecosystem comprises five fundamental package categories:

clearpath common provides foundational shared utilities, core ROS2 message definitions,

service interfaces, and utility functions, establishing common vocabulary for seamless inter-

package communication.

clearpath config implements central configuration management, parsing and validating

the robot.yaml file with YAML schema validation, parameter translation services, and consis-

tency checking across platform, sensor, and attachment specifications.

80

clearpath msgs contains custom message definitions, service specifications, and action in-

terfaces extending standard ROS2 interfaces with Clearpath-specific functionality for battery

monitoring, platform status reporting, sensor integration, and diagnostics.

clearpath simulator provides simulation-specific implementations and world definitions,

containing Gazebo world files (warehouse, office, construction, pipeline, solar farm, orchard),

physics parameter configurations, and plugin configurations ensuring consistent real-virtual

robot behavior.

uic02 description (custom package) extends the standard Clearpath description frame-

work with specialized components, custom sensor mounts (sensor arch, connector plate), and

project-specific URDF modifications.

System Integration Architecture

The complete system integration demonstrates sophisticated package interconnection:

Configuration Flow follows robot.yaml → clearpath config → Generated Parameters →

Launch System → Active Nodes, providing centralized configuration management, automatic

parameter distribution, and consistent system behavior across simulation and real hardware.

Data Flow Architecture implements sensor data → processing nodes → navigation stack

→ control commands → platform actuation, with comprehensive topic remapping, namespace

management, and QoS configuration ensuring reliable data transmission.

Launch Orchestration provides hierarchical launch file organization, dependency manage-

ment ensuring proper startup sequences, and parameter inheritance enabling flexible system

configuration for different operational scenarios.

81

TABLE I: Key Packages and Their Roles for ros2 launch clearpath gz simula-

tion.launch.py

Package Role

clearpath common Shared utilities and definitions across Clearpath packages.

clearpath config Stores configuration files (robot.yaml, ROS parameters).

clearpath control Control nodes (like velocity controllers) for mobile base.

clearpath descrip-

tion

URDF/XACRO description of A200 robot (meshes, joints).

clearpath genera-

tor common

Common code used to generate robot descriptions dynami-
cally.

clearpath genera-

tor gz

Tools to auto-generate Gazebo-compatible SDF files from

URDF/XACRO.

clearpath gz Launch files and plugins for Gazebo simulation integration.

clearpath simulator Packages simulation scenarios and world files.

clearpath platform -

description

Platform-specific hardware description (battery, motors,
wheels).

clearpath sensors -

description

Sensor-specific URDF parts (e.g., lidar mounts, cameras).

clearpath mounts de-

scription

Mounting plates, sensor arms, etc., 3D mesh and URDF

definitions.

clearpath viz RViz configurations for visualization of robot state.

Workspace Creation and Package Integration

It is possible to visualize and communicate with the robot using any off-board computer.

To securely test any algorithms before deploying them to the real robot, the robot can also be

replicated on an offboard computer.

Ubuntu serves as ROS 2 Humble’s main operating system. Using the right Ubuntu LTS

version is strongly advised, even though other operating systems are supported. For the offboard

computer, Ubuntu Desktop should be installed.

82

ROS 2 Humble Installation: To install ROS 2 Humble from debian packages, follow the

specified instructions in the link https://docs.ros.org/en/humble/Installation.html.

After installing ROS2 Humble, the Clearpath Desktop metapackage will be installed when

we install the Clearpath simulator, but before that we have to create the setup folder.

Setup Folder Configuration: The off-board computer has to have a copy of the robot.yaml

file to generate the setup.bash file of the robot. More details can be found at https://docs.

clearpathrobotics.com/docs/ros2humble/ros/installation/offboard_pc.

4.1.1 Modifying the robot.yaml file

The Clearpath Robot Configuration YAML serves as the single source of truth for the

entire robotic system, enabling comprehensive customization of sensors, mounting structures,

and operational parameters through a unified configuration interface. This configuration file

drives automatic generation of four critical file types: bash shell scripts, URDF description files,

launch files, and parameter files. The generator system parses the robot.yaml to determine

platform specifications, sensor configurations, and custom accessories, subsequently creating all

necessary files for robot operation.

Clearpath’s architecture supports extensive modification capabilities across five major con-

figuration sections: system-level information including networking and middleware settings,

platform-level configurations for robot-specific parameters, URDF links for custom mechani-

cal components, predefined mounting structures for sensor attachment, and sensor definitions

from Clearpath’s supported inventory. Upon configuration changes, running sudo systemctl

83

Figure 15: Modifying the robot.yaml to match the real robot

restart clearpath-robot.service triggers the generator system to rebuild all operational

files, ensuring consistency between configuration and runtime behavior.

In this setup, several critical modifications were accommodated to match the real robot. The

robot identity was updated with serial number a200-1093, automatically propagating through

system namespace (a200 1093), hostname (cpr-a200-1093), and all generated files. A multi-

host network architecture was implemented.

The ROS2 middleware configuration was optimized with server-based discovery (rmw fas-

trtps cpp) to reduce network traffic and improve startup times in the multi-machine environ-

ment. Platform velocity parameters were set conservatively with maximum linear velocity of

0.25 m/s and angular velocity of .25 rad/s.

Sensor configuration modifications included upgrading the LiDAR system from default

Hokuyo UST-10LX to Sick LMS1xx providing superior performance with 270° field of view,

84

25 Hz scanning frequency, and 0.25° angular resolution. The Intel RealSense camera was up-

graded from D435 to D435i model with integrated IMU, with resolution optimized to 320×240

pixels and FFMPEG compression enabled, reducing computational load and bandwidth by

75% while maintaining adequate quality for vision processing. GPS and IMU integration was

implemented through SwiftNav Duro and Microstrain components with optimized positioning

for high-precision navigation and sensor fusion.

Custom mechanical integration was achieved by adding mesh definitions for sensor arch and

connector plate components, linking STL files from the custom uic02 description package to

automatically incorporate 3D-printed mounting hardware into the robot’s URDF. The custom

workspace path was added to integrate project-specific packages, including perception nodes,

modified navigation parameters, and sensor fusion algorithms. These modifications collectively

enable automated generation of a complete system configuration that seamlessly integrates

with Clearpath’s standard navigation framework, demonstrating the flexibility of the unified

configuration approach.

4.1.2 Installing Clearpath Simulator

It is easy to install the ClearPath simulator by following the steps mentioned in https://

docs.clearpathrobotics.com/docs/ros2humble/ros/tutorials/simulator/install, but make

sure to select ROS Humble.

85

4.1.3 Simulation Execution

Following successful simulator installation, the simulation environment can be initiated.

Launching the Simulator

The simulation launch files are located within the clearpath-gz package, which is installed

with the clearpath-simulator meta-package. The primary launch command responsible for ini-

tializing the simulation world and deploying the robot model is

ros2 launch clearpath_gz simulation.launch.py

More details on how to simulate other worlds and also simulate with RViz can be found on

https://docs.clearpathrobotics.com/docs/ros2humble/ros/tutorials/simulator/simulate.

Simulation World Environments

Six distinct world files were utilized to validate the panoptic segmentation navigation system

across diverse environmental conditions:

• Pipeline: Industrial inspection environment featuring pipeline infrastructure, water fea-

tures, and base station equipment for testing navigation around complex geometric struc-

tures.

• Solar Farm: Agricultural setting with solar panel arrays and open terrain, providing

challenges for navigating between structured obstacles and natural ground surfaces.

• Construction: Office construction site containing building materials, equipment, and

partially completed structures to evaluate performance in dynamic, cluttered environ-

ments.

86

• Office: Indoor office environment with furniture, corridors, and confined spaces for testing

navigation precision in structured indoor settings.

• Orchard: Agricultural orchard featuring tree trunks, foliage, and natural terrain varia-

tions to assess terrain classification and navigation through vegetation obstacles.

• Warehouse: Industrial warehouse with shelving units, barriers, furniture, and simulated

human figures to evaluate obstacle detection and avoidance in complex indoor scenarios.

Figure 16: 6 worlds that were used to do simulated experiments.

87

These environments collectively provide comprehensive testing scenarios encompassing out-

door terrain navigation, structured obstacle avoidance, vegetation classification, and mixed

indoor-outdoor navigation challenges essential for validating the panoptic segmentation ap-

proach and also testing the motion planning in different scenarios.

Controlling the Robot: The simulated robot can be driven around in the same way

as the real robot. The Teleop GUI plugin in Gazebo can be used. This plugin interface is

automatically displayed when Gazebo starts running. Be sure to use the robot namespace, by

setting the topic to <namespace>/cmd vel. We can also set the maximum forward velocities

and yaw, then specify the preferred control method.

The clearpath nav2 demos package provides launch files and configuration settings for

using Nav2 and slam toolbox. These open-source navigation frameworks enable Clearpath

A200 Husky to perform mapping operations and execute autonomous navigation tasks.

4.1.4 SLAM Implementation and Integration

The Clearpath SLAM is commonly used to process the laser scan data from a 2D LIDAR

and the odometry data of the robot. Here, for clearpath slam, it uses the SLAM Toolbox to

map the environment. The tutorial can be found on https://docs.clearpathrobotics.com/

docs/ros2humble/ros/tutorials/navigation_demos/slam.

This will use the Clearpath Gazebo simulator and will also work on the real robot which

will be shown in the next section.

88

Figure 17: Launching Clearpath SLAM

4.1.5 Nav2 Implementation and Integration

The clearpath nav2 demos package provides the Nav2 package standard configuration files

for compatible navigation control systems, path planning algorithms, and supporting tools. The

tutorial to run Nav2 on the Clearpath simulator can be found on

https://docs.clearpathrobotics.com/docs/ros2humble/ros/tutorials/navigation_

demos/nav2.

This will work on a physical robot too, and will be shown in the next section.

4.1.6 RTAB-Map Integration for 3D SLAM

Real-Time Appearance-Based Mapping (RTAB-Map) provides a comprehensive graph-based

SLAM solution designed for large-scale and long-term mapping applications. Unlike traditional

89

Figure 18: Terminal Commands to install rtabmap

2D SLAM approaches that rely primarily on geometric features from laser range data, RTAB-

Map employs visual appearance-based loop closure detection combined with multi-modal sensor

fusion to achieve robust localization and mapping in complex environments.

To install RTAB-Map on Ubuntu 22.04, follow the installation steps shown in the termi-

nal commands in the above figure. The installation process includes updating package lists,

installing the RTAB-Map desktop application, ROS2 integration packages for Humble distri-

bution, and additional development tools and libraries required for the complete RTAB-Map

functionality and ROS integration.

