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 Current robot automation efforts of aircraft fuselage layer joining are very inefficient; 

specifically, in detecting fasteners. Present method of localizing fasteners is manually feeding the 

locations to the robot which is an expensive task for the number of fasteners needed for joining. 

 We propose using machine learning to identify and locate the position of bolts on a work 

piece without prior knowledge of their location. The approach is to generate synthetic data using 

the technique of domain randomization to use in machine learning to identify bolts and their 

location. The rationale is that with enough variability in the synthetic images, real-world images 

will appear as another instance of the synthetic data; this process will allow us to work in varying 

surrounding conditions. With this method we create synthetic images with several instances of 

the workspace varying lighting, occlusions, textures, and noise and feed it to a neural network 

which will return a location of the bolt.  

 In testing the accuracy of this proof-of-concept, a test bed will consist of workpiece 

embedded with bolts with known locations. Our developed detector will be given real images of 

the testbed and will (1) detect the number bolts in the image, and (2) estimate the position of 

each detected object. On our three test sets we can detect bolts with at least 85% accuracy, while 

for estimating position our method is able to predict 75% of the bolts under 1.27cm error for the 

first two test sets and on the third test set predict 75% bolts under 2.54cm.  
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 INTRODUCTION 

 In programming robots to perform tasks, it is very common to create a simulation of the 

robot prior to dispatching the program to the robot. With simulations we can envision a robot’s 

behaviors and test on actual robots. This saves users time and money as we can eliminate bugs 

and reduce robot down time. 

 However, there lies an issue in transferring simulation into hardware: the reality gap. 

While we can make exquisite simulations that represent the real world accurately, there is the 

underlying fact that nothing is made perfect. Moreover, how similar the simulation and real 

environment corresponds to how well the simulation will carry over to hardware. 

 With the advancements in machine learning and deep neural networks, we see work in 

closing the reality gap using synthetic data. Using synthetic data is attractive as neural networks 

require a lot of data and creating synthetic data is quick with the advances in computation power. 

Furthermore, collecting and labeling data is time consuming, however we can quickly and easily 

label our data if we generate synthetic data. 

 Our objective is to train a neural network identify and localize bolts on a workpiece that 

is unaffected by the difference in simulation and the real world (lighting, distractors, textures, 

noise). To perform this task, we use the method of domain randomization to create training 

images that have randomized uncertainties between simulation and the real world like lighting, 

exact camera position, textures, etc. This allows the network to be flexible and capable of 

working in a range of environments. 
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1.1 Thesis Contributions 

 In completing this thesis, we look to demonstrate on a workpiece as a proof of concept 

for detecting bolts on a fuselage. With this work we’ll provide our methods for developing 

synthetic data and training methods to be used for anyone to develop their own data. We will 

also be making our training data available, as well as our script for generating synthetic images 

of our workpiece for others to use in their work. We will also be providing the test sets we create 

for testing our methods open for other researchers to improve on the work in this thesis. 

Contributions we make compared to other works is using strictly synthetic images to train a 

network that identifies objects and makes precise position estimates of multiple objects 

concurrently. 
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 BACKGROUND AND RELATED WORK 

2.1 Convolutional Neural Network 

For this work we use convolutional neural networks (CNN) specifically for classification 

and regression. In short, we provide a CNN an image as an input, and it will go on to evaluating 

features of the image to correlate the image to a specific characteristic we are interested in. 

CNNS there are three main components, convolutional layer, pooling layer, and fully connected 

layer. Here we will introduce these separate parts of the CNN and other special tools in using 

CNN.  

 

2.1.1  Convolutional Layer 

Convolutional layers act as a learnable filter for extracting features that the neural 

network believes are important. The convolutional layer accepts a data volume of W1 x H1 x D1. 

We slide K number of filters of size F x F x D1 across the data volume shifting the filter S units 

over. The types of the filters are initialized randomly and are readjusted through training the 

neural network. Padding is also optional to use in filtering which adds P extra layer units around 

the input image to preserve information of the input volume. Through the filter of the input 

volume we obtain and output volume of W2 x H2 x D2 where we use equations (11),(2), and (3) 

and then apply an activation function. 

