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Abstract—This study introduces a data-driven methodology for
the ergonomic design of a passive spinal exoskeleton tailored to
human spinal curvature and movement. Motion capture data
from multiple participants were processed using Mokka and
MATLAB to yield averaged spinal trajectories. These curves were
analyzed using an optimization algorithm (MATLAB’s fmincon)
to determine ideal exoskeleton link configurations under geomet-
ric and anatomical constraints. A secondary evaluation using the
Analytic Hierarchy Process (AHP) weighted ergonomic fit, cost,
and durability to rank candidate designs. The results identified
a nine-link configuration as the most effective balance between
range of motion and comfort, achieving minimal root mean
square error (RMSE) relative to the averaged spinal curvature.
Additional engineering considerations—including power delivery
via a 24 V 15 Ah LiFePO4 battery system, voltage regulation
through a buck converter, and control via Arduino—were in-
tegrated to support future active functionality. This approach
demonstrates how biomechanics, optimization, and engineering
design can converge to produce anatomically informed exoskele-
tons with real-world applicability.

Index Terms—Data Driven, Ergonomic, Spinal Exoskeleton,
MATLAB

I. INTRODUCTION

Exoskeletons are emerging as promising assistive tech-
nologies in healthcare, industrial, and rehabilitation domains
[27]. One major challenge in their development is ensuring
ergonomic compatibility, as anatomically congruent design
is essential for adoption. Poor ergonomic fit can discourage
use regardless of a device’s functional performance [28].
Drawing inspiration from fundamental principles of spine
anatomy—including the segmentation into cervical (C1–C7),
thoracic (T1–T12), lumbar (L1–L5), and sacral (S1) vertebrae
[26]—and their respective ranges of motion, we aim to develop
a spine-aligned passive exoskeleton that mirrors the natural
posture and movement of the human spine.

The spine exhibits complex, multi-axis motion. Each verte-
bra contributes to six degrees of freedom: flexion/extension,
lateral bending, axial rotation, and translations along the x-
, y-, and z-axes. White and Panjabi [29] report that these
motions are further stabilized by major muscle groups such
as the erector spinae, which generate and resist forces across
all planes. Understanding these biomechanical properties is es-
sential for developing passive assistive structures that maintain
both safety and comfort.

Ergonomics are emerging as a critical factor in the adoption
and usability of exoskeletons. One of the most significant
barriers to widespread use is user discomfort. Devices that
do not conform to individual anatomy are typically rejected,

regardless of their functional benefits. Many existing designs
lack the flexibility and personalization required to ensure com-
fort, contributing to limited user acceptance. By prioritizing
ergonomic considerations, adoption rates can be substantially
improved. Many current designs fall short in this regard,
lacking the flexibility and personalization needed to ensure
comfort. By prioritizing ergonomic considerations, we can dra-
matically increase the likelihood that individuals will choose
to incorporate exoskeletons into their daily routines. When
combined with the functional benefits of exoskeletons—such
as reduced musculoskeletal strain, gait support, and enhanced
strength—an ergonomic design becomes essential to user
acceptance. [30]

Historically, many exoskeleton designs have relied on in-
tuitive and iterative, trial-and-error development processes.
While these methods have yielded functional systems, they
often lack the precision and repeatability of a data-informed
approach. Our work aims to bridge this gap by integrating
human motion capture data into the design process. By map-
ping spinal motion through biomechanical trials and apply-
ing optimization algorithms to determine ideal exoskeleton
link placements, we can move beyond intuition toward a
rigorously engineered solution. This data-centric strategy not
only enhances ergonomic performance but also establishes a
robust foundation for future innovations in spinal exoskeleton
development.

The remainder of this paper is organized as follows: Section
II reviews relevant literature; Section III defines the design
problem; Section IV describes the methodology; Section V
presents analysis and results; and Section VI concludes the
study with proposed directions for future work.

II. RESEARCH

To define a meaningful engineering problem, a thorough
review of existing literature was conducted. Foundational
insights into spinal anatomy and kinematics were drawn
fromTroke et al. [1], Hajibozorgi and Arjmand [2], Feipel et al.
[3], and Frobin et al. [4], who together establish benchmarks
for lumbar, thoracic, and cervical motion. Figure 1 illustrates
a segmented view of the human spine.

