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The work done within this thesis strives to expand the capabilities of a designed Discrete

Linear Quadratic Regulator (DLQR) controller. The controller is implemented into The Simplest

Walker Model, and after perturbing the initial state of the system the goal is to cause the system

trajectory to converge back onto the limit cycle. Every initial state that converges to the limit cycle

lies within the region of attraction, depicting the controller strength. An approach to visualizing

the region of attraction is used to not only depict the robustness of the controller but also assist

in tuning the input parameters of the DLQR controller. The region of attraction is measured by

the percentage of successful initial states out of the total attempted initial states. The percentage

produced using other input parameters is used to determine the effects they have on the system.

This approach is used to tune the input parameters so that a larger percentage is produced by the

region of attraction. The region of attraction is calculated for the uncontrolled Simplest Walker

and for the walker controlled by a basic DLQR controller using the identity matrices as inputs.

The approach using the region of attraction to tune the DLQR controller is then compared with the

uncontrolled and the basic DLQR-controlled Simplest Walker. The comparison displays that the

tuning approach is valid in expanding the region of attraction for the Simplest Walker.
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CHAPTER 1: INTRODUCTION

Bipedal locomotion has been a topic of study for many years. The motion of walking has been

demonstrated by highly complex humanoid robots and even simple, non-powered, children’s toys.

Humans are capable of producing a very natural gait when they walk, allowing for low energy

consumption, superior versatility, and exceptional stability. These characteristics of a natural gait

are the reason for the elevated interest and research in bipedal locomotion. Highly sophisticated

humanoid robots are capable of producing a stable and versatile walking gait but come at a cost.

These humanoid robots have central control schemes known as the Zero Moment Point (ZMP)

method. [1] The ZMP method always strives to keep the system at a static equilibrium point. This

constant effort to maintain the equilibrium point leads to every joint needing to be controlled at all

times, leading to high energy consumption and very unnatural walking gaits. The drawbacks that

come from walking machines that use a ZMP control scheme can be avoided if the approach to

walking is modified. McGeer proposed a different approach, known as passive-dynamic walking.

[2] The main motivation for studying passive walking is because the mechanics of the system

are simplified. The work done by McGeer leads to the physical dimensions of the human body

being responsible for the quality of the gait. The main take-away from his work is that the control

of the legs alone is not responsible for effective bipedal walking. Passive-dynamic walking is

well demonstrated by toy walkers. These walkers are able to travel down a ramp with minimal

slope without the use of motors or controllers. Passive-dynamic walkers led to the development of

passive dynamic based walkers, which are essentially passive walkers capable of walking on a level

surface thanks to the use of applied hip torque from a controller. Passive-dynamic based walkers

are highly energy efficient and can open the gateway for better humanoid robots. Energy efficient

bipedal locomotion is important for the development of practical bipedal robots. The work done

by Zamani et al. focused on expanding the capabilities of bipedal walkers on different terrains,

adding practicality. [3]

1



1.1 Thesis Contribution

Control of passive-dynamic based walkers can be accomplished through a variety of different tech-

niques, though the focus of this thesis will be on using a Discrete Linear Quadratic Regulator

(DLQR). With the work completed in this thesis, my goal is to effectively implement a DLQR

controller and establish a better understanding of how to effectively tune it using the region of

attraction (ROA). Primary techniques for tuning a DLQR controller rely on a trial-and-error ap-

proach with the goal of achieving a certain output. The approach I will be presenting will use the

trial-and-error approach but, in addition, offer a technique for effectively tuning the DLQR input

parameters. To help display the results of how effective the controller is, the region of attraction

for that controller will be generated, thus showing its capability. This thesis will focus on mapping

the region of attraction of a controller within a certain range and then calculate a percentage of how

many points are controllable. The calculated percentage will describe the strength of the controller,

and thus provide a metric to determine if using different controllers is improving the control or hin-

dering it. The goal is to see the size of the region of attraction for The Simplest Walker increase,

inferring that the controller has increased the capabilities of the walker. The region of attraction

will be calculated for several controllers and careful inspection of all regions of attraction will help

to tune the weighing matrices of the DLQR controller. The goal is to contribute a better approach

to visualizing the region of attraction, a method of tuning the weighing matrices via the use of the

region of attraction, and also a technique for expanding the region of attraction for the Simplest

Walker.

2



CHAPTER 2: LITERATURE REVIEW

Within this section, important terms and concepts will be discussed to provide a basic understand-

ing to aid in comprehending what this thesis is attempting to accomplish. Concepts and terms

discussed will build a foundation to develop a method to test and understand the results of differ-

ent controllers. Prior work done using passive dynamics will also be discussed and can be used as

steppingstones to reach the approach done within this thesis.

2.1 Walking machines

There are two main classes of waking robots: static walkers and dynamic walkers. The main goal of

static walkers is maintaining a certain static equilibrium throughout their motion. The equilibrium

point is best maintained by adding more legs to the machine, therefore, it is more common to find

four or even six legs on a static walking robot. With an equilibrium point to maintain, inertial forces

are required to remain minimal to prevent the machine from being thrown off balance. To ensure

minimal inertial force, the cyclic accelerations are limited. The accelerations of walking robots are

defined as being cyclic because the motion of taking a step is done with acceleration values that

occur in a cycle. These regularly repeating acceleration values depict a curve with a closed path.

The basic example of a closed path is a circle. The other main class of walking robots is dynamic

walkers. Dynamic walkers have fewer legs than what is typically found on static walkers and more

closely resemble a person. Dynamic walkers have the potential for going faster than static walkers

because they are not restricted by the cyclic accelerations. A passive dynamic walker is capable of

traversing a ramp at a downward slope without the use of powered components and can be traced

back to the machines created by McGeer in 1990 [2], and even earlier to walking toys. Passive-

dynamic walkers achieve their locomotion through mechanics alone instead of the use of motors.

The mechanics that empower the movement of the walker come from the mechanical design of the

walker and the force of gravity. The slope of the ramp adds a gravity potential that is transformed

into kinetic energy. Additionally, the mass distribution of the walker, the leg length, and the foot
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shape determine the capability of walking. Since passive-dynamic walkers require no processor to

control motors and sensors, they have been described as being brainless. [4]

2.2 The design of The Simplest Walker

The walker studied in this thesis, The Simplest Walker, is comprised of two thin legs connected at

the hip by a frictionless joint. The mass distribution is only in the hip and the feet, with the mass in

the hip being much higher than the mass in the feet. The larger amount of mass in the hip prevents

the hips from being affected from the swinging motion of the feet. This walker is capable of moving

on its own when placed on a ramp of a specific angle of decline. It is a simplified two-dimensional

model with straight legs, and some assumptions are made to allow for simplicity in calculations.

To return to the mid-stance position, it is assumed that the swing leg passes through the floor

momentarily before continuing to swing with the step. The brief passage into the ramp surface

allows for scuffing of the feet to be avoided, whereas in the physical world different methods

would be needed to prevent this, i.e. knees or a swaying motion. There are four main parameters

of interest when studying a bipedal walker. The first parameter is the angle θ, which is the angle

between the stance leg and the normal to the ramp surface. The second parameter is the time

derivative of θ, i.e. the rate of change of θ. The third parameter is φ, representing the angle

between the stance leg and the swing leg. The fourth parameter is, as expected, the time derivative

of φ also referred to as the rate of change of φ. A Graphic of the simplest walker can be seen in

Figure 2.1. The mass at the hip is labeled as M , the mass at each foot is labeled as m, the leg

length defined as l, the angle of the ramp defined as γ, and lastly gravity as g.