 𝑊2 = ⌊
𝑊1 − 𝐹 + 2𝑃

𝑆
+ 1⌋ (1) 

 

 𝐻2 = ⌊
𝐻1 − 𝐹 + 2𝑃

𝑆
+ 1⌋ (2) 

 

 𝐷2 = 𝐾 (3) 
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We illustrate the first two strides of a convolution of an input of size 4 x 4 x 1 using a filter of 3 x 

3 x 1 (Figure 1). We add one layer of padding with values of zeros and set one-unit strides to 

produce an output size of 4 x 4 x 1. 

 

 

2.1.2  Activation Function 

Typically, after convolutional layers and in computing fully connected layers, we use 

activation functions to map the values to a certain threshold and introduce nonlinearity to a 

system. The most common activation function for a simple binary classification (True of False) 

is to use sigmoid function as it maps the inputs from zero to one.  In this work we use Rectified 

Linear Unit (ReLu) as it is very simple and computationally light on back propagation in 

training. We show common activation functions in the following table.  

Table 1: Common Activation Functions 

Name Function 

Sigmoid 𝑓(𝑎) =
1

1 + 𝑒𝑎
 

Tanh 𝑓(𝑧) =
𝑒𝑎 − 𝑒−𝑎

𝑒𝑎 + 𝑒−𝑎
 

ReLu 𝑓(𝑧) = max⁡(0, 𝑎) 

    

 1 1 0 

1 1 0 

1 1 0 

 0 0 0 0 0 0 

0 1 1 0 0 0 

0 2 1 0 0 0 

0 1 1 0 0 0 

0 2 1 0 0 0 

0 0 0 0 0 0 

4x4 Image with Padding 

Filter 

4x4 Convolved Feature 

Figure 1: Example Convolution 
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2.1.3  Pooling Layer 

The function of the pooling layer (also known as downsampling) is to reduce the spatial 

dimension. The two main purpose of doing this is to allow for decrease the number of parameters 

the neural network have to calculate, and to help with reducing overfitting. There are several 

types of pooling such as max-pooling and average-pooling, but we opt to use max-pooling. 

In performing max-pooling, the input to the layer is a data volume of W1 x H1 x D1 and outputs a 

size W2 x H2 x D2. The output is based on the window of size F, stride, and padding size and uses 

the same equations in (11), (2), and (3). For max-pooling we slide a window across the input 

image and outputs the max value within the window. We illustrate this concept in Figure 2 where 

we have an input size of 4 x 4 x 1, window size of two, no padding, and a stride of 2; our output 

comes to be a 2 x 2 x 1 data volume. 

 

 

 

 

 

 

2.1.4  Fully Connected Layer  

Typically, after multiple convolution and pooling layers we transition into fully 

connected layers. Fully connected (FC) layers (also known as hidden layers) consist of several 

neurons that execute a weighted sum of the input and applies an activation function (Figure 3). 

Image  

6 8 

14 16 

 

6 2 3 8 

5 1 7 4 

9 10 11 12 

13 14 16 15 

 
Pooled Image  

Figure 2: Pooling Example 
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Each neuron layer in the layer takes the previous layers data as input, the output then 

connects to each neuron of the next FC layer. The neurons take in the vector x = (x0 x1 … xn)
T as 

input into equation (4) where w and b are learnable parameters, weight and bias. Equation (4) is 

then used as input for the activation function (Table 1). The output of the activation function is 

used as the input for the next layer. 

 𝑎 = 𝑤𝑇𝑥 + 𝑏 (4) 

2.1.5  Softmax and Classification Layer 

In performing multi-classification softmax activation function is used to determine the 

multiclass probability. The equation of softmax is shown in equation (5) where P is the 

probability of the i-th neuron out of k total neurons.  