Design precedents include Zhang et al.’s spring-based pas-
sive exoskeleton [5], a full-body support system from Rol and
Sankai [6], and a beam-based spinal support by Kong et al. [7].
While mechanically functional, these systems do not account
for personalized ergonomic alignment, a critical focus of this
project.



Fig. 1: Anterior and lateral views of the vertebral col-
umn, showing cervical, thoracic, lumbar, and sacral regions.
Adapted from Frobin et al.

The six degrees of freedom stemming from the spine and
its movement is critical in creating an ergonomic spinal
exoskeleton design. [26] Troke et al. and colleagues reported
the following ranges:
Rotational Motion:

Flexion/Extension: Cervical (60–80°), Thoracic (25–45°),
Lumbar (20–35°)
Lateral Bending: Cervical (30–45°), Thoracic (20–30°),
Lumbar (20–25°)
Axial Rotation: Cervical (30–45°), Thoracic (20–30°),
Lumbar (20–25°)

Translation Movements:
Anterior–Posterior: 1–3 mm
Lateral Translation: 1–3 mm
Vertical Translation: 1–2 mm

These flexibility parameters are crucial insight for our
design parameters. To build onto that foundation our design
must satisfy the following:

Spinal Frame
Follows the natural curve and flexibility of the human
spine
Lightweight and rigid material

Thoracic and Lumbar Support
Needs to stabilize the upper body to reduce strain, while
all exoskeleton segments are connected

Neck Connection
Secure
Flexible

Allow for flexion, extension, and rotation.

Multiple design options were evaluated during the concep-
tual phase of the exoskeleton. One key consideration was the
use of articulated joints—mechanical connections that permit
relative motion between rigid components, closely mimick-
ing the movement capabilities of anatomical joints. These
joints enable controlled motion, transmit forces effectively,
and provide the necessary degrees of freedom required for
spinal articulation. Common types include hinge joints, ball-
and-socket joints, and Cardan (or universal) joints, which are
frequently used in biomechanical applications to simulate joint
behavior. Figure 2 illustrates an example of such a joint. In
addition to articulated mechanisms, spring-assisted joints were
investigated [24]. These joints incorporate elastic components
to support or resist motion, reducing the physical effort re-
quired by the user and offering potential energy storage and
return, thereby enhancing comfort and mechanical efficiency.

Fig. 2: Illustration of an articulated joint featuring both ball-
and-socket and concentric inner–outer configurations. These
configurations demonstrate the degrees of freedom and motion
versatility commonly required in biomechanical exoskeleton
designs.

Spring-assisted joints were also investigated as a means
of enhancing passive support. These mechanical joints in-
corporate elastic elements, such as springs, to support or
resist motion, thereby reducing the required force or energy
input from the user or actuator. By assisting user movement
and decreasing muscular effort, these joints can store and
release energy during motion cycles, ultimately improving
user comfort. While spring-assisted joints may slightly limit
the overall range of motion compared to fully articulated
mechanisms, they offer a significant advantage in energy
efficiency and fatigue reduction. A representative example of
a spring-assisted joint is shown in Figure 3 [24].

Lastly, a hybrid backpack-style exoskeleton design was
investigated. This wearable assistive configuration integrates
structural components—such as joints, passive supports, and
wiring—along the spine within a harness or vest-like system.
Worn similarly to a conventional backpack, the system is
intended to distribute load evenly while maintaining ergonomic



Fig. 3: Depiction of a spring-assisted joint incorporating an
elastic element to support and resist motion. This configuration
enables partial energy recovery and reduces user effort by
supplementing joint movement with stored elastic potential.

alignment. The design accommodates modular cylindrical
components for vertical spinal support and provides structural
pathways for safely routing electrical wiring.

Several engineering constraints were considered to ensure
feasibility. Material strength was critical to support both the
exoskeleton and the biomechanical loads imposed by the
human body. Weight minimization was also prioritized to
maintain comfort and reduce user fatigue. Mechanically, the
device required robust but adjustable interfaces to connect
securely to the torso while preserving mobility. Thermally,
materials needed to be both breathable and fire-resistant in
the event of electrical failure.

To guide material selection, existing designs from commer-
cial backpack manufacturers such as Camelbak and Lululemon
were reviewed. Nylon was considered for the outer shell and
shoulder strap surfaces due to its strength-to-weight ratio.
Mesh fabrics were proposed for areas requiring ventilation,
such as shoulder straps. For electrical insulation and fire resis-
tance, materials like Nomex, Kevlar, and wool were evaluated
for surrounding high-voltage components [20], [25]. Figure 4
presents a comparative overview of structural textile properties
suitable for the exoskeleton’s wearable frame.