2.3 Process of taking a step

In order to understand the process of a passive-dynamic walker taking a step, it is important to

know the role the legs are playing. The walker has two legs, one being the stance leg and the

other being the swing leg. The stance leg is always in contact with the ground and the swing leg

is lurching forward in the motion of the step. The walker has a cycle of events that take place
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Figure 2.1: Descriptic graphic of The Simplest Walker Model.

for each step. In order for the walker to complete one step it must begin at the initial position,

which for the study of this thesis, was set to be mid-stance. Mid-stance represents the moment in

time when the stance leg is perpendicular to the surface of the ramp with the swing leg preceding

it. Once the walker is released from the initial stance it is in a phase known as single stance,

where the walker will roll forward until the swing leg reaches the ramp, creating the first contact

point. The instant at which the swing leg makes contact with the ground is known as heel-strike

and has a no-slip, no-bounce collision, known as a plastic collision. Once the swing leg reaches

heel-strike, also know as the foot-ground contact point, the legs switch roles in a phase referred to

as foot-strike. In the foot-strike phase the stance leg becomes the new swing leg, and the previous

swing leg is now the new stance leg. The new swing leg begins to move forward, in the single

stance phase once more, taking its next step. It is along this swing where the walker returns to

the mid-stance position, completing its first step. The walker will continue to oscillate through

these steps until it reaches a state where it becomes unstable and falls, such as coming in contact

with the level floor. A simple breakdown of the order of events using the technical phase names is

as follows: mid-stance, single stance, heel-strike or foot-ground contact event, foot-strike, single
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stance, and finally back to mid-stance. The sequence of a single step can be seen in Figure 2.2.

The process of taking a step can be condensed into two phases: a single stance phase and a foot-

strike phase. [5] [6] The two phases can be looked at as containing check points. For the single

stance phase the check point would be the mid-stance position. Alternatively, the check point for

the foot-strike phase is the collision with the ground at heel-strike. Each phase of a single step is

represented by its own equations. The single-stance phase, containing the mid-stance position, is

Figure 2.2: The sequence of taking one step for The Simplest Walker Model beginning at the
Mid-stance position.

assumed to have no hinge friction in the hip, no slipping between the foot of the stance leg and

the ground, and scuffing of the feet is ignored entirely. The single-stance phase is represented by

Equation 2.1 and Equation 2.2. Angular momentum balancing is used to obtain the two equations.

Equation 2.1 is balanced around the foot contact point and Equation 2.2 is balanced around the hip.

In addition to angular momentum balancing, the time units were removed from the equations in a

process known as non-dimensionalization. The time units were removed by substituting
√
l/g in

for t. Lastly, the limit of m/M → 0 was applied to further simplify the equations.

θ̈ = sin(θ − γ) (2.1)

φ̈ = sin(θ − γ) + {θ̇2 − cos(θ − γ)} sin(φ) (2.2)

The heel-strike or foot-ground contact occurs when Equation 2.3 is true.

φ = 2θ. (2.3)
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The foot-strike phase is assumed to have a plastic collision with the ground and occur briefly so

that double support from both legs does not occur.

θ+ = −θ− (2.4)

φ+ = −φ− = −2θ− (2.5)

θ̇+ = cos(2θ−)θ̇− (2.6)

φ̇+ =
(
1− cos(2θ−)

)
cos(2θ−)θ̇− (2.7)

The foot-strike equations use superscripts to denote when the values of θ and φ are taken. The

superscripts represent the instance right before foot-strike, +, and right after foot-strike, −. The

moment the legs switch roles is depicted in Equation 2.4 and Equation 2.5. Equation 2.6 and

Equation 2.7 represent the angular rates of the legs, calculated using conservation of angular mo-

mentum about the foot-strike location and the hip of the walker, respectively. Once again, time was

non-dimensionalized using
√
l/g and simplified using the limit m/M → 0. A series of pictures

displaying a typical step of the simplest walker can be seen in Figure 2.3.

2.4 Important terms to know

In order to understand the ideas and reasoning behind techniques explored, it is important to un-

derstand a few key concepts. This section will provide an overview, and the intention is to instill

enough knowledge to comprehend the experiments and results.

2.4.1 Limit Cycle

A limit cycle refers to a closed path trajectory that is isolated from neighboring trajectories, mean-

ing the surrounding trajectories are not closed. These surrounding trajectories can circle inward

towards the limit cycle or they can circle outwards away. The path of the surrounding trajectories

helps determine stability of the limit cycle. If the path begins to circle inwards and approach the

limit cycle, the limit cycle is defined as being attracting, i.e. stable. Likewise, if the path travels

7



Figure 2.3: An illustration of the sequence of taking one step for The Simplest Walker Model
begining at the Mid-stance position.

away from the limit cycle, the limit cycle is defined as being unstable. There is a third case that

may arise in certain situations: the half-stable limit cycle. A half-stable limit cycle occurs when

not all the paths approach or move away from the limit cycle. An example of a half-stable limit

cycle would be a limit cycle with two neighboring open trajectories with one approaching the limit

cycle and the other moving away. Stable limit cycles help to model systems capable of maintaining

oscillations without an outside force. A couple of common examples of limit cycles include the

beating of a heart and the firing of a pacemaker. These examples are relevant in that their oscilla-

tions maintain a preferred period, waveform, and amplitude. [7] The characteristic of interest is if

a limit cycle is perturbed slightly it will inevitably return to the original cycle. The important thing

to remember is that limit cycles cannot occur in linear systems. A linear system can be observed

to have a closed orbit, though the trajectories will not be isolated. A linear system is defined as

8



ẋ = Ax with x(t) being a solution, so since it is linear, cx(t) is also a solution for any c not equal

to zero (c 6= 0). The solution x(t) is surrounded by a family of closed paths, with an amplitude

defined by the initial conditions. It is also important to note that any disturbance to the system will

be in effect endlessly. Determining if a system has a limit cycle can be difficult, because at first

glance, the equations of a system do not necessarily depict oscillations of a limit cycle. There are

different techniques to determining if closed trajectories exist and approximating their shape and

period length. When studying the passive-dynamic based walker in this thesis, it is clearly seen,

graphically, that the system has a limit cycle.

2.4.2 Fixed Point

Mathematically, a fixed point is defined as a point x such that a function f(x) is equal to x. In

simpler terms, a fixed point can be described as a point that can undergo any application of a map

and remain the original point. Fixed points can be discovered with repeated iteration of a function

f , as described by Seidel. [8] By iterating a function, you take the output from one iteration and

use it as the input for the next iteration, and repeat this process as many times as required. This idea

is represented in Equations 2.8 through 2.10 and demonstrate only three iterations. Simplification

of the process leads to Equation 2.11.

x1 = f(x0) (2.8)

x2 = f(f(x0)) = f(x1) (2.9)

x3 = f(f(f(x0))) = f(x2) (2.10)

xn = f(xn−1) (2.11)

Within a limit cycle, the fixed point is reached once every lap of the cycle. A fixed point is defined

as attracting if, for an initial point slightly away from the fixed point, it converges back to the fixed

point. A fixed point is considered repelling if, for an initial point slightly away from the fixed

point, it does not converge back to the fixed point. A visual representation of a Limit Cycle with a

9



Fixed Point can be seen in Figure 2.4

Figure 2.4: A graphic depicting a Limit Cycle with the Fixed Point labeled, with implementation
of a controller represented by u0.