 𝑃(𝑎𝑖) =
𝑒𝑎𝑖

∑ 𝑒𝑎𝑗𝑘
𝑗=1

 (5) 

Figure 3: Example of Fully Connected Layers [22] 
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The softmax function normalizes the input hidden layer such that 0 ≤ P(ai) ≤ 1 and 

∑ 𝑃(𝑎𝑗)
𝑘
𝑗=1  =1. The output values each represent a categorial distribution where in the case 

image classification, each output value represent a label and the highest value declares the input 

image’s label. During training, the neural network’s prediction is compared to the true label 

through cross entropy loss described as: 

 𝐸(𝑦, 𝑦̂) = −∑𝑦𝑖𝑙𝑜𝑔𝑦̂𝑖 

𝑖

 (6) 

Where y and 𝑦̂ is the target value and the output at neuron i, respectively. With this error 

function we perform back propagation, described in a further section. 

 

2.1.6  Regression Layer 

In our work we use regression layer (specific to MATLAB) to predict the position of 

bolts. The regression layer is primarily used for back propagation in training a neural network. 

The final FC layer in the neural network predicts values and has no activation function like the 

softmax layer. The output value of the FC layer is compared to the true values in our regression 

layer using mean squared error (equation (7) to be used in training the network.   

 𝑀𝑆𝐸 = 𝐸(𝑦, 𝑦̂) = ⁡∑
(𝑦𝑖𝑙𝑜𝑔𝑦̂𝑖)

2 

𝑘

𝑘

𝑖=1

 (7) 

2.1.7 Training and Back Propagation 

For training the neural network we must compare the neural network’s guess to true value 

in order to create a smarter network. In training the network an image is fed into the network of 

convolutional, pooling, and fully connected layers. The image is passed through the layers and 

the network observes the features and takes a guess of what it believes it should be searching for. 

At this point the network’s prediction is compared to the true value using the error functions 
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described in section 1.1.5 and 1.1.6. The error is then used to the update parameters such as the 

weights and bias in the fully connected layer, as well as the filters in the convolutional layer. 

This process is performed several times to learn to predict the true values accurately. During 

training, the network is given true values of what it should be searching for, however when 

implementing the network, the true values may not be available. 

 

2.2 Faster R-CNN 

 Convolutional neural networks work great for classifying and labeling what an image 

contains, but what happens when the image contains more instances of the object of interest or 

contains multiple labels? This is where Faster R-CNN [1] comes into play. Faster R-CNN has 

two main parts: a convolutional neural network, and a Region Proposal Network (RPN). Apart 

from its slower predecessors [2], [3], Faster R-CNN uses a light weight network that takes 

advantage of using the CNN’s convolutional feature map to generate bounding box proposals 

(Figure 4). With the bounding boxes training can be done to perfect the RPN, the final classifier 

and a regression for bounding box. [4] 

 

Figure 4: Faster R-CNN visualization [1] 
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2.3 Overview of Related work 

Visual based object detection is a well-studied problem in literature [5] [6] [7], however the 

authors use an RGB-D camera to detect depth. In our work we use a single monocular camera.  

Domain randomization is the method where instead of training a model on a single simulated 

environment, the model is exposed to a randomized environment during training to allow it to be 

flexible and invariant to differences between the simulated model and the real model [8]. We 

wish to use this idea to generate synthetic images to train our neural network. A lot of inspiration 

for this work span from [8] and claim to be the first to successfully transfer a deep neural 

network trained only on synthetic data, however they use large and distinctive colored objects, 

and they do not obtain information of multiple objects at once.  Many other authors have used 

domain randomizations [9] [10]  but have not transferred to perform in the real world. However 

the authors of [10] have transferred to the real world for grasping objects by randomizing 

policies for grasping objects [11] [12]. Authors of [13] [14] [15] have transferred from 

simulation to the real world but do not perform fine measurements. 

A step past domain randomization is to continue training on real the real objects. Bousmalis et. 