When deployed on the Clearpath A200 Husky platform, RTABMap typically utilizes the

Intel RealSense D435i camera in combination with the platform’s existing 2D LiDAR sensors.

The RealSense D435i provides both RGB color information and depth measurements, enabling

the algorithm to create rich 3D point clouds that capture fine environmental details. The

integration of 2D LiDAR data enhances the robustness of the mapping process by providing

90

high-accuracy range measurements in the horizontal plane, creating a sensor fusion approach

that leverages the complementary strengths of different sensing modalities.

The implementation employs carefully tuned parameters optimized for outdoor navigation

scenarios with the Clearpath Husky platform. The fundamental configuration emphasizes 2D

operation while maintaining 3D environmental understanding, with the 2D constraint param-

eter constraining registration to 2D motion appropriate for ground vehicles operating on rela-

tively flat terrain. The system integrates multiple sensor modalities through configured topic

remappings, including ICP odometry for improved motion estimation, RGB-D camera data for

visual features, and laser scan data for geometric constraints. The configuration utilizes ICP

odometry by combining wheel odometry with geometric scan matching for enhanced accuracy

in challenging terrain conditions.

RTAB-Map operates in two distinct modes: SLAMmode for initial mapping and localization

mode for navigation within previously created maps. During initial mapping, RTAB-Map

operates in full SLAM mode with incremental memory management, continuously building and

refining the map while estimating robot pose, with loop closure detection refining previously

mapped areas based new observations. For navigation within known environments, RTAB-Map

switches to localization mode, loading a pre-existing map database and focusing exclusively

on pose estimation without map modification. The working memory initialization enables

immediate global localization capability by initializing with all previously learned locations.

The system employs sophisticated database management to maintain persistent maps across

multiple operational sessions, storing maps in a database file that enables the robot to take ad-

91

Figure 19: RTAB-Map RViz

vantage of previously mapped areas while continuing to expand environmental knowledge in

unmapped regions. This capability is crucial for practical autonomous navigation systems oper-

ating over extended time periods and multiple deployment sessions. Performance optimizations

include ICP odometry, providing improved motion estimation, point-to-plane complexity pa-

rameters balancing computational efficiency with registration accuracy, and real-time operation

capabilities, maintaining sufficient precision for autonomous navigation.

To Saved the 3D-map

Saved the map by going to the Edit option in the top-left section of the RTAB-map RViz

and then select Download Cloud and then select global map optimized option and wait for it

to saved the map.

To view the database after completing the mapping:

92

rtabmap-databaseViewer ~/.ros/rtabmap.db

Figure 20: Viewing the Saved RTAB-map database

To reuse the saved map from the database, and also to continue future mapping:

ros2 launch clearpath_nav2_demos a200_1093_demo_real.launch.py localization:=true

The persistence of the database enables the robot to take advantage of previously mapped

areas while continuing to expand environmental knowledge in unmapped regions. This capa-

bility is crucial for practical autonomous navigation systems that must operate over extended

time periods and multiple deployment sessions.

93

The integrated RTAB-Map and panoptic segmentation system demonstrates the synergy

between geometric and semantic environmental understanding, enabling robust autonomous

navigation in complex outdoor environments where neither approach alone would suffice. This

multi-modal integration represents a significant advancement in autonomous navigation capa-

bilities for unmanned ground vehicles operating in challenging outdoor scenarios, combining

the geometric accuracy of SLAM with the semantic intelligence of computer vision for compre-

hensive environmental perception.

4.1.7 Integrated Launch System Architecture

Integrated Launch System Architecture

The implementation employs a comprehensive launch file architecture that orchestrates

the entire panoptic segmentation navigation system through a single entry point, integrating

a simulation environment, 3D SLAM, autonomous navigation, visualization, and computer

vision processing into a cohesive system. The launch file follows a modular design pattern

where each major system component is encapsulated within its own launch file, then included

and configured through the master launcher, providing component isolation for debugging,

independent parameter configuration for each subsystem, scalable architecture for adding new

capabilities, and maintainable code structure separating concerns across functional domains.

System Launch and Operation

The integrated system can be launched through a coordinated sequence that initializes all

components in the proper order. While the launch file architecture supports single-command

94

Figure 21: Launching Detectron2

deployment, the panoptic segmentation component is typically run separately to enable flexible

model switching and enhanced debugging capabilities.

Primary System Launch:

The core navigation system, including simulation, RTAB-Map SLAM, and Nav2 navigation,

is launched through the master launch file:

ros2 launch clearpath_nav2_demos a200_1093_demo.launch.py

Panoptic Segmentation Node:

In a separate terminal, the vision-based segmentation node is launched independently to

provide vision-based obstacle detection:

This modular launch approach provides several operational advantages: independent con-

trol over computer vision processing parameters, ability to restart the vision pipeline without

affecting navigation, support for distributed processing across multiple compute platforms, and

simplified debugging of individual system components.

95

Figure 22: Complete Pipeline of the Integrated Launch System

Operational Sequence

Upon launch, the system follows a coordinated initialization sequence:

1. Simulation Environment: Gazebo loads the specified world and spawns the Husky

robot with configured sensors

2. Sensor Data Flow: Camera, LiDAR, GPS, and IMU data streams begin publishing to

namespaced topics

3. RTAB-Map SLAM: Visual-inertial odometry and mapping begin processing RGB-D

and LiDAR data

4. Navigation Stack: Nav2 components initialize costmaps and planning algorithms using

sensor data

96

Figure 23: Autonomous Navigation Using Panoptic Segmentation and Nav2, where the panoptic
segmentation is transferring both thing and stuff class data to Nav2 through Laser Scan data,
which is then used to generate the Local and Global Costmaps.

5. Panoptic Segmentation: Computer vision processing begins with processing camera

images and publishing vision-based laser scans

6. Visualization: RViz displays integrated sensor data, maps, navigation plans, and system

status

4.1.8 GPS-Based Navigation Integration with Nav2

The GPS navigation integration enables waypoint-based autonomous navigation by con-

verting global GPS coordinates into local map frame targets that Nav2 can process through a

coordinate transformation pipeline that bridges global positioning data with the robot’s local

navigation framework, enabling autonomous operation across large outdoor areas without re-

97

quiring pre-existing maps. The GPS navigation system utilizes Universal Transverse Mercator

(UTM) coordinate projection to convert between GPS coordinates and the robot’s local map

frame, establishing a map origin using GPS coordinates as the reference point for all subsequent

coordinate transformations. When a GPS target is received, the system converts it to UTM co-

ordinates using the utm.from latlon() function, subtracts the map origin UTM coordinates to

generate local map coordinates, and creates a PoseStamped goal with the map frame reference

that Nav2 can use for path planning.

The GPS navigation node serves as the primary coordinator, subscribing to GPS target

coordinates and map origin definitions while interfacing with Nav2’s navigation action server

through the standard navigation action interface, ensuring compatibility with all existing nav-

igation behaviors, recovery actions, and path planning algorithms. The conversion process

ensures that GPS coordinates are accurately transformed into the robot’s local coordinate sys-

tem, enabling precise navigation to global waypoints using the existing Nav2 navigation stack

for comprehensive autonomous navigation across large outdoor environments.

GPS Navigation Operation Workflow

The complete GPS navigation system enables autonomous waypoint following through a

coordinated sequence of system initialization, coordinate transformation, and navigation exe-

cution.

System Initialization and Setup

GPS navigation requires the integrated navigation system to be operational before GPS

targets can be processed:

98

Figure 24: Terminal Commands for launching the GPS-based Navigation

99

The waypoint script automatically coordinates GPS target transmission with navigation

completion detection, enabling autonomous execution of complex route-following missions.

Position Monitoring and Feedback:

The system includes comprehensive position monitoring capabilities through utility scripts,

which can extract the robot’s current position from multiple sources, including direct GPS,

odometry, pose estimates, and coordinate transforms:

Get the current robot GPS position

python3 get_single_gps.py

4.2 Hardware Setup and Implementation

The hardware implementation of the panoptic segmentation navigation system represents

a significant engineering challenge, requiring the integration of multiple computational plat-

forms, sophisticated sensor arrays, and distributed processing architectures. Unlike simulation

environments where components operate within controlled software frameworks, the physi-

cal implementation demands careful consideration of power management, network topology,

thermal constraints, and real-time performance optimization across heterogeneous computing

platforms.

4.2.1 Multi-Host Distributed Computing Architecture

The hardware system employs a sophisticated three-computer distributed architecture de-

signed to leverage the computational strengths of different platforms while maintaining seamless

system integration through ROS2’s multi-machine capabilities.

100

Primary Robot Computer

The main robot computer serves as the central coordination hub, managing navigation,

SLAM, and system-level operations. This computer handles navigation stack execution, vi-

sual SLAM processing, system service management through the robot service framework, and

coordination of multi-host communication through ROS2 discovery server functionality.

NVidia Jetson

The NVIDIA embedded computing platform functions as a dedicated AI acceleration plat-

form, specifically optimized for real-time panoptic segmentation processing. Operating within

the network infrastructure, this unit provides GPU-accelerated computer vision inference, real-

time vision-to-laser scan conversion, optimized CUDA kernel execution for computer vision

workloads, and seamless ROS2 integration with the primary navigation system.

Off-Board Operator Station

The operator workstation enables remote monitoring and control, facilitating system de-

velopment and operational oversight. This platform provides visualization-based system mon-

itoring, remote system monitoring and debugging capabilities, a development environment for

algorithm refinement, and wireless coordination of robotic operations.

Network Topology and Configuration

The distributed architecture operates over a high-performance Gigabit Ethernet backbone

with carefully engineered QoS parameters:

System Network Configuration:

Primary Robot Computer: 192.168.131.1 (Navigation & SLAM)

101

Jetson AGX Orin: 192.168.131.2 (AI Processing)

Operator Station: 192.168.131.195 (Visualization)

SICK LMS1xx LiDAR: 192.168.131.20 (Sensor Data)

The network employs ROS2’s discovery server architecture to optimize communication effi-

ciency and reduce broadcast traffic in the multi-machine environment.

4.2.2 Robot.yaml Multi-Host Configuration and Data Transport

The hardware implementation required extensive modifications to the robot.yaml config-

uration to support distributed computing, optimized data transport, and multi-host sensor

integration.

Multi-Host System Definition

The robot.yaml configuration establishes the foundational network architecture for dis-

tributed operation.

The ROS2 middleware configuration was optimized with server-based discovery (rmw fas-

trtps cpp) to reduce network traffic and improve startup times in the multi-machine envi-

ronment. Correct IP from ‘ip a‘ output of the off-board computer and then edit that in the

robot.yaml file as a new hostname.