2.4.3 Poincaré Map

The continuous periodic flow of a system can be represented by a different discrete dynamic system

known as a Poincaré Map. [9] Poincaré Maps are beneficial when studying trajectories flowing in

a circular motion, specifically the flow around a limit cycle. When a system clearly has a periodic

cycle, a Poincaré Map for that system is said to be well defined. [10] A formal definition of a

Poincaré Map described by Strogatz, in his book discussing non-linearity, is briefly described. [7]

Imagine a system, represented by ẋ = f(x), as being an n-dimensional size. Now define a surface,

represented by S, as being (n − 1)-dimensional where the initial trajectories pass through the

surface instead of running parallel to it. Mapping S from the initial crossing of the surface to

the next intersection of the surface creates the Poincaré Map P . A Poincaré Map is defined as

xk+1 = P (xk), where xk represents the kth intersection with the surface S. Now, consider a fixed

point of the Poincaré Map P , i.e. P (x∗) = x∗, the beginning trajectory at x∗ will return to x∗

after one period of time T , thus creating a closed curve. By observing the trajectories around the

fixed point of the Poincaré Map, the stability of the cycle can be concluded. The classification of

the system stability is described within the Limit Cycle section of this thesis. In passive-dynamic
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walking, the Poincaré Map is crucial in determining the motions of steady state walking and the

motion stability.

2.4.4 Poincaré Section

A Poincaré Section has already been mentioned within this thesis, but not by its technical name,

Poincaré Section. The definition provided within the last section discussing Poincaré Maps defines

a surface transverse to the trajectory; that surface is classified as the Poincaré Section. A Poincaré

Map can only be constructed using a Poincaré Section. Poincaré Maps display trajectories in an

n-dimensional phase space, while Poincaré Sections present the data in an (n − 1)-dimensional

space. Strogatz helps describe the Poincaré Section by relating it to research techniques used by

Biologists. [7] When Biologists study three-dimensional structures, they use a strategy of breaking

up a complex formation into thin slices that are then used to create slides. A Biologist can then

study the slides to determine what is taking place at each layer of the structure. A Poincaré Section

is a single slice from the Poincaré Map. A Poincaré Section will capture the trajectories in the same

phase for each cycle rotation. The Poincaré Section used within the scope of this thesis is defined

at the event of mid-stance. In Figure 2.5, a Poincaré Map is displayed using a period-one limit

cycle of The Simplest Walker. The Poincaré Section is labeled as well as the fixed point. Studying

the Poincaré Map and Poincaré Section is done by perturbing the initial state and observing if the

system will return to the limit cycle. The red line depicts the system trajectory and demonstrates

its ability to converge back onto the limit cycle from its initial starting point.

2.4.5 Eigenvalues

Eigenvalues determine the characteristics of the system using the equations of motion of the lin-

earized system. The equations of motion for the Simplest Walker are linearized around the fixed

point and are represented in matrix form using the state space representation, A. Eigenvalues, rep-

resented by λ, have a corresponding Eigenvector, X, that can be represented by Equation 2.12. The

Eigenvalue and Eigenvectors help to characterize the system. Solving for the Eigenvalues is done
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Figure 2.5: A visual interpretation of a Poincaré Map and Poincaré Section for The Simplest
Walker. In this case the Poincaré Section is defined at the Mid-stance position.

by finding the roots of the system when setting the determinant equal to zero, shown in Equation

2.13.

(A− λI)X = 0 (2.12)

det(A− λI) = 0 (2.13)

2.4.6 Linearized Stability

When determining the stability of fixed points, there is a simple test that can be conducted thanks

to Liapunov, the Eigenvalue Criteria for Stability. [11] This method for determining the stability

begins with calculating the Eigenvalues of the state matrix. When the equations are written in the

State Space representation in the form ẋ = Ax + Bu, the state matrix is represented by the A

matrix. In addition, the A matrix is also known as the Jacobian of the system linearized about a

fixed point. Once the Eigenvalues of the Jacobian have been calculated, they will be in the complex

form, i.e. a real and an imaginary part. For determining the stability, the real part of the Eigenvalue

is observed. If the real part for all the Eigenvalues are less than zero, then the system is said

to be asymptotically stable. If the real part of all the Eigenvalues is greater than zero, then the
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system is said to unstable. Unfortunately, if the real part of the Eigenvalues is equal to zero, this

method cannot describe its stability, therefore a further analysis is required to accurately determine

stability. This stability analysis described above is commonly referred to as Liapunov’s Theorem.

The real part of the Eigenvalues is classified as the characteristic, or Floquet, multipliers. [7]

2.4.7 Stability of Discrete Time Systems

To discuss stability of discrete time systems, it is important to first understand the difference be-

tween discrete time and continuous time systems. To begin, lets develop a simple understanding of

the difference between continuous and discrete time systems. A continuous time system is defined

by the generic differential equation ẋ = f(x(t)), showing that the state vector x is evolving in

time. Continuous systems contain state variables that can change continuously over time, i.e. the

amount of water flowing through a pipe. A discrete time system is represented by the formula

xk+1 = F (xk), where k is the time increment being used. State variables of a discrete time sys-

tem are only calculated at certain moments in time. The passive walker is a discrete time system,

where the state of the system is calculated at the Poincaré Section of the limit cycle. Stability of

discrete time systems relies on the Eigenvalues of the state matrix as well. If one or more have a

magnitude larger than one, then the system will increase exponentially and be unstable. If at least

one Eigenvalue has a magnitude equal to one, then a component in the state response is generated

as an under-damped oscillatory component, causing the system to be marginally stable. The third

option of stability is known as asymptotically stable, and it occurs when all magnitudes of the

Eigenvalues are less than one.

2.5 Overview of Related work

The concept of passive-dynamic walking has been around for over a century, with the first walking

toy patent published in 1888 [12], followed by others in 1909 [13], 1912 [14], and in 1938 The

Wilson Walker, shown in Figure 2.6 (a) [15]. McGeer, inspired by The Wilson Walker, introduced

the first passive-dynamic walking machine, Dynamite. [2] McGeer’s Dynamite consisted of four
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legs and knees with the inner and outer legs alternating during the walking process. With the correct

initial conditions, both the Wilson Walker and Dynamite were able to traverse downhill. Another

model is a three-dimensional passive-dynamic robot comprised of two legs with knees and two

arms designed to swing side-to-side to help reduce scuffing of the feet. This model also included

specially designed feet to stabilize the side-to-side motion and turning of the legs, shown in a photo

sequence in Figure 2.6 part (d). [16] Parts (b) and (c) of Figure 2.6 come from Collins. [17] The first

Figure 2.6: An arrangement of various Passive-Dynamic Walkers.

passive-dynamic-running robot used a four-legged design with knees, like McGeer’s Dynamite,

with an axial spring in each leg to cushion collisions, an additional spring in the hip to aid in

the swinging motion, and had arc shaped feet. [18] This running robot could run 36 steps down

a ramp with a slope of 0.22 radians. Another popular walker, referred to as the compass-gait

walker, resembled the drawing tool known as a compass. [19] A highly simplified model, called

The Simplest Walker, consists of massless legs and a mass in the hip much greater than the mass

in the feet. [20] The Simplest Walker Model is favored when beginning to study passive dynamics

due to the simplicity. The important feature that all of these robots have in common is that they
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use their natural dynamics to walk or run downhill. The highly energy-efficient motion is natural

and cyclic, and resembles a human walking. A study on the leg swing in human walking has

shown that the swing is greatly influenced by the natural dynamics and requires little control. [21]