Al. uses Generative Adversarial Networks to make synthetic images look real by comparing it to 

the real images use the GAN to make the synthetic images seem real [16] The same author uses 

this work for adapting a synthetic image to appear real to the network for robot pick & place [17]  

The authors in [18] and [19] use a slight alternate of domain randomization where they instead 

randomize the physical properties of their robots to perform tasks.  
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 METHODOLOGY 

3.1 Data Generation. 

 In generating the synthetic images, we use the open source software, Blender [20] . We 

create scenes resembling our physical system, randomizing (1) camera position and field of view 

(FOV), (2) lighting position and properties, (3) distraction object shape, positions and the 

number of distraction objects, (4) position of the bolts on a workpiece, and (5) color and texture 

of table, workpiece, bolts, and distractors. We generate scenes by randomizing the 5 

aforementioned features. We fix the workpiece to the center of the scene with the size set to 

30.5cm by 30.5cm. A table is set beneath the work piece that is arbitrarily sized to occupy space 

in the camera frame not covered by the workpiece. The bolt used in the synthetic images is taken 

from McMaster-Carr’s online 3-D models. 

 

3.1.1 Camera 

 The randomization of the camera position would allow us to avoid a calibration step that 

would be performed before testing. Typically, there is an extrinsic calibration to accurately map 

pixel coordinates to camera coordinates. However, with our method we make our network give 

us results as if the camera was already calibrated. By randomizing the field of view (FOV), we 

again skip calibration of finding the FOV of the camera as well as give us the flexibility to use 

different cameras with different FOV We use a single camera in Blender to capture the synthetic 

images and randomize the camera’s position with respect to the center of the workpiece. The 

camera is positioned [-7.6cm,7.6cm] from the center in the x-direction, [-30.5cm, -45.7cm] away 

in the y-direction, and [30.5cm, 45.7cm] above in the z-direction. After randomizing the 

position, we aim the camera to the center of the workpiece.  
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In randomizing the camera FOV in Blender, we estimate the FOV of our physical camera and 

implement it in the synthetic images. We add a small buffer to allow for any error in estimating 

the FOV and set the randomization range between [35˚, 40˚]. 

 

3.1.2 Lighting 

 We create two lighting sources where we use the first lighting source as the key light and 

the second source as backlighting. The key light is given a yellow tint while the backlight is 

given a light blue tint to mimic lighting in our actual testing environment. The backlighting is 

also used to soften shadows made by the key lighting. The key lighting’s intensity is randomized, 

and the backlighting is approximately half of the intensity of the key lighting with some added 

variance.  

 Positions of the key lighting are placed above the workpiece occupying a semi spherical 

space with a radius of 2.13 meters from the center of the workpiece. The backlighting is 

positioned 180˚ about the center of the workpiece from the key lighting. Both light sources point 

at the center of the workpiece and add up to 10˚ variation. 

 

3.1.3 Distraction objects 

 The distractors act as a way to prevent the neural network from overfitting on the 

synthetic data. Without the use of these distractor objects, the neural network would be 

vulnerable to false positive detections of random objects and any features not captured in 

training.  We use four shapes available in Blender as distractor objects: cube, sphere, cylinder, 

and cone. The sizes of the distractors are made to be about the same size of the bolt. We vary the 
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number of distractors in each scene from [0, 8] as well as the shape each distractor is. The 

distractors are placed arbitrarily onto the workpiece. 

 

3.1.4 Bolts 

 The position of the bolt is placed anywhere on the workpiece excluding the edges. We set 

the origin to the bottom left corner of the workpiece and record the cartesian coordinates, x and 

y, position of the bolt relative to the origin. We also record the bounding boxes of the bolt in the 

synthetic images to be used for the RPN of our Faster R-CNN.  

 

3.1.5 Color and Texture 

 We setup three textures for the bolt, distractors, table, and workpiece: solid color texture, 

marble texture, and a gradient texture. For each of the objects in the scene, we randomly set a 

texture to the objects and randomize the colors of the texture. We also add the possibility for 

objects to have [0%, 60%] reflectivity. 

 Scenes are generated with these randomized features then images are rendered in Blender 

to a resolution of 448 x 448. We create 75,000 images (Figure 11) to be used for training and 

validation, with 50,000 images containing only one bolt and 25,000 images containing two bolts 

on the workpiece. 