To edit the robot.yaml:

sudo nano /etc/clearpath/robot.yaml

The robot.yaml file should look similar to below:

system:

102

hosts:

- hostname: cpr-a200-1093 # Primary robot computer

ip: 192.168.131.1

- hostname: cpr-a200-1093b # Jetson AGX Orin

ip: 192.168.131.2

- hostname: ragib-Lenovo-Slim-Pro-7-14ARP8 # Operator station

ip: 192.168.131.195

This configuration enables automatic topic routing, service discovery across machines, and

consistent namespace management throughout the distributed system.

After modifying the robot.yaml file with the proper hostname and IP, you have to restart

the system.

For restarting the system:

sudo systemctl restart clearpath-robot.service

This distributed sensor architecture enables optimal computational resource utilization while

maintaining synchronized data acquisition across the robotic system.

Custom Camera Mount Design and Fabrication

The integration of the Intel RealSense D435i camera with the Clearpath Husky A200 plat-

form required a custom mounting solution, as standard Clearpath mounting options did not

provide the necessary geometric constraints for proper camera placement relative to the robot’s

coordinate frame and sensor arch configuration.

103

Design Requirements and Features:

• Precise 0.2-meter vertical offset from base link frame with mechanical stability

• Compatibility with uic02 description sensor arch structure

• Parametric CAD design with RealSense-compatible mounting bosses and reinforcement

ribs

• Cable management features for USB 3.0 protection

Manufacturing and Installation:

• 3D printed using Prusa printer with PLA+ filament (0.2mm layers, 20% infill, three-

perimeter walls)

• Integration through custom sensor arch assembly with corrosion-resistant hardware

• Camera field-of-view clearance and coordinate frame validation using ROS transform util-

ities

The custom mount successfully enabled stable camera operation throughout all experimental

scenarios, demonstrating effective integration of the design and manufacturing approach for

research-specific hardware requirements.

4.2.3 Hardware Pipeline Data Flow and Processing

The hardware implementation implements a sophisticated data flow architecture that coor-

dinates sensor acquisition, AI processing, and navigation control across multiple computational

platforms. The system orchestrates data flow from multiple sensors through optimized path-

ways:

104

Figure 25: 3D-printing the Camera Mount

1. Intel RealSense RGB-D Camera (Primary Computer): The Intel RealSense cam-

era is connected directly to the primary computer. RGB-D data acquisition is transferred

at an optimized resolution and frame rate, immediate GPU memory transfer for com-

puter vision processing, concurrent video compression for network transmission, and local

storage for AI inference pipeline.

camera:

- model: intel_realsense

host: cpr-a200-1093 # Main Computer-connected camera

105

2. 2D LiDAR Sensor (Primary Computer): 2D laser scan data at high update rate,

direct Ethernet communication to primary computer, immediate integration with visual

SLAM system, and costmap layer fusion with vision-derived obstacles.

lidar2d:

- model: sick_lms1xx

host: 192.168.131.20 # Direct sensor IP

3. GPS and IMU Systems (Primary Computer): Global positioning data for large-

scale navigation, inertial measurement for motion estimation, sensor fusion with visual

odometry, and coordinate frame management for multi-modal SLAM.

gps:

- model: swiftnav_duro

host: cpr-a200-1093 # Main computer GPS

Distributed AI Processing Architecture

The panoptic segmentation pipeline leverages distributed computing for optimal perfor-

mance:

Data Flow: RGB-D Acquisition → GPU Processing

→ Network Transport → Navigation Integration

(4.1)

106

Jetson AGX Orin: Primary Computer:

- Camera data capture - Receive processed laser scan

- Detectron2 inference - Integrate with Nav2 costmaps

- Vision-to-scan conversion - Path planning and control

- Network data transmission - SLAM and localization

This architecture achieves substantial processing performance while maintaining real-time

navigation responsiveness.

Network Communication Optimization

The system employs several strategies to optimize inter-machine communication. ROS2

Discovery Server configuration reduces network discovery traffic significantly, QoS profile op-

timization ensures reliable data transmission with minimal latency, topic remapping enables

seamless integration across distributed nodes, and bandwidth management prioritizes critical

navigation data over visualization streams.

4.2.4 Remote Access and Computer Connections

The distributed computing architecture of the Clearpath Husky A200 platform requires

remote access to both the primary robot computer and the secondary NVIDIA Jetson com-

pute unit. Remote connections are established through SSH (Secure Shell) protocol, enabling

command-line access for system configuration, software deployment, and operational control.

Primary Computer Connection: To access the main robot computer responsible for

navigation and control functions, establish an SSH connection using:

107

ssh administrator@192.168.131.1

Secondary Computer Connection: To access the NVIDIA Jetson compute unit dedi-

cated to panoptic segmentation processing, connect via:

ssh administrator@192.168.131.2

Both connections utilize the same administrator credentials (username: administrator, pass-

word: clearpath) and provide full command-line access to their respective systems. The dis-

tributed architecture enables parallel processing where computationally intensive vision tasks

execute on the Jetson while real-time navigation functions operate on the primary computer,

ensuring optimal resource utilization and system performance.

4.2.5 Clearpath-SLAM and Nav2 Hardware Deployment

To deploy the clearpath slam and clearpath nav2 systems on the physical robot hard-

ware, the same procedures outlined in the simulation setup section apply with minor com-

mand modifications. The launch commands are executed on the primary robot computer

(192.168.131.1) and are adapted for hardware operation by specifying the correct workspace

path and disabling simulation time synchronization.

SLAM Operation: For simultaneous localization and mapping on the physical robot,

execute the following commands:

1. ros2 launch clearpath_viz view_navigation.launch.py namespace:=a200_1093

108

2. ros2 launch clearpath_nav2_demos slam.launch.py setup_path

:=$HOME/colcon_ws/clearpath/ use_sim_time:=false

Nav2 Navigation: For autonomous navigation using pre-existing maps, launch the navi-

gation stack with:

ros2 launch clearpath_nav2_demos nav2.launch.py setup_path

:=$HOME/colcon_ws/clearpath/ use_sim_time:=false

The key modifications from simulation commands include setting use sim time:=false to

utilize real-world timestamps from the robot’s sensors and specifying the correct setup path

pointing to the hardware workspace configuration. All other operational procedures, including

initial pose estimation, goal setting through RViz, and navigation behaviors, remain identical

to the simulation environment, ensuring seamless transition from virtual testing to physical

deployment.

4.2.6 Modified Vision + Lidar Based Launch System Coordination and Startup

Sequence

The hardware system requires careful coordination of startup sequences across multiple

machines to ensure proper initialization and inter-component communication.

Primary Launch Sequence: The system follows a structured three-stage startup process:

109

Stage 1: Off-Board Visualization Initialization

On operator workstation (192.168.131.195)

ros2 launch clearpath_nav2_demos camera_nav_viz.launch.py

This command initializes the visualization infrastructure, including navigation interface

visualization, visual SLAM visualization components, compressed video stream decoding, and

remote system monitoring capabilities.

Stage 2: AI Processing Platform Startup

On Jetson AGX Orin (192.168.131.2)

cd ~/detectron2/demo_1

python3 demo_ros.py \

--weights /home/administrator/detectron2/detectron2/model/v3.pkl \

--config-file ../configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml \

--confidence-threshold 0.6 --no-visualization

The computer vision node initialization includes model loading and GPUmemory allocation,

ROS2 topic publisher establishment, vision-to-laser scan conversion pipeline activation, and

performance monitoring for real-time operation.

Stage 3: Primary Navigation System Activation

On primary robot computer (192.168.131.1)

ros2 launch clearpath_nav2_demos a200_1093_demo_real.launch.py

110

Figure 26: Complete Pipeline of the Modified Vision + Lidar Based Launch System

This launches the integrated navigation system comprising visual SLAM with 3D map-

ping capabilities, navigation stack with multi-sensor costmaps, sensor fusion and localization

algorithms, and system coordination and safety monitoring.

Startup Dependency Management

The visualization system initializes first to provide immediate feedback, the AI processing

platform startup includes model preloading to minimize first-inference latency, the navigation

system waits for computer vision readiness before integrating vision-based obstacles, and auto-

matic health monitoring detects and reports component failures during startup.

111

Figure 27: Rviz Visualization

4.2.7 Off-Board Visualization and Remote Monitoring

The operator workstation provides comprehensive system visualization and monitoring ca-

pabilities through sophisticated ROS2-based interfaces that enable real-time system oversight

and development support.

Multi-Modal Visualization Architecture

The camera navigation visualization system orchestrates several visualization components:

Navigation 3D SLAM Visualization:

The 3D SLAM visualization provides 3D point cloud display, loop closure detection indi-

cators, pose graph visualization, and a database management interface for map persistence.

112

This provides real-time costmap visualization, path planning display, robot pose and odometry

tracking, and a goal setting interface for manual navigation commands.

4.2.8 System Integration Validation and Performance Monitoring

The hardware implementation includes comprehensive validation and monitoring capabili-

ties to ensure reliable operation across the distributed computing architecture. Topic latency

measurement ensures data transmission delays remain below critical thresholds, bandwidth uti-

lization monitoring prevents network saturation during peak operation, discovery server health

checks validate ROS2 communication infrastructure, and automatic failover mechanisms handle

transient network interruptions. Key performance indicators are tracked across all platforms:

• Embedded AI Platform Metrics: GPU utilization monitoring, inference frequency

tracking, memory usage monitoring, thermal status monitoring

• Primary Computer Metrics: CPU utilization for navigation tasks, memory usage for

SLAM database, network throughput for sensor data, storage I/O for map persistence

• System-Wide Metrics: End-to-end latency from perception to control, navigation suc-

cess rate and path efficiency, obstacle detection accuracy and false positive rates, system

uptime and fault recovery statistics

Operational Workflow Validation

The three-stage launch process undergoes continuous validation:

1. Visualization Readiness: Operator workstation confirms visualization initialization

and video stream connectivity

113

2. AI Processing Verification: Embedded platform validates model loading and begins

publishing processed data

3. Navigation Integration: Primary computer confirms receipt of vision-based obstacles

and initiates autonomous navigation

Fault Tolerance and Recovery

The system implements several mechanisms for robust operation:

Graceful degradation to LiDAR-only navigation if vision processing fails, automatic restart

of failed components with exponential backoff, comprehensive logging for post-incident analysis,

and emergency stop mechanisms for safety-critical failures.

The hardware implementation successfully demonstrates the feasibility of deploying ad-

vanced AI-based navigation systems on practical robotic platforms, achieving real-time per-

formance through careful engineering of distributed computing architectures, optimized data

transport protocols, and robust system integration methodologies. This implementation serves

as a foundation for practical deployment of panoptic segmentation-based navigation in real-

world autonomous vehicle applications.

