How to Make the Auto-Sunglass

By: Victor Guzman

Required Parts:
1. SG90 9g servo motor x1 Servo
2. Light sensitive resistor x1 LDR
3. 10k ohm resistor x1 10k
4. Sunglasses x1 Available at your local dollar store
5. Attiny85 Microcontroller x1 Attiny85
6. 9v 680 mAh rechargeable battery (Kastar) x1 Battery
7. MiCar Bluetooth receiver x1 MiCar
8. Earbuds (generic) x1
9. L7805CV linear regulator x1 L7805CV
10. Small slide switch x1
11. Jumper wires

Software and Tools:
- Arduino IDE
- Soldering Iron
- Hot glue gun
Function of Sunglasses:

The auto-sunglass is a pair of sunglasses able to detect light intensity to determine whether to close or open a pair of shades to protect your eyes automatically. It is also equipped with a pair of Bluetooth headphones that giving you easy access to listen to music and answer calls anywhere.

Circuit Diagram:

![Circuit Diagram](image-url)
Programming Attiny85:
(If you already know how to do this skip to the next step)
You will need an Arduino Uno, a 10uF/25V capacitor and a jumper wires.

1. Since Arduino doesn’t support the attiny85 we need to add the board to the Arduino IDE.
 In Arduino IDE go to Files->preferences and then in the Additional boards’ manager
 URLs box enter this URL https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-
 boards-manager/package_damellis_attiny_index.json
2. Go to Tools->board->board manager, then in boards manager search scroll to the very
 bottom to “attiny by Davis A. Mellis” then install it. It should now be visible in the list of
 boards
3. Next, go to File->Examples->arduino isp and then upload it to your Arduino Uno board
 which now allows your Arduino to program other boards
4. Next connect the Arduino to the attiny85 like so

 Arduino -- Attiny85
 5V -- VCC
 Gnd -- Gnd
 Pin 13 -- Pin 2
 Pin 12 -- Pin 1
 Pin 11 -- Pin 0
 Pin 10 -- Reset

 Now in tools change to board to attiny25/45/85
 and the processor to attiny85. Next, change the
 programmer to Arduino as ISP. Next set the clock to
 8MHz Internal then burn the bootloader.
 Finally, upload your code
 and you should all set.
 (Code can be found at end of the instruction
 manual)
Putting it Together:
First you want to solder the electronic components to a protoboard and cut the protoboard so it fits on the side of the glasses, also attach a 9V battery adapter to the circuit board.

Next, cut your earbuds and solder them back together so that they fit across the glasses and so that the earbuds hang down and comfortably fit in your ears. Also, mount the Bluetooth receiver to the opposite side of the glasses where the circuit board was mounted.

Now mount the battery to the same side of the circuit board and attach a stiff piece of plastic to the lenses so that they are covering the open holes and attach the piece of plastic to the servo motor like shown in the pictures.
The Code:
#include <SoftwareServo1.h> /* use SoftwareServo Library */

SoftwareServo1 Tyrone; /* Name the servo "Tyrone" */
int servoPin = 0; /* Create variable for Servo on Pin 0 */
int ldr = A1;
int value = 0;
int i; /* Create variable for counting refreshes */

void setup()
{
 Tyrone.attach(servoPin); /* Tyrone is on the servoPin */

 /* The best minimum & maximum pulse widths will depend on the brand & type of servo used. These settings work well with our Towerpro microservos. */
 Tyrone.setMinimumPulse(496); /* set minimum pulse width */
 Tyrone.setMaximumPulse(2245); /* set maximum pulse width */
}

void loop()
{
 value = analogRead(ldr);
 delay(100);
 if(value<100)
 {
 Tyrone.write(155);
 for (i = 1; i < 30; i++)
 {
 SoftwareServo1::refresh(); /* This is the refresh function */
 delay(50);
 }
 }
 else
 {
 Tyrone.write(80);
 for (i = 1; i < 30; i++)
 {
 SoftwareServo1::refresh(); /* This is the refresh function */
 delay(50);
 }
 }
}