This theory demonstrated in passive walking implies that humans might take advantage of the

natural dynamics and expend very minimal amounts of energy to walk. This natural characteristic

of passive-dynamic walking is most intriguing for developing legged robots. Stability of bipedal

robots is represented in two ways: the robot not falling down and the robot’s ability to remain

on a defined trajectory. For this thesis, the approach of remaining on the defined path is what

will determine the success of the controller. The ability to remain on the defined path can be

measured in several ways, including evaluation of the largest Eigenvalue of the Poincaré Map and

the region of attraction size. When evaluating the Poincaré Map’s largest Eigenvalue, the closer it

is to zero, the faster it will converge back to the cycle, and if the Eigenvalue is larger than one it

will never converge back and will become unstable. When using the region of attraction method,

the larger the region is, the more capable the controller is, whereas the smaller the region, the less

capable the controller is. The region of attraction is the set of all initial points that are controllable

by the controller. The initial point attempted by the controller is the fixed point of the system

with a perturbation amount added to it. The difference between the two techniques discussed

are their ranges of controllable initial points. The Eigenvalue approach is only useful when the

perturbation amounts are very small, and the region of attraction method is useful when exploring

larger perturbation amounts. The region of attraction is used to compare stability of controlled and

uncontrolled cases when using a Discrete Control Lyapunov Function (DCLF) for The Simplest

Walker. [5] For that study, the region of attraction was calculated by perturbing the initial velocity

of the walker and simulating fifty steps. The maximum and minimum controllable initial velocities

depict the bounds of the region of attraction. The region of attraction can also be calculated via

the cell mapping method, where a cell represents several controllable points within the region of

attraction. [22] In addition to using the DCLF approach for controlling The Simplest Walker, a

dead-beat controller can be used to fully recover from the disturbance in a single step. [23]
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CHAPTER 3: METHODOLOGY

The research of this thesis is centered around the control of a simple passive bipedal walker. In

order to control a passive walker, it first must be shown that the walker can be perturbed enough

to fall over. Once the walker has effectively been disrupted sufficiently enough to fall over, a

controller can be designed to assist with the leg movement to keep the walker upright. The imple-

mentation of a controller will supply a torque to the hip when needed to maintain the stability of

the walker. Due to the added torque, the walker is no longer considered to be passive. The result-

ing powered walker is described as a passive-dynamic based walker. [4] To successfully study the

effects of a controller, it is important to determine the robustness of the implemented controller.

For this thesis, an applied torque at the hip is added to the simplest walker model [20], with the

goal of implementing a controller to keep it stable upon a disruption.

3.1 Achieved by the simulation

The focus of this thesis is not to create a simulation of The Simplest Walker, but instead to sim-

ulate the control needed to keep the walker moving. The use of a simulator accompanied by an

animation will aid in the process of adequately constructing a controller capable of preventing the

walker from falling. The simulation used for testing the controller discussed in this thesis is ini-

tially uncontrolled and unperturbed. It simulates the walker traversing a ramp that, for the ease of

demonstration, has been rotated to appear as if it is walking on level ground, though it is at a desig-

nated angle of γ. Following the animation depicting the successful trek of the two-legged walker, a

two-dimensional graph displays the θ angles and φ angles versus time. This graph can easily show

if any hiccups happen during the journey of the walker because it will disrupt the typically cyclic

path of motion.
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3.2 Exploration of the simulation

The simulation begins with defining the physical parameters of the walker and the initial state

at which the legs begin motion. Upon initializing the model, root finding is run to determine the

period-one gait and establish the fixed point of the system. Using the newly determined fixed point,

the Jacobian is solved for numerically. The Jacobian is used to determine stability by evaluating

the Eigenvalues of the Poincaré Map. As previously mentioned, the magnitude of the Eigenvalues

should return as less than one, depicting stability of the system. The Jacobian is calculated nu-

merically using the central difference technique. The central difference technique is derived using

Taylor series expansions, and evaluates a function of x, i.e. f(x), from points on the left and right

side of the point x. To produce quality results, the points will have to be chosen to be an equal

distance from x on either side. This distance is typically a low value, in the proximity of one

hundredth (0.01) of a unit or smaller, that is added and subtracted to x in the function. The central

difference technique is true to its name, and calculates the difference between the function with the

distance added and the function with the distance subtracted. This difference is then divided by a

factor of two times the distance to produce an approximation of the Jacobian. The formula for the

central distance numerical approximation is shown in Equation 3.1. [24]

f ′(x) ≈ f(x+ h)− f(x− h)
2h

(3.1)

The function used within the central difference calculations is the process used to calculate the data

for taking one step, and the x value is represented by the fixed point position. The distance away

from the fixed point used to approximate the Jacobian is set at one hundred thousandth (0.00001)

of a unit to ensure an accurate approximation. The function used for processing the action of taking

a step goes through a series of different events. Processing each step requires collision detection

between the feet and the ground to determine the moment of heel-strike, the original starting and

stopping position. Actions of the walker during foot-strike and single-stance are also calculated

to determine the final state of the walker after one step. This step function is used in the central
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difference calculations to determine the Jacobian of the linearized system. Then the Eigenvalues

of the Jacobian are calculated to help determine the stability of the system. Now that the stability

is determined, the data for all the steps can be collected. Collecting this data is done using the

same equations used in the Jacobian calculations for taking one step, but is now done over the

course of ten steps. The initial state of the bipedal walker is fed to the function as initial conditions

and produces the final state after one step. The newly determined final state becomes the initial

state for step two, which is then used to produce the final state after step two. This process of

the final state becoming the initial state for the next step is continued for the entirety of all ten

steps. Each time the simulation calculates the next step, nine variables are collected to help depict

what the walker is experiencing through that step. These nine variables include θ, θ̇, φ, φ̇, the total

energy of the walker, the distance in the X direction, the velocity in the X direction, the height in

the Y direction, and the velocity in the Y direction. These nine ever-changing values are sent to

the function responsible for calculating data points from one step, and uses the output as the next

input. The goal of the walker is to return to the same fixed point at the same instance in a step

as before, therefore, if the fixed point is displayed for each step, it should never change. With the

completion of calculations for the data of taking ten steps, the process of animating the walker can

begin. Animating the walker is done by initializing the frame the walker will be drawn in and then

creating objects for the hip, legs, and feet. With the created objects in place, the initial location can

be set and displayed to the frame. The animation function updates the location every iteration and

then redraws them to the frame. Redrawing to the frame will, by default, erase the old data and

incorporate the new data; in other words, overwrite the old information. Once the animation of

taking ten steps is complete, the same data is used to create a two-dimensional plot of the θ angle

versus time, and the φ angle versus time. Both graphs are displayed in the same frame, allowing

for easy exposure to the limit cycle. The produced graph demonstrates the oscillatory motion of a

limit cycle with a period length equivalent to one step.
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Table 3.1: A description of the system for the use in the original simulation.

(a) System Parameters

Description Variable Value
Hip mass M 1000
Leg mass m 1.0

Leg length l 1.0
Leg inertia I 0.0
Foot radius r 0.0

(b) Initial State

Variable Value
θ 0.2
θ̇ -0.2
φ 0.4
φ̇ -0.3

3.3 Original simulation results

The original code initializes the model with the parameters and initial state shown in Table 3.1. The

initial state represents the initial values for θ, θ̇, φ, and φ̇, and the parameters are described in the

table. The radius of the foot is set to zero to eliminate the feet of the walker; this is done to create

a model similar to one in literature. To help provide validation for the results from the simulation,

the model used comes from The Simplest Walker model. [20] The fixed point of the system is

calculated and is equivalent to what was solved for by Garcia et al., shown below. Following

the fixed point is the Jacobian of the linearized system with its calculated Eigenvalues depicting

stability.