 

3.2 Network 

 For our neural network we use two instances of the VGG16 architecture with pretrained 

weights from ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [21]. We modify 

each instance to perform separate tasks. The first instance is to identify all bolts in an image 
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while the second instance is to estimate the position of the bolts on the workpiece. Both networks 

are also slightly modified to accept 448 x 448 images rather than 224 x 224 to increase the 

resolution of the tiny size of the bolt. We then combine these two networks at test time to detect 

all bolts in each image and its position on the work piece. We use MATLAB to train our 

networks and implement it on our physical system. 

 

3.2.1 Training the network 

 For the first network we use VGG16 with pretrained weights from ILSVRC. We modify 

the network to accept 448 x 448 images then add two convolutional layers with ReLu activations 

following each layer. The convolutional layers have 32 filters with a filter size of 3 x 3. We add 

padding size of one and use a stride of one. We add a max pooling layer after the second 

convolution layer with a pool size of two, zero padding and a stride of two. We add these new 

layers to the beginning of the VGG16 architecture. We change the last fully connected layer to a 

two-neuron layer and then change the softmax and classification layer to have an output label of 

either a bolt or background. 

 For training the first neural network, we use Faster R-CNN to detect multiple bolts in an 

image. We split the 75,000 synthetic images into 67,500 training images, 7,500 into validation 

images. We use the training set and the bounding boxes taken from Blender as input to the 

network. Stochastic gradient descent with momentum is used because MATLAB does not allow 

Adam optimization for Faster R-CNN. We use 0.9 for the momentum coefficient. We add L2 

regularization with a coefficient of 1e-4. A mini batch size of 256 is used and trained for three 

epochs. We also increase the bounding box sizes of the bolts in the training images as MATLAB 
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cannot process objects that are too small. Because we increase the bounding box sizes, we 

modify how we evaluate our detector’s ability. We discuss this in a further section.   

 For the second network we use the first network that has been trained on classifying bolts 

and modify the last fully convolutional layer to a new two neuron layer followed by a regression 

layer that outputs two values, x and y position.  

 Training the second neural network we use the 49,000 images that only contain a single 

bolt and use the other 1,000 for validation. We don’t use the images with two bolts as the neural 

network can only estimate the position of one bolt at a time. We use Adam optimization with an 

initial learning rate of 1e-4, and a drop rate factor of 0.1 every 4 epochs. We train the network for 

9 epochs with no L2 Regularization and a mini batch size of 32. 

 

3.3 Full Algorithm 

 After training the networks we create an algorithm to take the positive detections from 

the first network and send them into the second network to estimate a position. First, we run the 

image of our physical system through the first neural network and detect k positive detection of 

bolts. Since the second network is only capable of estimating the position of one of k bolts in an 

image at a time, we devise the method of running k copies of the image through the second 

network k times.  

 We make k copies of the input image to use as input for the second network to estimate 

the positions. We take a copy of the image and ‘blur’ out the all positive detections in the image 

except for a single positive detection. This is repeated for all k copies such that each copy 

contains a different detection that is not blurred. For blurring the separate positive detections, we 

take its bounding box and find the average color of the pixels inside the bounds and change all 
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the pixels in the bounds into the average color. We take the k images and run them through the 

second network and retrieve estimated positions for all k positive detections. We then take all k 

estimated positions and link them to their corresponding positive detection (Figure 12).  
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 EXPERIMENTS 

 To test the effectiveness of the algorithm, we create three test sets that exhibit the 

algorithm to different scenarios. We record test images in a room where we do not control the 

lighting condition and stay constant throughout the testing. We use a 30.5 x 30.5 wooden 

pegboard as our workpiece and place it on an optical breadboard table. We randomly place two 

bolts in the workpiece. In the first test set we use the same type of stainless steel bolts for both 

bolts. We then replace one stainless steel bolt for a black oxide bolt for the second test set. For 

the last test set we mix between the stainless steel, black oxide and a cadmium-plated bolt. We 

also mix in another color workpiece in the third set. For the first and second test set, we place our 

off the shelf camera at an arbitrary distance and height, straight ahead from the workpiece and 

for the third set we place the camera 7.6cm to the left-- no kind of camera calibration was 

performed for testing. In the first two sets, when changing the position of the bolts, we place the 

workpiece on the table in a fixed Y position on the table but leave the X position unfixed. The 

third test set the workpiece is placed in a fixed position on the table. For each set we take 20 

images with the two bolts placed in various positions.  