Fig. 4: Comparison of structural and thermal properties of
candidate fabrics for exoskeleton integration. Materials such
as nylon, mesh, Nomex, and Kevlar were evaluated based on
strength, breathability, and fire resistance to inform backpack-
style harness design.

Incorporating a reliable battery system is a critical design
requirement for enabling future active functionality in the

passive spinal exoskeleton. Key electrical considerations in-
clude voltage, current, energy capacity, size, configuration, and
safety. Active exoskeletons often rely on sufficient electrical
power to drive motors and actuators, and a 24 V power
supply was selected to balance performance, efficiency, and
compatibility. Most wearable robotics components operate
within a 12–48 V range; a 24 V configuration provides ad-
equate torque and speed while reducing current draw, thereby
minimizing resistive losses and allowing the use of thinner
wires and smaller components. This voltage also supports
extended operational life before recharging becomes necessary.

Beyond voltage, the selected battery capacity was 15 amp-
hours (Ah), based on estimated power demands, desired run-
time, and expected system losses. Typical actuators used in
dynamic tasks like walking or lifting draw between 2–5 A,
making 15 Ah sufficient for medium-to-long usage durations.
This capacity also accommodates transient high-torque loads,
preventing voltage sag and potential motor brownouts.

Battery configuration was another important consideration.
Batteries connected in series increase total voltage, while
parallel configurations raise total capacity. Multiple battery
chemistries were evaluated to meet both performance and
structural constraints. Alkaline options, such as A27 and D-
cell batteries, were dismissed due to excessive unit counts and
physical infeasibility. Lithium-ion chemistries emerged as the
most viable solution, particularly due to their high energy
density, low self-discharge, and widespread use in electric
vehicles, aerospace, and robotics.

Among lithium-ion variants, two options were compared:
Nickel Manganese Cobalt (NMC) and Lithium Iron Phosphate
(LiFePO4 or LFP). NMC batteries are known for their high
energy output and moderate cycle life, but have lower thermal
stability. In contrast, LiFePO batteries offer superior safety,
longer cycle life, and greater thermal and chemical stability,
making them better suited for wearable applications. As a
result, the Headway LiFePO4 40152S battery (17 Ah, 3.2 V
per cell) was selected. These cells are 1.57 inches in diameter
and 6.5 inches in length, and can be connected in series to meet
the 24 V system requirement while maintaining a manageable
form factor. Figure 5 shows the selected battery model.

To interface the battery system with future active compo-
nents such as actuators or motors, an Arduino microcontroller
was selected. Arduino is an open-source electronics platform
built around easy-to-use hardware and software, commonly
employed in prototyping, robotics, sensing, and control ap-
plications [15]. Each board includes a microcontroller, digital
and analog I/O pins, voltage inputs, and a USB interface for
programming. The platform is programmed using a C/C++-
based language and is known for its accessibility and flexi-
bility, making it ideal for rapid development and testing of
embedded systems. Figure 6 shows the Arduino UNO R3, the
specific model used for this application.

Given the Arduino’s recommended operating voltage range
of 7–12 V and an absolute maximum input of 20 V, a
voltage step-down solution is necessary to safely interface
it with the 24 V battery system. To accomplish this, a buck



Fig. 5: Two Headway LiFePO4 40152S batteries (17 Ah, 3.2
V) with screw terminals. These cells were selected for their
safety, energy capacity, and physical compatibility with the
wearable frame.

Fig. 6: Top-down view of an Arduino UNO R3 board, used
for microcontroller-based control and system integration.

converter was selected. A buck converter is a high-efficiency
DC-DC voltage regulator that reduces a higher input voltage
to a lower, stable output voltage. It operates using high-
speed switching components—such as transistors, inductors,
and capacitors—to regulate energy flow through pulse-width
modulation.

These converters typically achieve efficiencies of 80–95
percent, making them compact and suitable for embedded
systems. In this application, the buck converter steps down
the 24 V supply to 5 V, which is then routed to the Arduino’s

5 V input pin. This ensures safe operation while maintaining
compatibility with other low-voltage control components. Fig-
ure 7 shows the buck converter used for this voltage regulation
task.