The fixed point:

zstar =

[
0.200161 −0.199906 0.400322 −0.015805

]

The Jacobian:

J =



−6.865237 −6.870654 0.403433 0.328762

5.690368 5.734742 −0.287708 −0.233780

−13.730474 −13.741309 0.806867 0.657524

1.519596 1.523949 −0.085607 −0.069709


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The Eigenvalues of the Jacobian:

eig(J) =



−0.196667 + 0.544727i

−0.196667− 0.544727i

0.259 ∗ 10−9 + 0.000000i

−0.261 ∗ 10−9 + 0.000000i



The simulation is to run for ten steps, and the data of those ten steps is computed with an initial

position at the heel-strike phase, shown in Figure 3.1. Upon completion of the animation, the

graph displaying the θ angle versus time, and φ angles versus time, is produced. The graph clearly

depicts a limit cycle with a period length of one step, showing a total of ten periods. The angles

versus time graph can be seen in Figure 3.2.

Figure 3.1: Initial position of the original walker

3.4 Un-perturbed and Uncontrolled system

The initial position of this thesis was defined as being at the mid-stance position, so a few changes

were needed in the passive walker simulation. To accomplish the change in initial position, the
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Figure 3.2: Graph of θ and φ angles versus time for the original walker

initial state was changed such that θ was equal to zero. A check for the mid-stance position was

also implemented to provide a stopping point for the simulation after one step. Incorporating the

necessary changes into the simulation produces the starting position shown in Figure 3.3. The leg

angles versus time graph is still produced, now depicting the new initial starting stance, shown in

Figure 3.4. The slightly modified simulation still produces the desired results of a walker taking

ten steps, but for future experiments a few more modifications are required. To better illustrate

the fixed point and the values at the mid-stance position and the end of each step, the simulation

was changed to take one step ten times versus ten consecutive steps. This change will allow us to

display the initial position at the start of each step to see that the initial position is converging back

to the fixed point.

3.5 Perturbing the System

Perturbing the system is a critical part in studying the control of the walker to keep it upright;

without perturbing the system no controller would be needed. To perturb the walker, the initial
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Figure 3.3: Initial position of the mid-stance position walker

position must be changed. The initial position of the walker is typically the fixed point of the

system, so by moving the starting point away from the fixed point we want to see if the system is

capable of correcting its motion to divert its path back to the limit cycle. The fixed point in the

simulation is referred to as zstar, so to perturb zstar a perturbation vector is added, shown by

Equation 3.2.

perturbation =

[
element1 element2 element3 element4

]

z0 = zstar + perturbation (3.2)

In order to maintain the starting position at mid-stance, the first element of the perturbation vector

must remain zero. If the first element in the perturbation vector were not zero, the walker would

be starting at a different position besides mid-stance. In order to begin controlling the walker,

the walker must first fall over from being perturbed. The walker falling over can be seen in the

animation and depicted in the graph of the leg angles versus time. The perturbed walker can be

seen with the initial position in Figure 3.5 and depicted falling over in Figure 3.6. The Perturbation
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Figure 3.4: Graph of θ and φ angles versus time for the mid-stance position walker

vector used to perturb the system can be seen below.

perturbation =

[
0 0.055 0.041 0.035

]

As seen in Figure 3.5, the initial position is almost identical to the un-perturbed walker initial

position. The reason the perturbed walker becomes unstable and falls is largely due to the small θ̇

value. The size of the value indicates that the stance leg of the walker is slowly rotating forward,

forcing the walker to begin falling backwards. The movement of the swing leg prevents the walker

from falling backwards, but upon rolling forward, the walker goes completely unstable and falls.

3.6 Controlling perturbed walker

Now that the walker displays the capability of being perturbed to the point of falling, a controller

can be designed to keep the walker stable and upright. The controller of choice for this thesis is a

Discrete Linear Quadratic Regulator (DLQR). The goal of a DLQR is to optimize the gain matrix

K such that the feedback law δun minimizes the quadratic cost function J for the discrete time
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Figure 3.5: Initial position of the perturbed walker

state space mode represented by δxn+1 . The discrete time state space model is shown by Equation

3.3, the feedback law is shown in Equation 3.4, and finally the quadratic cost function is shown in

Equation 3.5.

δxn+1 = Aδxn +Bδun (3.3)

δun = −Kδxn (3.4)

J(u) =
∞∑
n=1

(δTxnQδxn + δTunRδun + 2δTxnNδun) (3.5)

The parameters A, B, Q, R, and N in the DLQR formulation above represent the system and

penalties for different vectors in the cost function. The parameter A specifies the state matrix of

the system of size nxn, where n is the number of states in the system. B is the input matrix of

size nxm, where m is the number of inputs. Q is a symmetric positive semi-definite matrix that

penalizes the state vector δxn in the cost function J . R is a symmetric positive definite matrix

responsible for penalizing the input vector δun in the cost function J . The parameter N represents

a matrix penalizing the cross product between the state vector and the input vector. By default,

the parameter N is set to be a matrix of zeros the same size as B, and for the control of the
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Figure 3.6: Graph of θ and φ angles versus time for perturbed walker

walker the default is used. Defining the cross product weighing matrix to be zero means it can be

removed entirely from the cost function. The reason for using a matrix of zeros for N is to test

the effects of the state weighing matrix Q and the input weighing matrix R only. The original cost

function in Equation 3.5 can be simplified to create a new cost function shown in Equation 3.6.

The simplification of the cost function is to study the effects of just the state weighing and input

weighing matrices.

J(u) =
∞∑
n=1

(δTxnQδxn + δTunRδun) (3.6)

With the required input parameters defined, let’s start identifying them in the simple passive walker

system. The state matrix of the system is the Jacobian, calculated via the central difference tech-

nique. The state matrix is defined as A =
∂δxn+1

∂δxn
, where using the central difference technique

produces a numerical derivative. To produce the input matrix for the walker, the central difference

technique is used again. The input matrix is slightly different, defined as B =
∂δxn+1

∂δun
with δun

defined as the control vector or feedback law. The method of using the numerical finite difference
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technique for calculating the sensitivity matricesA andB is classified as a brute force method. [25]

Once the state matrix and input matrix have been numerically solved for, DLQR calculations can

begin. δxn+1 is the state’s final position of that step, and δxn is the initial state position for that step.