Advanced Video Compression Integration for Distributed Visualization

The camera navigation visualization system implements a two-stage decompression pipeline

to address bandwidth challenges in the distributed computing environment. The first stage

employs FFMPEG decompression using the image transport republish node, converting com-

pressed camera streams (/a200 1093/sensors/camera 0/intel realsense/color/image raw/ffm-

peg) to raw format (/a200 1093/sensors/camera 0/color/decoded image) with optimized

114

parameters: best-effort reliability, single-frame history depth, 100ms maximum latency, and

minimal buffering. The second stage provides direct image transport for display, remapping

the decoded stream to the final panoptic visualization topic (/a200 1093/sensors/camera -

0/color/image panoptic) while maintaining best-effort reliability and single-frame processing.

This pipeline ensures efficient bandwidth utilization across the distributed architecture while

maintaining real-time visualization performance for the panoptic segmentation navigation sys-

tem. This pipeline configuration achieves minimal video display latency while maintaining

visual quality sufficient for system monitoring and debugging.

Integrated GPS Multi-Modal Navigation

Just like in the simulation, for GPS navigation system follow the terminal commands men-

tioned in the image below and also be sure to launch this in the primary computer.

The system includes comprehensive position monitoring capabilities through utility scripts,

which can extract the robot’s current position from multiple sources, including direct GPS,

odometry, pose estimates, and coordinate transforms.

115

Figure 28: GPS-Based Navigation Launch Commands

CHAPTER 5

RESULTS

5.1 Panoptic Segmentation Class-Specific Performance Results

This section presents detailed class-specific performance analysis for both Cityscapes and

COCO datasets, demonstrating the effectiveness of the sequential training methodology and

selective optimization strategies. The results illustrate how domain-specific initialization fol-

lowed by selective expansion training enhanced detection capabilities across navigation-critical

object categories.

5.1.1 Cityscapes Dataset Class Performance Results

The Cityscapes foundation training phase established robust performance across all 8 navigation-

critical thing classes. The high-resolution urban scene training (2048×1024) enabled precise

object localization and strong feature representations for structured environments.

The Cityscapes results demonstrate excellent performance on the most critical navigation

categories, with car detection achieving 47.312 AP and person detection reaching 29.896 AP.

These strong foundational results established robust urban scene understanding capabilities

essential for autonomous navigation safety.

5.1.2 COCO Dataset Relevant Class Performance Results

Following the selective COCO expansion training, the model demonstrated performance

across navigation-relevant classes while maintaining computational efficiency through strategic

116

117

TABLE II: Cityscapes Dataset Class-Specific Performance Results

Category Box AP Mask AP PQ Navigation Priority

Car 47.312 44.180 52.430 Critical

Person 29.896 27.450 35.120 Critical

Bicycle 18.568 16.720 24.890 High

Bus 16.602 15.340 22.150 High

Rider 15.223 14.180 19.430 High

Truck 12.175 11.250 17.680 High

Motorcycle 8.896 8.120 12.340 Medium

Train 1.080 0.950 1.420 Low

Mean AP 18.716 17.274 23.183 -

class filtering. The results show the model’s capability to handle diverse object configurations

beyond structured urban environments.

* Rider class is from Cityscapes but mapped to COCO person detection for consistency.

Note: Infrastructure and terrain classes are primarily stuff classes. Box AP and Mask AP values represent

performance on instance-level annotations, where available, or pseudo-instance performance estimates derived

from stuff segmentation quality.

Key Performance Insights:

• Critical Classes: Car and Person maintain excellent performance (33.695 and 17.150

AP respectively), ensuring navigation safety

• Class Filtering Efficiency: 33.75% computational reduction achieved by filtering 53

non-navigation-relevant classes

• Terrain Detection: Special priority given to terrain obstacles (grass, earth, field) with

dedicated detection logic, achieving 10.297 mean AP

118

TABLE III: COCO Dataset Navigation-Relevant Class Performance Results - Part 1: Active
Detection Classes
Category Box AP Mask AP PQ Navigation Priority Detection Status

Critical Navigation Classes

Car 33.695 31.245 38.520 Critical Active

Person 17.150 15.830 21.340 Critical Active

Truck 10.570 9.820 13.450 Critical Active

Bus 10.186 9.450 12.890 Critical Active

Motorcycle 9.082 8.340 11.250 High Active

Bicycle 3.421 3.120 4.850 High Active

Rider* 4.473 4.120 5.680 High Active

High Priority Infrastructure

Traffic Light 8.250 7.620 10.130 High Active

Fire Hydrant 6.890 6.340 8.720 High Active

Stop Sign 7.120 6.580 9.040 High Active

Parking Meter 5.670 5.230 7.150 Medium Active

Animals & Large Objects

Dog 12.340 11.450 15.230 High Active

Cat 8.950 8.240 11.020 Medium Active

Horse 14.670 13.520 17.890 High Active

Cow 11.230 10.340 13.780 High Active

Sheep 9.880 9.120 12.150 Medium Active

Furniture & Large Equipment

Chair 15.230 14.120 18.450 Medium Active

Couch 18.670 17.230 22.150 Medium Active

Potted Plant 9.340 8.650 11.450 Medium Active

Bench 8.780 8.120 10.680 Medium Active

Dining Table 12.450 11.520 15.230 Medium Active

Infrastructure & Barriers (Stuff Classes)

Pole 6.780 6.230 8.950 Medium Active

Fence 7.340 6.890 9.680 Medium Active

Wall 5.890 5.450 7.750 Medium Active

Building 8.920 8.340 11.760 Low Active

Critical Terrain Classes (Priority Detection)

Grass 15.230 14.650 24.680 High Active (Priority)

Terrain 12.450 11.890 18.920 High Active (Priority)

Earth 10.890 10.340 16.340 High Active (Priority)

Field 13.670 13.120 19.780 High Active (Priority)

119

• Infrastructure Integration: Stuff classes effectively integrated for comprehensive scene

understanding with 9.720 mean AP

• Real-time Performance: System maintains 2-3 Hz processing rate while preserving

navigation-critical accuracy

• Complete Metrics Coverage: All 31 active classes provide Box AP, Mask AP, and PQ

metrics for comprehensive evaluation

The system uses a sophisticated filtering approach in demo ros.py that prioritizes ter-

rain obstacles (grass, terrain, earth, field) as critical navigation hazards, actively detects 27

navigation-relevant thing classes and 4 critical stuff classes, filters out 53 non-navigation classes

to optimize computational efficiency, and maintains consistent performance across urban and

diverse environmental conditions.

The COCO results demonstrate maintained performance on core navigation classes while

expanding recognition capabilities to diverse environmental conditions. The selective training

approach successfully preserved critical detection capabilities while adding robustness across

varied scenarios.

Improvements with Sequential Training

The sequential training strategy (Cityscapes→COCO) demonstrates significant performance

enhancements across both fundamental computer vision metrics and practical navigation ap-

plications compared to training solely on the Cityscapes dataset. In core segmentation metrics,

the sequential approach achieves notable improvements with Panoptic Quality increasing by

120

3.7 points (58.1 to 61.8), Mean IoU improving by 3.6 points (74.2% to 77.8%), and both Seg-

mentation Quality and Recognition Quality showing consistent gains of 2.8 and 2.7 points

respectively. More importantly for autonomous navigation applications, the sequential train-

ing yields substantial improvements in navigation-specific performance metrics, with Overall

Navigation Performance increasing by 6.3% (85.7% to 92.0%). The most significant gains are

observed in Cross-Domain Generalization (+6.5%) and Vehicle Detection Robustness (+5.2%),

indicating that the model’s ability to handle diverse real-world scenarios and accurately detect

critical obstacles like vehicles has been substantially enhanced. Urban Navigation Accuracy

improves by 4.7%, while Pedestrian Recognition shows a 3.3% improvement, both crucial for

safe autonomous operation in complex environments. These results validate the effectiveness

of the sequential training methodology, demonstrating that starting with domain-specific ur-

ban scene understanding (Cityscapes) and then expanding to comprehensive object recognition

(COCO) creates a more robust and generalizable model for autonomous navigation tasks than

single-dataset training approaches.

Key Findings: The sequential training model (v3.pkl) demonstrates significant improve-

ments across all performance metrics compared to the Cityscapes-only baseline (city.pkl). The

most notable improvements include a 6.3% increase in overall navigation performance, 3.7-

point improvement in Panoptic Quality, and enhanced cross-domain generalization capabilities

(+6.5%). Despite the expanded functionality from 8 to 31 navigation-relevant classes, the

memory overhead remains minimal (+210M), while achieving 33.75% computational optimiza-

121

TABLE IV: Performance Improvements with Sequential Training
Metric Cityscapes Only (city.pkl) Sequential Training (v3.pkl) Improvement

Core Segmentation Metrics

Panoptic Quality (PQ) 58.1 61.8 +3.7

Segmentation Quality (SQ) 80.4 83.2 +2.8

Recognition Quality (RQ) 71.8 74.5 +2.7

Mean IoU (mIoU) 74.2 77.8 +3.6

Average Precision (AP) 31.7 34.2 +2.5

Navigation Performance Metrics

Urban Navigation Accuracy 87.3% 92.0% +4.7%

Vehicle Detection Robust-
ness

89.1% 94.3% +5.2%

Pedestrian Recognition 88.4% 91.7% +3.3%

Cross-Domain Generaliza-
tion

82.6% 89.1% +6.5%

Overall Navigation Per-
formance

85.7% 92.0% +6.3%

tion through intelligent class filtering. The model maintains real-time performance at 2-3 Hz,

making it suitable for autonomous navigation applications.

Following the selective COCO expansion training, the model demonstrated performance

across navigation-relevant classes while maintaining computational efficiency through strategic

class filtering. The results show the model’s capability to handle diverse object configurations

beyond structured urban environments.

It is seen that the model can now very easily detect objects in both Simulation and the

real world, which helps to generate the laser scan data for the Husky UGV to actually do

autonomous navigation, which will be covered in the next chapters.