 For evaluating the effectiveness of our algorithm, we measure precision and recall for the 

first detection network. We define recall and precision as: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (8) 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (9) 

 

Recall it is the ratio of correctly identified instances to all correct instances. In other words, did 

the detector find all instances of the bolts? As for precision, it is the ratio of the correctly 
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identified instances to total number of positive detections. What this measure is—of all the 

instances where the detector thought it saw a bolt, how many detections are actually bolts? With 

precision and recall we can better measure how well our detector performed in contrast to 

measuring just how many bolts it detected out of the total bolts. We use the precision and recall 

in finding the F1 Score at varying thresholds When we measure recall and precision, we do not 

consider Intersection over Union (IoU) for measuring how well the true and estimated bounding 

boxes compare, rather, we ignore a minimum IoU. This is a repercussion of increasing the 

bounding box size during training. The F1 score (equation (10) is the harmonic mean of both 

recall and precision to give a performance score. We use this metric to find the score for different 

confidence thresholds in detecting the bolt. We use the threshold with the highest score for each 

test set and report how well the detector performs. 

 

 𝐹1⁡𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙⁡ × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (10) 

 

 We measure the accuracy of the algorithm to predict the bolts’ position on the workpiece 

with respect to the origin. We run our test set images through our algorithm and retrieve 

estimated positions. Using equation (11) we find the distance between true position and 

estimated position to determine the error where x and y are the true positions and 𝑥̂ and 𝑦̂ are the 

estimated positions.  

 𝐵𝑜𝑙𝑡⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛⁡𝑒𝑟𝑟𝑜𝑟 = ⁡√(𝑥 − 𝑥̂)2 + (𝑦 − 𝑦̂)2 (11) 

  

 We collect the mean of the errors for each test set as well as the standard deviation. We 

look at how many bolts have an error of less than 1.22cm and discuss how well the algorithm 

estimated position. 
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4.1 Detection Evaluation  

 Set one we evaluate the precision and recall at confidence thresholds between [50, 70]. 

The precision versus recall plot is shown on Figure 5a.  

 

Figure 5: Precision vs Recall for (a) Test Set 1 (b) Test Set 2 (c) Test Set 3  

 

 

 

  

( b ) ( c ) ( a ) 

Figure 6: F1 Score vs Threshold for (a) Test Set 1 (b) Test Set 2 (c) Test Set 3 

( a ) ( b ) ( c ) 
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We find the F1 score for each threshold and find the maximum F1 score of 0.73 at a threshold of 

54% (Figure 6a). At a threshold of 54% we have recall of 35 of 40 bolts correctly identified and 

precision of 35 bolts out of 48 total positive detections (Table 2).  

  

 In this test set we have four images in specific that have bolts placed 2.54cm away from 

each other on the workpiece-- we find that in our detection step, it has challenging time 

identifying the bolts separately (Figure 7). When detecting images with bolts that are positioned 

within 2.54cm proximity, we see that the bounding boxes are combined into a single bounding 

box. This is a consequence of increasing the bounding boxes during training as MATLAB limits 

what region of interests it processes based on the network down sampling.  