The optimal values for the gain matrix K, solved for in the DLQR calculations, can be changed by

tuning the inputs Q and R to meet any specified criteria. Implementing the controller is done by

applying a certain torque at the hip. Luckily, the simulation used for these experiments allows for

easy implementation of a torque at the hip. The original simulation has a defined torque set to zero,

so there was no applied torque, but there was the possibility of applying it. The easy implementa-

tion of a torque at the hip allows for easier testing of control techniques on The Simplest Walker

Model. The torque applied was specified by the controller architecture, which is the gain matrix K

multiplied by the deviations in the state δxn. With the controller implemented into the simulation,

tuning of the state and input weighing matrices can begin. To begin, the state weighing matrix Q

is defined as the identity matrix of size nxn. The variable n represents the number of states of the

system, leading to the identity matrix of size 3x3. The state matrix is of size 3x3 because setting

the Poincaré section at mid-stance reduces the number of states by one. The size reduction is due

to θ being set to zero to meet the mid-stance starting position, therefore, to maintain the correct

starting position θ must never be perturbed. The input weighing matrix R is of the size 1xm with

m being the number of control variables. The number of control variables for The Simplest Walker

is only one, the angle between the legs right before the heel-strike phase, φ−. The starting point

for defining the R matrix is the identity matrix of size mxm multiplied by a constant ρ, which can

be varied to achieve a good response. For the first test of the designed controller, ρ was defined as

1. Graphing the leg angles versus time will demonstrate how the walker is acting during the ten

attempted steps, producing Figure 3.7. The simply designed controller is capable of supplying an

adequate amount of torque to the hip to keep the walker upright. The designed controller was able

to lead the walker back into its natural cyclic walking pattern, as shown in Figure 3.7. The same

perturbation amounts that were experimented with in causing the walker to fall over were also

used in this experiment. Using the same perturbation amounts guarantees that the walker will fall
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Figure 3.7: Graph depicting the perturbed walker starting at mid-stance and converging to the
limit cycle.

over unless it is controlled, so the ability to accomplish reentry onto the defined trajectory shows

that a successful controller was designed. Now that a working controller can be implemented and

demonstrate its ability to drive the walker back to its natural path, lets determine its strength. The

method of examining the region of attraction will be used to determine the range of the controller’s

capabilities. The region of attraction is the set of initial starting points that can be controlled and

brought to the defined trajectory of the walking gait. To accurately define the region of attraction,

the last three elements of the perturbation vector must be changed and attempted for a wide range

of values. Remember, only the last three elements of the perturbation vector can be changed in

order to maintain the mid-stance starting position. Proper setup will allow for elements two, three,

and four to be changed for each iteration of running the simulation. This method of testing the

strength of a controller is computationally expensive, but the tradeoff is that it is able to detect

larger perturbation amounts that can be controlled. In order to reduce simulation time, the initial

range of the region of attraction was set to begin at -0.15 and increase to 0.15 with a step size

of 0.01, allowing for a total of 29,791 perturbation vectors to be tried. The simulation needs to
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be configured to not allow the perturbation vector of all zeros to be tested. The vector of zeros

is caught right after defining the perturbation vector and immediately breaks and begins with the

next perturbation amount. Once the vector of zeros is ignored, the simulation must be adjusted

to catch perturbation amounts that lead to falling. Detecting if the walker is falling is done by

reading certain data values: the height of the hip in the Y direction, the position of the hip in the

X direction, and the first value of θ̇. The check point for reading these values is done within the

simulation of taking ten steps, whereas the zero vector is caught before the simulation of ten steps

begins. After calculating what data points the walker hits during taking one step, the simulation

observes the three criteria to see if the walker falls during that step. When looking at the height of

the hip in the Y direction, the walker is defined as falling if at any point within the step the hip falls

below the floor, i.e. is less than zero. If the hip position in the X direction ever falls below zero, it

is falling backwards. The θ̇ value is only observed at the beginning of a step; if the value is greater

than zero, then the walker is rolling backwards, thus it will not be able to be driven to the defined

trajectory of the Poincaré Map. If any of the three conditions is detected then the simulation will

stop calculating the ten steps, and will move to the next perturbation amount to be tested. Once in-

corporating the designed controller into the newly modified simulation, its region of attraction can

be determined. The designed controller is the basic starting point for tuning a DLQR controller; it

is tuned using the identity matrix as weighing matrices. Now, let’s explore a better way of tuning

theQ andR weighing matrices. As stated before, the primary method of tuning a DLQR controller

is done by a trial-and-error approach. Tuning the weights is an iterative process done by analyzing

the results and then making certain adjustments. Designing a different controller for the system

requires some more thought than the original identity matrices used. It’s important to recall that

the Q and R matrices must be symmetric positive semi-definitive, and symmetric positive definite,

respectively. In the case of The Simplest Walker, there is only one control input, so the R matrix

will always be symmetric, therefore, as long as the number is positive, it is acceptable. The easiest

way to ensure a symmetric matrix is to use a diagonal matrix, thus Q will be defined as a diagonal

matrix with values greater than or equal to zero. There are many possibilities when defining the
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diagonal matrix Q, but for this thesis the capabilities of the Q defined below are explored. Defin-

ing the diagonal of Q begins with trial-and-error, yet the incorporation of the fixed point elements

creates a dependency on the fixed point. In addition to using the values of the fixed point, x∗, in

the state weighing matrix, they each will also be multiplied by a different constant, represented by

q1, q2, and q3. The Q matrix can be seen below, and Equation 3.7 helps to explain the construction

of Q.

Q =


1
d1

0 0

0 1
d2

0

0 0 1
d3



di = qi ∗ x∗i i = 1, 2, 3 (3.7)

The capabilities of the Q matrix are explored to determine how it alone can affect the region of

attraction. For the study of the Q matrix, the R matrix was defined as being ρ, where ρ is equal

to 1. Once implementation of the new Q matrix is successful, the limits of the variables q1, q2,

and q3 are explored. Every combination of q1, q2, and q3 represents a different controller, and for

each controller the walker simulation will need to be run. To cut back on computational time, the

number of different controllers was limited to one hundred. The values of q1, q2, and q3 increase

over the course of creating the one hundred different controllers. There are four possibilities for

q1, five possibilities for q2, and five possibilities for q3. The range for q1 was set to be from one

to thirteen, with a step size of four. The range for q2 and q3 was set to be from one to sixty-one

with a step size of fifteen. To run all 100 different controllers required a large amount of time,

but once all results were calculated, the values for q1, q2, and q3 could be better represented. For

determining the strength of the different controllers, a percentage of how many of the test points

were controllable was calculated for each controller. Using these results, a graph can be produced

to create a trend-line of the controller’s strength. This trend-line can be used to determine what

type of q1, q2, and q3 values to use for testing different ρ values. Another trend line can be drawn
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to help determine what type of ρ value will help the controller. For testing the effects from ρ,

four different values were used. To test the effects of the input weighing matrix, the simulation

was configured to begin with ρ defined as 0.01 and increase to 0.61 in steps of 0.2. The range of

ρ is minimal, but this is intentional to guarantee the calculations within the DLQR controller are

successful. The previous set of controllers consisted of the diagonal of Q being less than one; a

similar simulation can be run to determine the effects of values on the diagonal being greater than

one. The new Q matrix definition can be seen below, with Equation 3.8 describing the definition

of the diagonal.

Q =


d1 0 0

0 d2 0

0 0 d3



di = qi ∗ x∗i i = 1, 2, 3 (3.8)

The new values of q1, q2, and q3 can be determined by using a similar style as before. The new

range for q1, q2, and q3 is set to be from one to sixty-one with a step size of thirty. The new

ranges allow for only twenty-seven controller possibilities, but also the larger step size allows

for the affects to the weighing matrices to be easily shown. Using the same tactic as before, a

percentage of the total controllable points can be calculated. Once all the results from the different

controllers are produced, another trend-line can be mapped, and the results of the different values

in Q can be interpreted. Once the controller with the largest controllable percentage is determined,

the state weighing matrix configuration can be used to determine what value of ρ is better suited

for maximum control. The effects of ρ were tested using the same technique used before.