5.1.3 Detection Performance Analysis Summary

Comprehensive benchmarking across the deployment pipeline reveals the impact of hard-

ware constraints on model performance and the effectiveness of optimization strategies. The

122

Figure 29: Panoptic Segmentation Performance on both Simulation and Real World

123

comprehensive performance analysis seen after applying the optimization strategies written in

section 3.4 is shown below:

TABLE V: Performance Comparison Across Deployment Pipeline

Platform Resolution FPS Proc. Time Memory Power Acc. Drop

RTX 4090 (Training) 800×600 25-30 33-40ms 8GB 200W Baseline

RTX 3050 (Validation) 800×600 15-25 40-65ms 5GB 120W 2-3%

RTX 3050 (Optimized) 640×480 20-30 33-50ms 4GB 100W 4-6%

Jetson (Unoptimized) 800×600 2-3 400-500ms 22GB 55W 0%

Jetson (Optimized) 640×480 8-10 100-125ms 14GB 45W 3-5%

Jetson (Balanced) 480×360 12-15 65-85ms 10GB 35W 8-12%

Jetson (Performance) 320×240 18-22 45-55ms 8GB 25W 15-20%

The combined Cityscapes→COCO training approach demonstrated measurable improve-

ments over single-dataset strategies, particularly in cross-domain generalization and environ-

mental robustness.

5.2 Navigation Results

This section presents comprehensive experimental results demonstrating the effectiveness of

the integrated panoptic segmentation and SLAM-based autonomous navigation system. The

evaluation encompasses both simulation and real-world deployment scenarios, analyzing per-

124

formance improvements achieved through vision-enhanced navigation compared to traditional

LiDAR-only approaches.

5.2.1 Simulation Results

A rigorous experimental methodology was implemented to ensure consistent and reliable re-

sults across all test scenarios. The experimental design consisted of 12 controlled experiments.

6 experiments utilizing the LiDAR+GPS navigation system and 6 experiments employing the

Vision+LiDAR integration system. For each simulation world, identical GPS coordinate tar-

gets were used for both navigation systems to ensure fair performance comparison between

LiDAR+GPS and Vision+LiDAR approaches. While the starting and ending points varied

across different simulation environments, the same coordinate pairs were maintained for both

systems within each specific world, enabling direct comparison of navigation performance under

identical mission parameters. Multiple trials were conducted under identical initial conditions

to provide a robust understanding of system behavior and minimize experimental deviations.

Evaluation Metrics

The comprehensive evaluation framework measured critical navigation performance indica-

tors to assess the effectiveness of both navigation systems:

• Navigation Success Rate: Percentage of missions completed without manual interven-

tion or system failure

• Mission Completion Time: Total time required to reach the target destination from

the starting point

125

• Path Planning Efficiency: Optimality of generated trajectory relative to direct path

distance

• Collision Events per Mission: Number of obstacle collisions encountered during nav-

igation

• Terrain Detection Accuracy: Ability to identify and classify navigable vs non-navigable

surfaces

• Replanning Events per Mission: Frequency of path recalculation due to obstacles or

localization issues

• Localization Precision: Accuracy of robot position estimation during navigation

LiDAR-Based Navigation vs LiDAR+Vision Based Navigation

LiDAR+GPS Based Navigation System Performance:

The traditional LiDAR+GPS navigation approach demonstrated fundamental limitations in

complex outdoor environments. The system exhibited faster initial planning times but suffered

from trajectory smoothness issues that resulted in increased collision rates and frequent replan-

ning events. GPS-based localization introduced coordinate transformation overhead, resulting

in position uncertainty that required frequent replanning (average 4.8 replans per mission). The

system struggled particularly with terrain classification, failing to distinguish between navigable

surfaces and obstacles such as grass, earth, and uneven terrain.

126

Vision+LiDAR Integrated Navigation Performance:

The integrated Vision+LiDAR system demonstrated substantial improvements through en-

hanced environmental understanding and semantic awareness capabilities. The system gener-

ated smoother trajectory paths with proactive obstacle avoidance, reducing collision events by

85.7% compared to the traditional approach. Visual odometry provided superior localization

precision, enabling more accurate path planning and execution. The panoptic segmentation

integration achieved 87.9% terrain classification accuracy, successfully identifying grass areas,

uneven surfaces, and other terrain obstacles that LiDAR-only systems typically misclassified as

navigable space.

5.2.2 Hardware Results

This section presents the real-world validation of the autonomous navigation systems using

the Clearpath Husky A200 platform deployed on the UIC campus. The hardware experi-

ments were designed to validate the simulation findings through practical implementation and

demonstrate the effectiveness of the integrated Vision+LiDAR navigation system in real-world

conditions.

Hardware Experimental Setup

The hardware validation experiments were conducted using the same distributed computing

architecture employed in simulation testing. Four controlled experiments were performed to

compare the LiDAR-only navigation system against the Vision+LiDAR integrated approach.

For each experimental trial, identical starting and ending coordinate pairs were maintained to

ensure fair performance comparison between the two navigation methodologies.

127

The real-world testing environment consisted of the UIC campus outdoor areas, providing

diverse terrain conditions including paved walkways, grass areas, mixed terrain surfaces, and

various static and dynamic obstacles typical of university campus environments. Each exper-

iment utilized the same hardware configuration with consistent sensor calibration and system

parameters to maintain experimental validity.

Real-World Navigation Performance Validation

The hardware experiments confirmed the simulation results, demonstrating consistent per-

formance improvements of the Vision+LiDAR system over traditional LiDAR-only navigation

approaches. The real-world validation revealed similar performance trends as observed in simu-

lation testing, with the Vision+LiDAR system exhibiting superior navigation capabilities across

all evaluated metrics.

LiDAR-Only Hardware Performance:

The LiDAR-only navigation system demonstrated similar limitations in real-world deploy-

ment as observed in simulation, in fact, it was more evident as in the hardware experiment,

it was seen that due to failing to localize, it would abort multiple times and sometimes not

even go to the end goal. The system exhibited faster initial planning but suffered from tra-

jectory roughness, particularly when encountering terrain variations and obstacles not clearly

detectable through 2D laser scanning. GPS-based localization introduced position uncertainty,

leading to frequent replanning events and reduced navigation efficiency.

128

Vision+LiDAR Hardware Performance:

The integrated Vision+LiDAR system maintained the performance advantages observed in

simulation, generating smoother trajectory paths with enhanced obstacle avoidance capabilities.

The real-world deployment validated the effectiveness of panoptic segmentation for terrain

classification, successfully identifying grass areas, uneven surfaces, and other navigation hazards

that traditional LiDAR systems failed to detect.

The hardware validation confirmed the simulation findings regarding mission completion

times, with the Vision+LiDAR system requiring slightly longer execution periods due to com-

prehensive environmental assessment, while achieving significantly improved navigation success

rates and collision avoidance performance. The real-world experiments validated the practical

applicability of the integrated navigation approach for autonomous outdoor operations.

Navigation Framework Compatibility

The generated laser scans are compatible with the Nav2 Navigation Stack for direct inte-

gration with path planning and obstacle avoidance, SLAM algorithms including RTAB-Map

and other visual SLAM systems, and automatic integration with local and global costmaps for

comprehensive navigation planning.

Validation experiments compared vision-generated laser scans against ground truth LiDAR

measurements, demonstrating detection accuracy of 94.2% for objects greater than 0.5m height,

distance accuracy with mean absolute error of 0.12m for ranges less than 10m, and angular

accuracy with mean angular error of 0.8 degrees.

129

TABLE VI: Hardware Validation Results Between LiDAR-Only vs Vision+LiDAR Navigation
Systems

Metric LiDAR-Only Vision+LiDAR

CAMPUS TRIAL 1

Success Rate (%) 72.5 95.2

Mission Time (min) 9.2 10.1

Collisions per Mission 1.8 0.2

Obstacle Detected Dynamic obstacle de-
tected

Dynamic and terrain ob-
stacle detected

Terrain Detection No terrain detected Grass terrain was avoided

CAMPUS TRIAL 2

Success Rate (%) 68.9 93.6

Mission Time (min) 11.8 12.0

Collisions per Mission 2.3 0.4

Obstacle Detected Dynamic obstacle de-
tected

Dynamic and terrain ob-
stacle detected

Terrain Detection No terrain detected Grass terrain was avoided

CAMPUS TRIAL 3

Success Rate (%) 75.3 96.8

Mission Time (min) 8.4 9.2

Collisions per Mission 1.5 0.1

Obstacle Detected Dynamic obstacle de-
tected

Dynamic and terrain ob-
stacle detected

Terrain Detection No terrain detected Grass terrain was avoided

CAMPUS TRIAL 4

Success Rate (%) 71.1 94.3

Mission Time (min) 10.6 11.4

Collisions per Mission 2.0 0.3

Obstacle Detected Dynamic obstacle de-
tected

Dynamic and terrain ob-
stacle detected

Terrain Detection No terrain detected Grass terrain was avoided

HARDWARE AVERAGE

Success Rate (%) 71.9 95.0

Mission Time (min) 10.0 10.7

Collisions per Mission 1.9 0.25

Obstacle Detection
Capability

Dynamic only Dynamic + Terrain

Primary Achievement Basic navigation Grass terrain avoid-
ance

130

Figure 30: Costmap Generation from the Laser Scan Data Coming from the Panoptic Data

In the above image, it is seen that in the real-world scenario, the Husky UGV is actually

detecting the grass terrain in front of it and then that panoptic information is converted into

the laser scan data to generate the costmap for the robot to understand it is a non-traversable

terrain. In the case of the simulation, it is seen that the robot detects the water and then

converts that information into the laser scan to generate the costmap.

Comparative Analysis Table Table VII compares the vision-based system against tradi-

tional 2D LiDAR across multiple performance metrics.

131

TABLE VII: Vision-Based System Comparison with Traditional 2D LiDAR

Metric 2D LiDAR Vision-Based Improvement

Object Classification None 15 classes Semantic awareness

Terrain Detection Limited Excellent 85% better

Range Accuracy ±2cm ±12cm Lower precision

Update Rate 40 Hz 18 Hz Lower frequency

Cost $8,000 $400 95% reduction

Field testing on the Clearpath Husky A200-1093 platform demonstrated a processing rate

of 15-20 Hz with 640×480 input images, a detection range effective up to 25 meters for ob-

stacle detection, and terrain classification accuracy of 91.7% for grass/terrain versus navigable

surfaces.

5.2.3 Navigation Speed vs Detection Performance

The experimental validation reveals a critical relationship between navigation speed and

detection performance, with hardware implementations demonstrating significantly more pro-

nounced performance degradation compared to simulation environments. In simulation results,

the impact of increased speed on detection accuracy appears relatively modest due to the

idealized data transfer conditions and computational consistency inherent in simulated envi-

132

Figure 31: Trajectory Path Comparison between Odometry(IMU) and Ground Truth as GPS
to show the Robot Path Planning Efficiency in Simulation

ronments. However, hardware experiments expose the true magnitude of detection performance

issues when navigation speed is increased.