Figure 7: Incorrect Bolt Detection 
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Table 2: Test Set Performance 

  Test Set 1 Test Set 2 Test Set 3 

Bolts correctly identified 35 out of 40 37 out of 40 38 out of 40 

Average Error (Inches) 0.48 0.42 1.16 

Standard Deviation (Inches) 0.53 0.29 1.73 

Bolts with < 0.5 inch error 29 out of 35 30 out of 37 15 out of 38  

 

 For set two the precision and recall are evaluated at thresholds between [45, 65]. Figure 

6b show that at a threshold 59.2% we achieve our highest F1 score of 0.94. At this threshold our 

recall is measured to correctly identify 37 out all 40 bolts in the set, while our precision is 

measured to have 37 correctly identified bolts out 39 positive detections. Compared to the first 

test set, our F1 score increased to near a perfect F1 score of 1. The different color bolts were the 

only change between set one and two.  
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 Still, when we look at images that failed to identify the bolts (Figure 8), we see that the 

detector didn’t perform better because we switched colored bolts; two of the three failed 

identifications were from the black bolt. We do find that the test set has bolts spaced farther than 

2.54cm apart in contrast to set one. We have not tested distinct color bolts adjacent of each other, 

but we believe that the detector would be able to detect the bolts separately-- we wish to add this 

to future works. 

 Test set three, we have the most variations out of the other sets. We evaluate between 

thresholds between [50, 70] and find at a 63% threshold is where our F1 score at a maximum of 

0.87 (Figure 6c). We have a recall of 38 out of 40 bolts identified and a precision of 38 bolts out 

47 positive detections. Comparing to the other test sets, our detector has the highest recall in set 

three. Again, in this test set we have only two images that have bolts in close proximity of each 

other. We also see the camera automatically white balancing when changing the workpiece 

Figure 8: Missed Bolt detection in Test Set 2 
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colors. The detector is invariant to the workpiece change as well as our camera performing 

automatic calibration—we have no control over the camera performing white balancing. 

 For all the test sets we see high recall values with set one having the lowest recall of 

~0.88. As for precision, set two performs the best. Set one and three both have about the same 

amount false positives, and they tend to appear in the same area throughout the sets: the bottom 

left part of the images, and the mid-right side of the images. What seems to be causing the false 

positive is unknown, but they are very consistent. We also observed that the detector has only 

failed in detecting bolts that are on the right side of the workpiece. These failures need further 

observations to better our detector 

 

4.2 Position Estimation Evaluation 

 The histogram shown in Figure 9a show the distance between true and estimated position 

on the abscissa and the frequency of the error on the ordinate for test set 1. From our algorithm 

the mean error is found to be 1.22cm with a standard deviation of 1.35cm (Figure 9a & Table 2). 

For test set 1, we estimated the position of 29 bolts within 1.27cm successfully.  

  

Figure 9: Histogram of (a) Test Set 1 (b) Test Set 2, (c) Test Set 3 

( a ) ( b ) ( c ) 
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 The position estimation error in set two decreased in set two compared to set one. Our 

average error lowers to 1.07cm and our standard deviation lowers to 0.74cm (Figure 9b & Table 

2).  In comparison to set one, the decrease in error isn’t dramatic. In this set we can estimate one 

more total of bolts correctly than test one but have less correctly estimated out of correctly 

identified bolts.   

 

For set three we see a huge increase in error with the average error of 2.95cm and a standard 

deviation of 4.4cm. (Figure 9c & Table 2). In test three, we were only able to estimate 15 bolts 

under 1.27cm error, however we are able to estimate 32 bolts of the 38 identified correctly under 

2.54cm. 

 When generating synthetic images for training, we set the camera up to a maximum of 

7.6cm in either x-direction. We hypothesize that if we placed the camera closer to the middle, it 

would perform better than if it were placed on the extreme allowable positions. These 

randomizations in image generation allow us work in varying environment, but they also service 

as extra leeway for error in transferring from simulation to hardware. We also did not add extra 

variance in aiming the camera at the workpiece in the synthetic data. This leads to us having to 

always aim our real camera at the center of the workpiece, which we can’t repeat 100% of the 

time. This could possibly lend into inaccuracy in position estimation. 
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 CONCLUSION 

5.1 Summary 

 In this thesis we seek to produce a proof of concept for automating the process of 

localizing bolts on a fuselage. Although automation efforts have been partially successful, the 

process of passing the fastener locations to the robot is a manual process, which is a time-

consuming process. We have set out to produce a proof of concept of a method that will 

automatically detect bolts and predict the fastener location without human intervention.  