3.7 Region of Attraction

The region of attraction is a key part to interpreting the results of the different controllers created

for this thesis; it demonstrates how robust the design of the controller is. The region of attraction
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consists of all the points that can be controlled by the controller, so it typically takes quite some

time to generate and can be difficult to interpret. The simplest walker being studied starts at the

mid-stance position, which reduces the region of attraction by one dimension. The reduction is

due to the first element of the state, θ, being restricted to remain at zero. The produced region of

attraction is plotted as a three-dimensional shape and, due to lack of shading, the exact shape can

be difficult to see. The technical region of attraction is a three-dimensional shape, but because of

all the initial points being tested, the computational time is long. It has been mentioned before

that the region of attraction method is computationally expensive, so this approach to receive a

three-dimensional plot that can be difficult to interpret is often not appealing. Viewing the region

of attraction in two dimensions is more aesthetically pleasing, so the three-dimensional shape can

be viewed by layer. This can be done be setting the perturbation amount of either θ̇, φ, or φ̇ as a

constant while the other two are increasing by the predetermined step size. Calculating the region

of attraction with a single value set as a constant will also allow for a wider inspection. This

technique can be used to examine certain layers, allowing the region of attraction to be viewed at

the outer, middle, or even every tenth layer.
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CHAPTER 4: RESULTS

In this section, I will be discussing the results collected from various simulations conducted to gain

insight of what effect the weighing matrices have on the system and how they can be interpreted.

The results of the unperturbed and uncontrolled system have already been shown, as well as the

results from the perturbed and uncontrolled system. In addition, the system has already demon-

strated the capabilities of being controlled by a simple controller comprised of the identity matrix,

but the focus was on tuning a non-identity weighing matrix. This section will focus on the results

from that non-identity weighing matrix and the exploration of expanding the region of attraction.

4.1 Region of attraction exploration

To begin, the region of attraction of the uncontrolled walker is calculated, shown in Figure 4.1. The

uncontrolled walker is capable of remaining upright and converges to the limit cycle for 6.48% of

the perturbation amounts attempted. It makes sense that the value is lower because the controller

is turned off, yet it also displays that the simplest walker has some leeway if the exact initial

conditions are not met at takeoff. The perturbation amounts used to prove the walker can be

perturbed enough to fall over were also used with the first controller design. Implementation of

the basic controller demonstrates the walker being controlled to the point of converging back to

the limit cycle. Building the region of attraction will provide a metric to determine the capabilities

of the controller. The region of attraction for the identity controller can be seen in Figure 4.2. The

identity controller is capable of controlling 31.07% of the total initial points attempted, providing

a standard for the other controllers. The next controller design defined the diagonal of the state

weighing matrix to be less than one. Several controllers were tested with this technique, and for

each one the region of attraction was calculated. Once all the points were calculated, a percentage

of how many of those points were controllable was generated. A trend-line was created by graphing

the controllable percentage versus the controller number, shown in Figure 4.3. At first glance this

constructed graph doesn’t appear to provide any helpful information, but upon further inspection,
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Figure 4.1: The Region of Attraction calculated for the Uncontrolled Simplest Walker

Figure 4.2: The Region of Attraction calculated for the Simplest Walker controller tuned using the
identity matrix
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the values of q1, q2, and q3 can be seen. The graph contains four main sections, each containing

four peaks. These four main sections represent the four different possibilities for the value of q1.

Examining the graph, it can be seen that the lower the value of q1 is, the higher the controllable

percentage is. Zooming in on one of the four main sections, the effects of the q2 values are

discovered. Figure 4.4 displays the first fourth of the overall graph. Within this section there exists

five subsections, each containing a spike towards the beginning. The five subsections depict the five

possibilities of the q2 value. From this observation, it can be concluded that q2 provides a higher

percentage of controllable points when its value is higher. Zooming in once more, the values of q3

can be studied. Figure 4.5 focuses in on one fifth of the last figure to help visualize the values of

q3. The new subsections are not as easy to distinguish, but with the help of grid-lines, they can be

emphasized. The closer look at the values of q3 indicates that the lower the value, the higher the

percentage of controllable points. A summary of the discoveries made from this approach can be

seen in Table 4.1.

Figure 4.3: The trend-line depicting the effects of the smaller Q matrix.

The values for q1, q2, and q3 are not explicitly shown in the trend-line graph, so instead color
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Figure 4.4: The trend-line depicting the effects of the smaller Q matrix, focusing on the first
fourth.

Figure 4.5: The trend-line depicting the effects of the smaller Q matrix, focusing on the section
capable of the highest controllable percentage.
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Table 4.1: A summary of the preferable q1, q2, and q3 values discovered from the trend-line of
using a diagonal of the Q matrix less than one.

Variable Type of Value
q1 Lower Value
q2 Higher Value
q3 Lower Value

scale graphs are produced to better illustrate the results. Figure 4.6 displays the color scale graph

for q1 values. There is a corresponding color bar at the bottom of the graph, providing a numeric

value associated with the q1 variable. Figure 4.7 and Figure 4.8 are the color scale graphs associ-

ated with q2 and q3 values respectively. Each color scale graph uses the same trend-line, but uses

color values associated with the corresponding q1, q2, or q3 values. Using color to illustrate the

values of q1, q2, and q3 adds another dimension to the results, essentially viewing the results on a

two-dimensional plane from a three-dimensional perspective. This approach to viewing the results

helps to better uncover the values of q1, q2, and q3 that are affecting the state weighing matrix.

Figure 4.6: The same trend-line using color values to depict the values for q1.

Now that the effects of the state weighing matrix are known, the effects from the input weighing
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Figure 4.7: The same trend-line using color values to depict the values for q2.

Figure 4.8: The same trend-line using color values to depict the values for q3.

matrix can be tested. To test the effects, the value of ρ is varied and tested with the arrangement of

q1, q2, and q3 that provide that highest controllable percentage. To visualize the results, a trend-
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line was also created to help observe the effects, as seen in Figure 4.9. Once again, the effects could

be difficult for some to distinguish, so the color scale is implemented. The results can be seen in

Figure 4.10, and display that the higher the value of ρ, the lower the percentage of controllable

points, and the lower the value of ρ, the higher the percentage. Using the color scale approach to

visualize the results helps to validate the observations from viewing the original trend-line. When

Figure 4.9: The trend-line produced to show the effects of adjusting ρ.

the Q matrix has diagonal values larger than one, the region of attraction is again calculated for

several varying controllers. The same method of calculating a percentage of controllable points is

conducted, and leads to the creation of the trend-line shown in Figure 4.11. The produced trend-

line can be viewed by section once again to determine the values for q1, q2, and q3. This trend-line

demonstrates different sections, but the difference between points is very small. To add the q1, q2,

and q3 values to the graph, the color scale method is used once more. The color scale method is

shown in Figure 4.12 for q1 values, Figure 4.13 for q2 values, and Figure 4.14 for q3 values. The

respective figure indicates that if the value of q1 is higher, then the controllable percentage will be

higher. In addition, if the value of q2 is defined as a lower value, then the controllable percentage
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Figure 4.10: The trend-line produced to show the effects of adjusting ρ, now using the color scale.

Table 4.2: A summary of the q1, q2, and q3 values discovered from the trend-line of using a
diagonal of the Q matrix greater than one.

Variable Type of Value
q1 Higher Value
q2 Lower Value
q3 Higher Value

will be higher. Finally, looking at the q3 values in the same way shows that if its value is higher,

then the controllable percentage will be higher. These conclusions are summarized in Table 4.2.