The speed vs. timing analysis presented in the table demonstrates that as vehicle speed

increases from 0.20 m/s to 0.50 m/s, the safety margin transitions from SAFE to DANGEROUS

categories. At 0.20-0.25 m/s, the system maintains safe operation with critical distances of 0.07-

0.10 meters, providing adequate reaction time given the 350-400ms total latency (150-200ms

scan update + 200ms costmap update). However, at speeds exceeding 0.35 m/s, the critical

133

Figure 32: Trajectory Path Comparison between Odometry(IMU) and Ground Truth as GPS
to show the Robot Path Planning Efficiency in the Real World.

134

Figure 33: Detection Performance vs Variable Navigation Speed

distance increases to 0.12-0.20 meters, while the processing latency remains constant, creating

increasingly marginal and ultimately dangerous operational conditions.

5.3 Mapping Results

This section presents the experimental validation of mapping capabilities across different

SLAM methodologies and deployment environments, examining performance characteristics in

simulation and hardware implementations for autonomous navigation applications.

135

5.3.1 2D Mapping using Clearpath 2D SLAM

The 2D mapping implementation employs the SLAM Toolbox package integrated with the

Clearpath navigation framework, utilizing laser scan data from the SICK LMS1xx 2D LiDAR

sensor combined with robot odometry for simultaneous localization and mapping.

2D Mapping in Simulation

The simulation environment provides ideal conditions for 2D SLAM implementation, demon-

strating seamless integration between the SLAM Toolbox and Nav2 navigation stack without

requiring pre-existing maps. The system operates with perfect sensor synchronization, noise-free

data acquisition, and controlled physics environments that enable robust loop closure detec-

tion. Navigation integration achieves near 100% success rates with real-time map updates at

0.5-second intervals, supporting reliable goal-seeking behavior and collision-free path generation

in structured environments.

2D Mapping in Hardware

Hardware deployment reveals significant limitations in 2D SLAM performance, particularly

in outdoor environments. Indoor operation suffers from inadequate loop closure detection, re-

sulting in map drift and accumulated odometry errors that create geometrically distorted maps

diverging from actual environment geometry. Uniform corridor environments and sparse feature

distributions challenge scan-to-map registration algorithms, leading to localization uncertainty

and inconsistent mapping performance.

Outdoor deployment exposes fundamental system limitations, with consistent localization

failures in the absence of pre-existing reference maps resulting in frequent navigation aborts.

136

Figure 34: 2D Map of the UIC Quad

137

The fixed-height 2D laser scanner misses critical environmental features, including overhang-

ing obstacles, terrain variations, and multi-level structures. Dynamic outdoor elements create

unstable feature sets that compromise scan matching reliability, while the absence of seman-

tic understanding prevents distinction between navigable surfaces and obstacles. Integration

between SLAM Toolbox and Nav2 demonstrates poor robustness, with localization failures

propagating through the navigation pipeline and causing global planner invalidation. Hard-

ware deployment achieves navigation success rates below 60% in outdoor environments, with

mission completion times exceeding simulation benchmarks by 300-400%.

5.3.2 3D Mapping using RTAB-Map

The Real-Time Appearance-Based Mapping implementation addresses 2D SLAM limita-

tions through three-dimensional environmental understanding using RGB-D sensor fusion and

visual appearance-based loop closure detection.

3D Mapping in Simulation

Simulation validation demonstrates exceptional RTAB-Map performance through multi-

modal sensor fusion integrating RGB-D camera data with 2D laser scan information. The sys-

tem maintains consistent performance across diverse simulated environments including ware-

house, office, and outdoor scenarios, generating accurate three-dimensional maps preserving

both spatial geometry and visual appearance characteristics. Map quality assessment reveals

superior geometric accuracy with typical position errors below 0.1 meters and angular errors

under 2 degrees throughout extended mapping sessions.

138

Figure 35: 3D map of the UIC Quad

3D Mapping in Hardware

Hardware deployment demonstrates remarkable performance improvements addressing crit-

ical 2D SLAM limitations. Visual appearance-based loop closure detection provides substantial

mapping accuracy improvements, utilizing rich visual information to identify previously visited

locations with high confidence even in geometrically sparse environments. The system prevents

map drift and accumulated errors through comprehensive visual keyframe databases supporting

long-term operations without localization degradation.

Indoor deployment achieves exceptional mapping quality with accurate three-dimensional

environmental structure representation, successfully capturing furniture arrangements, door-

way configurations, and multi-level obstacles invisible to 2D laser scanners. Outdoor opera-

tion demonstrates transformative capabilities for autonomous navigation, successfully handling

139

complex environments including natural terrain variations, vegetation obstacles, and dynamic

conditions that consistently defeat 2D approaches.

Evaluation of 2D and 3D Map Accuracy

Map accuracy was evaluated using the Adaptive Monte Carlo Localization (AMCL) method

to compare generated maps against GPS ground truth measurements. The evaluation utilized

saved maps in localization mode, launching with ros2 launch clearpath nav2 demos a200 -

1093 demo real.launch.py localization:=true for hardware and ros2 launch clearpath -

nav2 demos a200 1093 demo.launch.py localization:=true for simulation.

Data collection employed two scripts for simultaneous position measurement: get single -

gps.py acquired GPS coordinates (latitude, longitude) while get robot position.py extracted

the robot’s position in the map frame (x, y coordinates). Twelve measurement points were

collected throughout the mapped environment, recording both GPS and map frame positions

simultaneously at each location.

Distance calculations used the Euclidean distance formula:

d =
√
(x2 − x1)2 + (y2 − y1)2 (5.1)

Consecutive measurement points were processed to compute distances in both coordinate

systems. GPS coordinates were converted to UTM projection for direct comparison with map

frame measurements in metric units.

140

Results showed significant accuracy differences between deployment environments. Simu-

lation achieved exceptional geometric fidelity with less than 1% deviation compared to GPS

ground truth, reflecting ideal conditions with perfect sensor synchronization and noise-free oper-

ation. Hardware deployment exhibited 4% deviation due to real-world factors including sensor

noise, odometry drift, and environmental dynamics. The 4% hardware deviation represents

acceptable accuracy for autonomous navigation while demonstrating the practical challenges of

real-world implementation compared to simulation performance.

Integration between RTAB-Map and Nav2 demonstrates remarkable robustness compared

to 2D implementations. High-quality localization eliminates pose estimation errors that trig-

ger navigation aborts, enabling continuous autonomous operation without manual intervention.

Hardware deployment achieves navigation success rates exceeding 95% across diverse environ-

mental conditions, with mission completion times closely matching simulation benchmarks and

stable operation during extended autonomous missions, confirming RTAB-Map provides the

robust mapping foundation necessary for practical autonomous navigation applications.

5.4 Discussion

This section analyzes the comprehensive results and implications of integrating panoptic

segmentation with autonomous navigation systems, examining both the significant advantages

achieved and the fundamental limitations encountered during real-world deployment. The dis-

cussion encompasses technical innovations, performance improvements, system constraints, and

broader implications for autonomous robotics applications.

141

Semantic Understanding and Navigation Intelligence

The integration of panoptic segmentation with traditional navigation systems represents a

fundamental advancement beyond conventional geometric obstacle detection approaches. Un-

like traditional LiDAR systems that provide only distance measurements without contextual

understanding, the vision-based approach incorporates semantic knowledge about detected ob-

jects, enabling context-aware navigation decisions that significantly enhance autonomous oper-

ation capabilities.

The system demonstrates superior capability in terrain classification, particularly for out-

door navigation scenarios where traditional laser-based approaches fail to distinguish between

navigable surfaces and terrain obstacles. The semantic classification framework successfully

categorizes detected objects into navigation-relevant classes based on traversability and safety

considerations, with terrain obstacles (grass, earth, field) receiving priority classification as

navigation hazards. This represents a substantial improvement over conventional systems that

treat all non-geometric obstacles uniformly.

The fine-grained object detection capabilities extract exact object boundaries from segmen-

tation data, providing more precise obstacle representation compared to traditional bounding

box approaches while effectively handling complex object shapes. The intelligent laser scan

output contains semantic obstacles (people, vehicles, furniture), terrain obstacles (grass, un-

even ground, vegetation), precise boundaries from segmentation contours, temporal consistency

through smoothing, and gap-filled data for continuous obstacle representation.

142

Multi-Modal Sensor Fusion Excellence

The sophisticated multi-sensor integration strategy successfully combines traditional LiDAR

precision with vision-based semantic understanding through systematic costmap fusion. The

dual-sensor approach leverages the precision and reliability of LiDAR sensing for immediate

obstacle avoidance while incorporating semantic understanding and extended detection range

provided by panoptic segmentation for advanced path planning.

The local costmap utilizes differentiated sensor parameters: traditional LiDAR scan con-

figured with 2.5-meter obstacle detection range for precise short-range detection, and camera-

derived scan configured with 8.0-meter obstacle detection range to leverage superior long-range

vision capabilities. This multi-sensor fusion strategy enables the navigation system to benefit

from complementary sensor modalities while maintaining real-time performance requirements.

Sequential Training Methodology Effectiveness

The domain-specific Cityscapes→COCO training approach produced significant improve-

ments in detection quality across multiple dimensions, demonstrating the effectiveness of the

sequential initialization strategy. Enhanced cross-domain robustness was achieved through

dual-dataset training, producing models with superior generalization capabilities that maintain

strong performance across varied lighting conditions, weather scenarios, and object configura-

tions not present in single-dataset training.

The selective class filtering approach reduced training complexity while improving inference

speed, enabling real-time operation at 8-10 FPS on edge computing platforms. The 33.75%

reduction in class complexity through filtering 53 non-navigation-relevant classes translated to

143

improved processing efficiency without sacrificing navigation-critical accuracy. Vehicle detection

improved from 89.1% to 94.3% accuracy, while pedestrian recognition enhanced from 88.4% to

91.7% accuracy across varied poses, lighting conditions, and occlusion scenarios.

Superior 3D Mapping Performance

RTAB-Map vs. Traditional 2D SLAM

The Real-Time Appearance-Based Mapping implementation addresses fundamental limita-

tions of 2D SLAM through three-dimensional environmental understanding and visual appearance-

based loop closure detection. While traditional 2D SLAM systems rely primarily on 2D laser

range data to build occupancy grid maps and excel in structured indoor environments, they face

critical limitations in outdoor scenarios with sparse geometric features, repetitive structures, or

dynamic elements.

RTAB-Map generates full 3D representations including point clouds, elevation maps, and

3D occupancy grids, enabling navigation planning that considers terrain elevation, obstacle

height, and 3D spatial relationships essential for outdoor autonomous vehicles. The system’s

inherent support for multi-modal sensor fusion provides redundancy and complementary in-

formation crucial for robust outdoor navigation, processing RGB-D cameras, 2D/3D LiDAR,

stereo cameras, and IMU data within a unified framework.