 We identify our testbed and develop synthetic images that don’t necessarily match our 

real system. The synthetic images are used for training a convolutional neural network and 

contain several variations such as lighting, camera position, and textures. These variation span 

from the idea that if there is enough variation in training, the neural network will be invariant to 

poor lighting conditions, uncalibrated cameras, and other undesirable conditions. We develop an 

algorithm that consist of two neural network that perform the separate tasks of identifying the 

bolts and prediction the location of the bolt on a workpiece and are able to identify and predict 

bolts precisely.  

 

5.2 Limitations 

 In this section we discuss limitations and short comings of our proposed method. 

 

5.2.1 Network dependence 

Because we split images with several bolts into separate images to feed into our position 

estimating network, we rely on our detection network on accurately identifying all the bolts. In  
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Figure 10 we show that the detector only identified one bolt. The detected bolt’s estimated 

position is (5.7, 7.5), however its true position is (3.5, 9.5). The true position of the undetected 

bolt is (5.5, 7.5). With our method the algorithm would make two images, blurring out one bolt 

in one image then blurring out the other bolt in the second image, then send it through the 

position estimating network. However, in this instance, because the detector only identified one 

bolt, it does not blur any bolts and sends the unedited images through the second network. 

Through this we are not able to control which bolt the second network looks at to estimate its 

position. In this case we get the position of the undetected bolt and is unintentionally associated 

to the detected bolt. To remedy this is to create a single network that allows for multiple 

regressions akin to regional proposal networks rather than separate networks. 

 

5.2.2 Duplicating Images for Position Estimation 

 Continuing our discussion on our procedure of duplicating images, its not very efficient 

for images with a considerable number of bolts. Presumably, if we are presented a setting where 

Figure 10: Incorrect Identification of bolt 
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a workpiece has 20 bolts we must find the position for, our algorithm will make 20 separate 

images for each bolt and send each one through our second network one at a time. Again we 

suggest creating a single network that uses a RPN that is lightweight on computation and capable 

of measure multiple objects simultaneously. 

 

5.2.3 Overlapping bounding boxes 

 Previously discussed, when the detector’s bolts that are too close to each other our 

detector tends to combine the bounding boxes into a single bounding box for both. Again, this 

roots from needing to expand the bounding boxes to compensate for MATLAB having a 

minimum region of interest size that it will compute. When the images go through the RPN, it 

goes through a non-max suppression layer where the RPN eliminates copies of similar bounding 

boxes that have an IoU less than a certain threshold. Two corrective actions we could take would 

be: (1) somehow bypass MATLAB’s limitation and use the correct, unedited bounding boxes 

during training or (2) increase the IoU threshold to place a stricter policy for discarding similar 

bounding boxes. 

With MATLAB we lose a lot of flexibility in how we make our neural network—in hindsight a 

stronger framework such as TensorFlow, Caffe, etc. should have been used. 

  

5.3 Future Works 

 Extending from the limitations of our algorithm, we wish to perform these tasks to 

improve the algorithm’s performance. Our highest priority for improving the algorithm would be 

to switch to a stronger neural network framework as MATLAB serves as an incredible tool for 

learning but not so much for development. 



 

27 

 

 Aside from eliminating our limitations we would like to extend our algorithm to more 

complex workpieces where we add more dimensions than just x and y position of a bolt on our 

workpiece, e.g. roll, pitch, yaw, and z position. This would give us more knowledge of our 

environment and the opportunity to perform more complex tasks such as finding the normal 

vector of the bolt to let us place a nut on the bolt.  

 In the near future we would like to add more test sets to be available to the public. 

Specifically, we would like to add more images that challenge our method and give others the 

opportunity to improve from our results. In addition to our current sets, we want to add test sets 

that add more adversarial objects in the image than just holes. Add different lighting 

environments and use cameras that are vulnerable to lens distortion and image noise. 
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APPENDIX 

 

 

 

Figure 11: Select Training Images 
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