Once more, exploring the effects of ρ on the combination of q1, q2, and q3 values that produce

the highest percentage of controllable points, a new trend-line can be drawn then inspected. The

produced trend-line can be seen in Figure 4.15. Inspection of the trend-line leads to the discovery

that the lower the value of ρ, the higher the percentage of controllable points will be. The color

scale approach can confirm this finding, shown in Figure 4.16.
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Figure 4.11: The trend-line produced to show the effects of a Q matrix with the diagonal greater
than one.

Figure 4.12: The same trend-line using color values to depict the values for q1.
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Figure 4.13: The same trend-line using color values to depict the values for q2.

Figure 4.14: The same trend-line using color values to depict the values for q3.
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Figure 4.15: The trend-line showing the effects of changing the value of ρ for the Q matrix with
the diagonal greater than one.

Figure 4.16: The same trend-line showing the effects of changing the value of ρ for the Q matrix
with the diagonal greater than one, now using a color scale.
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4.2 Controllable Percentage

The metric used for determining the capabilities of the different controllers was the calculated

controllable percentage. The method used for tuning the controller using the region of attraction

demonstrated what values of the state weighing matrix and the input weighing matrix were ca-

pable of producing the highest controllable percentage. Table 4.3 is a summary of the designed

controllers accompanied by their capabilities. The controller tuned with the Qmatrix diagonal less

than one is represented by Lower Q, and the diagonal greater than one is represented by Higher Q.

Naturally, the uncontrolled Simplest Walker has no tuned parameters. The metric of controllable

percentage is represented by CP in the table.

Table 4.3: A summary of the different controllers tested on The Simplest Walker Model.

Un-controlled Identity Tuned Lower Q Higher Q
q1 - q1 1 q1 1 q1 61
q2 - q2 1 q2 61 q2 1
q3 - q3 1 q3 1 q3 61
ρ - ρ 0.01 ρ 0.01 ρ 0.01

CP 6.48% CP 31.07% CP 30.91% CP 29.23%

4.3 Region of Attraction

The region of attraction calculated for each controller is limited by its boundary of the initial

positions tested. This boundary was set to reduce computational time, but it does not include all of

the region of attraction. In an attempt to see more of the region of attraction, the method of setting

a perturbation amount for either θ̇, φ, or φ̇ was used. φ was set to remain a constant value, so the

region of attraction was mapped using θ̇ versus φ̇. This method was used with the three different

systems tested. Figure 4.17 shows the wider view of the region of attraction of the uncontrolled

system. Figure 4.18 shows the wider view of the region of attraction for the implemented controller

tuned using the identity. Lastly, the region of attraction slice for the controller tuned using the

region of attraction method can be seen in Figure 4.19. The controller used in Figure 4.19 is the
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controller tuned using the Q matrix with the diagonal less than one. The reason this Q matrix was

used is because of the two different styles ofQmatrices explored, the diagonal consisting of values

below one is capable of a higher controllable percentage. Please note the cutoff of the plotted points

on the right side of the graphs, where θ̇ is approximately 0.05. This limit represents the maximum

value of θ̇ before the walker falls backwards. The goal of this thesis is to expand the region of

Figure 4.17: The slice of the region of attraction at the layer of φ equal to 0.1 for the uncontrolled
Simplest Walker. The fixed point is represented by the red star.

attraction of the simplest walker, and viewing the region at the same layer will provide a clear

and simple conclusion. The wider view of the region of attraction of both controllers shows that

each controller produces a different region of attraction, but it is difficult to tell if the controllable

percentage is increasing. To provide a better comparison, the region of attraction must be viewed at

a closer resolution. It has already been shown that viewing a slice of the region of attraction allows

for better interpretation, so that same method is used to visualize the size increase. The region

of attraction was calculated within a specific range, so by viewing the outermost layer, we can

see the size increase. The reason for viewing the outermost layer is because the more capable the

Simplest Walker is, the further away from the fixed point it can be and still be controlled. Figure
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Figure 4.18: The slice of the region of attraction at the layer of φ equal to 0.1 for the controller
tuned using the identity. The fixed point is represented by the red star.

Figure 4.19: The slice of the region of attraction at the layer of φ equal to 0.1 for the controller
tuned using the Lower Q matrix. The fixed point is represented by the red star.
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4.20 displays a side-by-side comparison of the regions of attraction and it can be seen that with the

implementation of the DLQR controller the region of attraction has increased.

(a) Uncontrolled ROA (b) Identity Tuned ROA (c) ROA Tuned ROA

Figure 4.20: A side-by-side comparison of the region of attraction for the uncontrolled Simplest
Walker and two different controllers tuned using different parameters.
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CHAPTER 5: CONCLUSION

In conclusion, the results will be summarized and discussed to provide answers to any additional

questions that may exist. The purpose is to clearly define how the values of the diagonal state

weighing matrix relate to each other, and the relationship the input weighing matrix has with them.

Once a brief summary is finished, consideration of future work related to this method of tuning

using the region of attraction is discussed.

5.1 Results summary

To summarize, the work done in this thesis explores a technique of using the region of attrac-

tion to tune the input parameters of a DLQR controller. The goal was to begin with the region

of attraction of the un-perturbed Simplest Walker and expand the region of attraction with the

implementation of a designed controller. The controller design was determined from calculating

the region of attraction for a wide variety of different DLQR controllers. For each controller, a

percentage of controllable initial points was calculated based off all the initial points attempted.

Using the controllable percentage, a DLQR controller was designed to obtain a larger value for the

controllable percentage. From the experiments conducted, the controller capable of producing a

larger controllable percentage consists of a smaller q1 value, a larger q2 value, and a smaller q3

value in the Q matrix with the diagonal less than one, accompanied by a smaller ρ value. This

was determined by testing different diagonal Q matrices with values less than one and greater than

one, while maintaining the requirement of being positive semi-definite. Additionally, the different

values of ρ were chosen to increase in size to determine the effect while meeting its criteria of

being positive definite. The diagonal values of the Q matrix less than one was able to produce a

larger controllable percentage of initial points tested. Testing the diagonal values of the Q matrix

greater than one revealed that the best value for q1 would be a higher value, the best value for q2

would be a lower value, and the best value for q3 would be a higher value. The two conclusions

agree with each other, because the diagonal of the first style of Q studied is the reciprocal of the
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second diagonal of Q. The approach used with the diagonal of Q allowed for diagonal values less

than one and greater than one to be tested. The technique of displaying the region of attraction as

layers presented a user-friendly method; this was done to supply accurate and robust visualization.

The simpler visualization shows that the region of attraction of the simplest walker was increased

thanks to accurate implementation of a DLQR controller.

5.2 Future work

In addition to the brute force method of using the region of attraction to tune the input parameters

of the DLQR controller, optimization techniques could be implemented to determine the optimal

values of q1, q2, q3, and ρ. Through optimization, the results from the region of attraction method

can be confirmed, providing additional support for the results. The cost metric for The Simplest

Walker could be the distance between the state and the fixed point on the Poincaré Section after

three steps. The optimization parameters would be the values of q1, q2, q3, and ρ. An initial guess

will need to be defined, and then starting at that point, the function will try to find the minimum

distance between the state and the fixed point. The cost function that is trying to be minimized

should be classified as a black-box function because the form of the equation is analytically un-

known. Several initial values of q1, q2, q3, and ρ should be tested, but it is important to use the

same perturbation amounts for each set of optimization parameters. The addition of this tuning

technique would add additional validation to the tuning method used within this thesis.
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