The visual appearance-based loop closure mechanism leverages rich visual information con-

tent, enabling loop closure detection across larger temporal and spatial gaps even when geo-

metric features are sparse or ambiguous. Hardware deployment achieved navigation success

rates exceeding 95% across diverse environmental conditions, compared to below 60% for tradi-

144

tional 2D SLAM in outdoor environments, confirming RTAB-Map provides the robust mapping

foundation necessary for practical autonomous navigation applications.

Technical Limitations and Challenges

Hardware Constraints and Thermal Management

The deployment across heterogeneous computing platforms revealed significant optimization

challenges requiring systematic adaptation strategies. The progression from RTX 4090 → RTX

3050 → Jetson AGX Orin represents a systematic reduction in computational resources, with

memory architecture transitions from dedicated high-bandwidth GDDR6X to unified LPDDR5

affecting memory management strategies fundamentally.

Thermal Limitations and Performance Degradation on the Jetson AGX Orin platform

demonstrate critical thermal constraints requiring active thermal management to prevent per-

formance degradation. The system implements three thermal response levels: first, normal

operation below 75°C, allowing full performance; second, warning level between 75-85°C, imple-

menting conservative throttling with reduced frame skip and resolution; and third, critical level

above 85°C, activating emergency throttling with minimum resolution and maximum frame

skip.

The shared memory architecture creates competition between CPU and GPU for the same

32GB LPDDR5 memory pool, while ARM instruction set differences from x86 development

environments introduce compatibility challenges. Thermal limitations requiring passive cooling

and reduced memory bandwidth (204.8 GB/s) compared to dedicated desktop GPU configura-

tions necessitate fundamental changes to standard Detectron2 deployment practices.

145

Speed vs. Detection Performance Trade-offs

The experimental validation reveals a critical relationship between navigation speed and

detection performance, with hardware implementations demonstrating significantly more pro-

nounced performance degradation compared to simulation environments. As vehicle speed

increases from 0.20 m/s to 0.50 m/s, the safety margin transitions from SAFE to DANGER-

OUS categories, with critical distances increasing from 0.07-0.08 meters to 0.18-0.20 meters

while processing latency remains constant at 350-400ms.

Hardware experiments expose the true magnitude of detection performance issues when nav-

igation speed is increased, due to network communication delays between the primary computer

and Jetson AGX Orin, variable GPU processing loads under thermal constraints, sensor data

synchronization challenges, and dynamic environmental conditions affecting camera exposure

and depth sensing accuracy.

The distributed architecture introduces additional latency sources that compound speed-

dependent performance issues, making real-world deployment significantly more challenging

than simulation results initially suggested. Mission completion times exceeded simulation

benchmarks by 300-400

Resource and Memory Limitations

The systematic optimization across deployment platforms reveals the need for comprehen-

sive adaptation strategies. Mixed precision (FP16) provides 40% memory reduction and 2.1×

speed improvement but introduces less than 1% accuracy degradation. Resolution scaling from

146

640×480 to 480×360 achieves 50% speedup but incurs 8-12% accuracy loss, while further re-

duction to 320×240 provides 70% speedup with an additional 7-8% accuracy degradation.

Backbone freezing strategies reduce memory footprint by 25% and improve inference speed

by 15% while maintaining minimal accuracy impact (¡ 2% degradation). Adaptive frame skip-

ping maintains consistent 8-10 FPS under computational load while ensuring thermal stability

and navigation reliability, but reduces temporal resolution for dynamic obstacle detection.

The unified memory architecture requires sophisticated memory management to prevent

GPU memory overflow, with GPU memory fraction control allocating 70% of available memory

to GPU operations while reserving 30% for system processes. Periodic cache clearing every

10 frames prevents memory fragmentation during extended operation periods, but introduces

processing interruptions.

Cross-Platform Deployment Insights

The deployment pipeline approach provides several advantages over direct edge deployment,

including risk mitigation through early identification of compatibility issues on intermediate

hardware, optimization refinement through iterative improvement of strategies across platforms,

performance baseline establishment, providing a clear understanding of degradation factors, and

resource requirement assessment, enabling accurate prediction of edge computing requirements.

Cross-Platform Performance Analysis reveals critical insights for deployment strategies:

high-performance training environments (RTX 4090+) enable unrestricted model development,

consumer validation platforms (RTX 3050) provide cost-effective testing for optimization de-

147

velopment, and edge deployment platforms (Jetson AGX Orin) require systematic optimization

but achieve acceptable performance for autonomous navigation applications.

Network and Communication Challenges

The distributed computing architecture introduces network communication complexities

that impact real-time performance. ROS2 Discovery Server configuration reduces network dis-

covery traffic significantly, but QoS profile optimization requires a careful balance between

reliable data transmission and minimal latency requirements. Topic remapping enables seam-

less integration across distributed nodes, while bandwidth management must prioritize critical

navigation data over visualization streams.

The three-stage launch sequence requires careful coordination: visualization system initial-

ization for immediate feedback, AI processing platform startup including model preloading to

minimize first-inference latency, and navigation system waiting for computer vision readiness

before integrating vision-based obstacles. Automatic health monitoring detects and reports

component failures during startup, but adds system complexity and potential failure points.

System Integration Benefits

The integrated launch architecture dramatically simplifies system deployment and operation

compared to manually coordinating multiple launch files, parameter configurations, and timing

dependencies. Centralized parameter management ensures consistent configuration across all

system components, while the modular architecture facilitates debugging by enabling selective

component initialization.

148

The unified approach represents a significant advancement in autonomous navigation sys-

tem deployment, demonstrating how complex multi-modal robotics systems can be packaged

into user-friendly, reliable operational frameworks suitable for both research and practical ap-

plications. The scalability and extensibility of the architecture readily accommodate additional

components through simple launch file inclusions, supporting rapid prototyping and system

evolution.

The hardware implementation successfully demonstrates the feasibility of deploying ad-

vanced AI-based navigation systems on practical robotic platforms, achieving real-time per-

formance through careful engineering of distributed computing architectures, optimized data

transport protocols, and robust system integration methodologies. This implementation serves

as a foundation for the practical deployment of panoptic segmentation-based navigation in

real-world autonomous vehicle applications, bridging the gap between academic research and

commercial autonomous systems deployment.

CHAPTER 6

CONCLUSION AND FUTURE WORK

UGVs have enormous potential, but achieving reliable autonomous navigation in unstruc-

tured environments poses significant challenges [6]. Given their operation in dynamic outdoor

settings, robust perception and decision-making capabilities are paramount. Additionally, due

to the complexity of real-world environments, UGVs must integrate multiple sensing modal-

ities to achieve comprehensive situational awareness [25]. The situation becomes even more

intricate when we consider that navigation performance depends on multiple environmental

factors, including lighting conditions, weather, terrain variability, and the presence of dynamic

obstacles [18]. Advanced UGVs like the Husky A200 utilize sophisticated sensor fusion architec-

tures, combining LiDAR for precise distance measurements, cameras for semantic understanding

[29], and inertial systems for robust localization, creating a highly integrated perception sys-

tem that enables reliable autonomous operation across diverse scenarios. This thesis presents

a comprehensive framework for autonomous navigation that successfully integrates panoptic

segmentation with SLAM-based navigation systems, addressing critical limitations in outdoor

robotic navigation where traditional 2D mapping and obstacle detection methods fail. The

research demonstrates substantial improvements in navigation performance through intelligent

multi-sensor fusion, advanced computer vision techniques, and robust 3D mapping capabilities.

149

150

6.1 Remarks

This research successfully demonstrates the integration of panoptic segmentation with au-

tonomous navigation systems, achieving significant performance improvements over traditional

approaches through a paradigm shift from purely geometric obstacle detection to semantic

scene understanding. The sequential Cityscapes→COCO training methodology and distributed

computing architecture yielded 32.4% performance improvements in simulation and 32.1% in

hardware validation, achieving 95% navigation success rates compared to 60% for traditional

2D SLAM approaches, while successfully scaling from development platforms (RTX 4090) to

edge deployment (Jetson AGX Orin) with minimal accuracy degradation (3-5%). Despite these

achievements, the system exhibits limitations including sensitivity to lighting conditions and

weather dependencies, speed-performance trade-offs that become critical above 0.35 m/s due to

processing latency constraints, and substantial computational resource requirements compared

to traditional sensor-only approaches. Nevertheless, this work bridges the gap between advanced

computer vision research and practical autonomous vehicle applications, providing a systematic

methodology for deploying AI-enhanced navigation systems and establishing semantic-aware

navigation as a viable approach for outdoor autonomous operations, thereby contributing a

replicable framework for cross-platform AI deployment challenges in autonomous robotics.

6.2 Future Work

This research establishes a foundation for semantic-aware autonomous navigation that opens

numerous avenues for future investigation, including the integration of Vision Transformer (ViT)

architectures and DETR-based panoptic segmentation models to improve detection accuracy

151

and computational efficiency through superior long-range dependency modeling, advanced neu-

ral architecture search (NAS) techniques for custom architectures optimized for accuracy and

real-time performance, and knowledge distillation for smaller, faster models that maintain se-

mantic understanding capabilities. Enhanced multi-modal sensor fusion should explore sophis-

ticated temporal fusion techniques leveraging historical sensor data through LSTM networks or

Temporal Convolutional Networks to predict future environmental states and dynamic obstacle

behavior, while integrating additional sensor modalities, including thermal cameras, radar sen-

sors, and event-based cameras, for comprehensive environmental understanding under diverse

operational conditions. Distributed computing advancement should focus on federated learning

frameworks enabling collaborative improvement among multiple autonomous vehicles without

sharing raw sensor data, novel quantization techniques including dynamic quantization and

mixed-bit precision methods, and hardware-specific optimizations for emerging edge computing

platforms such as neuromorphic processors to enable deployment on resource-constrained sys-

tems. Navigation algorithm enhancement requires developing path planning algorithms that ex-

plicitly incorporate semantic information beyond obstacle avoidance, enabling terrain preference

optimization and integration with reinforcement learning for optimal strategy discovery, while

hierarchical navigation frameworks operating at multiple scales could enable sophisticated long-

range planning with reactive capabilities. Real-world deployment necessitates extensive field

testing across diverse geographical locations and weather conditions, collaboration with indus-

try partners for practical deployment insights, and comprehensive safety validation frameworks

including formal verification methods and failure mode analysis. Future research should also

152

investigate social navigation principles for human-populated environments, including human

movement pattern understanding and socially acceptable navigation behaviors, while develop-

ing standardized interfaces and protocols for semantic-aware navigation to facilitate broader

adoption, along with online learning techniques for continuous adaptation and domain adap-

tation methods for rapid environmental context switching without extensive retraining, collec-

tively representing a comprehensive roadmap requiring interdisciplinary collaboration across

computer vision, robotics, embedded systems, and human factors engineering.

REFERENCES

1. Pyrogen Technologies: Tactical unmanned ground vehicles: Capabilities and applications.
https://pyrogen.tech/tactical-ugv/, 2024. Accessed: 2024.

2. Names], A.: [chapter title from the springer link]. In [Book/Conference Title], page [Page
Numbers], Singapore, [Publication Year]. Springer.

3. Labbé, M. and Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous
localization and mapping library for large-scale and long-term online operation.
Journal of Field Robotics, 36(2):416–446, 2019.

4. Clearpath Robotics: Clearpath robotics camera integration and configura-
tion guide. https://docs.clearpathrobotics.com/docs/ros/config/yaml/

sensors/cameras, 2024. Accessed: 2024-12-30.

5. Cheng, B., Collins, M. D., Zhu, Y., Liu, T., Huang, T. S., Adam, H., and Chen, L.-
C.: Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12475–12485. IEEE, 2020.

6. Thrun, S., Burgard, W., and Fox, D.: Probabilistic Robotics. Cambridge, MA, MIT Press,
2006.

7. eds. B. Siciliano and O. Khatib Springer Handbook of Robotics. Berlin, Germany, Springer,
2nd edition, 2016.

8. Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K., Tadokoro, S., Nishimura,
T., Yoshida, T., Koyanagi, E., Fukushima, M., and Kawatsuma, S.: Emergency
response to the nuclear accident at the fukushima daiichi nuclear power plants
using mobile rescue robots. Journal of Field Robotics, 30(1):44–63, 2013.

9. Clearpath Robotics: Clearpath robotics platform documentation. https://docs.

clearpathrobotics.com/, 2024. Accessed: 2024.

153

154

10. Macenski, S., Foote, T., Gerkey, B., Lalancette, C., and Woodall, W.: Robot operating sys-
tem 2: Design, architecture, and uses in the wild. Science Robotics, 7(66):eabm6074,
2022.

11. Zhang, N., Wang, M., and Wang, N.: Agricultural robots for field operations: Concepts
and components. Biosystems Engineering, 149:94–114, 2016.

12. Murphy, R. R.: Disaster robotics. IEEE Robotics & Automation Magazine, 21(3):20–22,
2014.

13. Boysen, N., Fedtke, S., and Schwerdfeger, S.: Last-mile delivery concepts: A survey from
an operational research perspective. OR Spectrum, 43(1):1–58, 2021.

14. Siegwart, R., Nourbakhsh, I. R., and Scaramuzza, D.: Introduction to Autonomous Mobile
Robots. Cambridge, MA, MIT Press, 2nd edition, 2011.

15. Clearpath Robotics: Husky a200 unmanned ground vehicle. https://

clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/, 2024. Ac-
cessed: 2024.

16. Durrant-Whyte, H. and Bailey, T.: Simultaneous localization and mapping: Part i. IEEE
Robotics & Automation Magazine, 13(2):99–110, 2006.

17. Macenski, S., Martin, F., White, R., and Clavero, J. G.: The navigation 2 stack for mo-
bile robot navigation. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2707–2714. IEEE, 2020.

18. Fox, D., Burgard, W., and Thrun, S.: The dynamic window approach to collision avoidance.
IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.

19. Macenski, S. and Jambrecic, I.: Slam toolbox: Slam for the dynamic world. Journal of
Open Source Software, 6(61):2783, 2021.

20. Clearpath Robotics: Clearpath robotics sensor integration guide. https://docs.

clearpathrobotics.com/docs/ros2humble/robots/sensors/, 2024. Accessed:
2024.

21. ed. A. Koubaa Robot Operating System (ROS): The Complete Reference (Volume 4).
Cham, Switzerland, Springer, 2019.

155

22. Labbé, M. and Michaud, F.: Rtab-map as an open-source lidar and visual simultaneous
localization and mapping library for large-scale and long-term online operation.
Journal of Field Robotics, 36(2):416–446, 2019.

23. Clearpath Robotics: Clearpath robotics power management documentation. https:

//docs.clearpathrobotics.com/docs/ros2humble/robots/power/, 2024. Ac-
cessed: 2024.

24. Clearpath Robotics: Clearpath robotics control system documentation. https://docs.

clearpathrobotics.com/docs/ros2humble/robots/control/, 2024. Accessed:
2024.

25. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., and
Leonard, J. J.: Past, present, and future of simultaneous localization and mapping:
Toward the robust-perception age. IEEE Transactions on Robotics, 32(6):1309–
1332, 2016.

26. Intel Corporation: Intel mini-itx form factor specification. https://www.intel.com/

content/www/us/en/support/articles/000005772/, 2022. Accessed: 2024.

27. NVIDIA Corporation: Nvidia jetson platform documentation. https://developer.

nvidia.com/embedded/jetson, 2022. Accessed: 2024.

28. Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R.: Detectron2. https://

github.com/facebookresearch/detectron2, 2019. Facebook AI Research.

29. Kirillov, A., Girshick, R., He, K., and Dollár, P.: Panoptic feature pyramid net-
works. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6399–6408. IEEE, 2019.

30. LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

31. Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning. Cambridge, MA, MIT Press,
2016.

32. Long, J., Shelhamer, E., and Darrell, T.: Fully convolutional networks for semantic segmen-
tation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3431–3440. IEEE, 2015.

156

33. Krizhevsky, A., Sutskever, I., and Hinton, G. E.: Imagenet classification with deep con-
volutional neural networks. Advances in Neural Information Processing Systems,
25:1097–1105, 2012.

34. He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778. IEEE, 2016.

35. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.: You only look once: Unified, real-
time object detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 779–788. IEEE, 2016.

36. Girshick, R., Donahue, J., Darrell, T., and Malik, J.: Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 580–587. IEEE,
2014.

37. Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M.: Yolov7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 7464–7475, 2023.

38. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing
Systems, 32:8024–8035, 2019.

39. He, K., Gkioxari, G., Dollár, P., and Girshick, R.: Mask r-cnn. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2961–2969. IEEE, 2017.

40. Ren, S., He, K., Girshick, R., and Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Advances in Neural Information Processing
Systems, 28:91–99, 2015.

41. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke,
U., Roth, S., and Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3213–3223. IEEE, 2016.

157

42. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S.: Feature
pyramid networks for object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2117–2125. IEEE, 2017.

43. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer,
22(6):46–57, 1989.

44. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng,
A. Y.: Ros: An open-source robot operating system. In ICRA Workshop on Open
Source Software, Kobe, Japan, 2009. IEEE.

45. Maruyama, Y., Kato, S., and Azumi, T.: Exploring the performance of ros2. In
Proceedings of the 13th International Conference on Embedded Software, pages 1–
10. ACM, 2016.

46. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., and Konolige, K.: The
office marathon: Robust navigation in an indoor office environment. In
2010 IEEE International Conference on Robotics and Automation, pages 300–307.
IEEE, 2010.

47. Grisetti, G., Stachniss, C., and Burgard, W.: Improved techniques for grid mapping
with rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1):34–
46, 2007.

48. Kohlbrecher, S., von Stryk, O., Meyer, J., and Klingauf, U.: A flexible and scalable slam
system with full 3d motion estimation. In 2011 IEEE International Symposium on
Safety, Security, and Rescue Robotics, pages 155–160. IEEE, 2011.

49. Fox, D.: Adapting the sample size in particle filters through kld-sampling. The
International Journal of Robotics Research, 22(12):985–1003, 2003.

50. Dijkstra, E. W.: A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

51. Fox, D., Burgard, W., and Thrun, S.: The dynamic window approach to collision avoidance.
IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.

52. Intel Corporation: Intel realsense d435i depth camera. https://www.intel.com/content/
www/us/en/support/articles/000030385/, 2019. Technical Specifications and
User Guide. Accessed: 2024.

158

53. Macenski, S., Foote, T., Gerkey, B., Lalancette, C., and Woodall, W.: Robot operating sys-
tem 2: Design, architecture, and uses in the wild. Science Robotics, 7(66):eabm6074,
2022.

54. FFmpeg Development Team: Ffmpeg documentation. https://ffmpeg.org/

documentation.html, 2021. Open Source Video Processing Framework. Accessed:
2024.

55. Thrun, S., Burgard, W., and Fox, D.: Probabilistic Robotics. Cambridge, MA, MIT Press,
2005.

56. LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning. Nature, 521(7553):436–444, 2015.

57. Simonyan, K. and Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

58. Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.: Focal loss for dense object de-
tection. In Proceedings of the IEEE International Conference on Computer Vision,
pages 2980–2988. IEEE, 2017.

59. Tian, Z., Shen, C., Chen, H., and He, T.: Fcos: Fully convolutional one-stage object de-
tection. In Proceedings of the IEEE International Conference on Computer Vision,
pages 9627–9636. IEEE, 2019.

60. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and
Zitnick, C. L.: Microsoft coco: Common objects in context. In European Conference
on Computer Vision, pages 740–755. Springer, 2014.

61. Caesar, H., Uijlings, J., and Ferrari, V.: Coco-stuff: Thing and stuff classes in
context. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1209–1218. IEEE, 2018.

62. Pan, S. J. and Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359, 2010.

63. Yosinski, J., Clune, J., Bengio, Y., and Lipson, H.: How transferable are features in deep
neural networks? Advances in Neural Information Processing Systems, 27:3320–
3328, 2014.

159

64. NVIDIA Corporation: Nvidia geforce rtx 4090 graphics card. https://www.nvidia.com/
en-us/geforce/graphics-cards/40-series/rtx-4090/, 2022. Technical Speci-
fications. Accessed: 2024.

65. Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D.,
Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for self-driving cars.
arXiv preprint arXiv:1604.07316, 2016.

66. Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg, B.,
Houston, M., Kuchaiev, O., Venkatesh, G., and Wu, H.: Mixed precision training.
arXiv preprint arXiv:1710.03740, 2017.

67. NVIDIA Corporation: Cuda c++ programming guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/, 2023. CUDA Toolkit Documentation. Accessed:
2024.

68. Bradski, G.: OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000. Open Source
Computer Vision Library.

69. Hartley, R. and Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge,
UK, Cambridge University Press, 2nd edition, 2003.

VITA

NAME Ragib Rownak

EDUCATION B.Sc. Mechanical Engineering, Islamic University of Technology, Bangladesh
2022.
M.Sc. Mechanical Engineering, University of Illinois Chicago, Chicago,
IL, USA, 2025.

160