Fig. 7: Isometric view of the buck converter used to step down
the 24 V battery output to a stable 5 V input for the Arduino.

With the selection of the batteries, Arduino, and buck
converter complete, the next step was to determine a safe and
functional wiring configuration. To interconnect the batteries
and components, ring terminals and spade connectors were
utilized. A ring terminal features a closed circular loop that is
secured to a terminal post via a screw or bolt, while the wire is
crimped into the opposite end. Spade connectors, by contrast,
have a U-shaped design that allows for quick attachment under
a screw terminal without removing the screw entirely.

To achieve the desired 24 V output, the batteries were
connected in series. This was done by linking the positive
terminal of the first battery to the negative terminal of the
second, continuing this pattern until the final battery. The
overall positive output from the final battery was connected
to the motor’s power input, and the negative terminal from
the first battery was connected to the motor’s ground.

Additionally, the buck converter was integrated to safely
power the Arduino. The same final positive terminal was
routed to the input of the buck converter, and the first negative
terminal was connected to its ground. The buck converter
then stepped down the voltage to a regulated 5 V, which was
delivered to the Arduino’s input pin. Figure 8 illustrates the
complete wiring layout for this configuration.

With these design considerations established, the next phase
of the study involved investigating spinal mapping techniques
and motion capture data. Armitano et al. provided a valu-
able precedent by successfully generating spinal trajectories
through experimental motion trials. After establishing contact
with the authors, permission was granted to utilize their
dataset, which served as the foundation for this study’s design
methodology and validation.

Building on an understanding of spinal biomechanics, seg-
mental motion, and previous design efforts, this research



Fig. 8: Wiring configuration connecting series-wired batteries
to both a buck converter and an Arduino UNO. The buck
converter reduces the 24 V battery output to 5 V for safe
Arduino operation.

focused on determining optimal link placements for a spinal
exoskeleton composed of n discrete segments, each of length
l. The objective was to identify a spatial configuration that
maximizes both range of motion and ergonomic comfort.
MATLAB was used to generate an average spinal curvature
from the motion capture dataset, and an optimization algorithm
(fmincon) was implemented to compute ideal link positions
while adhering to anatomical and geometric constraints.

III. METHODOLOGY

To implement the design methodology, it was first necessary
to obtain high-quality motion data for spinal mapping. The
dataset used in this research was originally developed by
Armitano et al. and provided in the C3D file format. C3D
is a standardized public-domain format commonly used in
biomechanics, gait analysis, and animation. These files con-
tain detailed three-dimensional marker trajectories along with
auxiliary analog signals from systems such as force plates and
electromyography sensors.

To visualize and extract relevant data from the C3D files,
the open-source software Mokka (Motion Kinematic and Ki-
netic Analyzer) was utilized [17]. Mokka is a cross-platform
application designed for the analysis of motion capture data,
offering both 2D and 3D visualization. Key features relevant
to this study included the ability to track individual markers
in three-dimensional space over time, plot spatial coordinates,
and export the motion capture data to Microsoft Excel for
subsequent processing and analysis in MATLAB.

Using Mokka, approximately 90 motion capture trials were
imported and processed from a total of 11 participants. Each
subject was outfitted with markers strategically placed along
the spine and instructed to either stand still or walk along a
straight path. For every trial, 12 spinal markers were tracked:
one positioned at the sacrum, five along the lumbar region,
five on the thoracic spine, and one at the cervical level. The
data were then exported from Mokka into Microsoft Excel,
organized by participant, trial type (standing or walking), and
corresponding marker sets for further analysis in MATLAB.

With the data systematically organized, the next phase
involved analysis, visualization, and optimization using MAT-

LAB—a high-level computing environment widely used for
numerical computation and algorithm development. The ex-
ported Excel data were imported into MATLAB, where they
were normalized and processed to compute the average two-
dimensional coordinates (X and Y) of each spinal marker.
These averaged coordinates were then used to generate a
representative spinal curve for each individual trial.

To generate a representative spinal model for optimization,
trial plots were first consolidated by computing the mean
position of each spinal marker across all trials for each
participant using Microsoft Excel. These participant-specific
average curves were then combined to form a single aggregate
spinal curve representing the average spinal geometry across
all subjects and trials. This aggregate curve served as the
reference trajectory for the optimization process.

Exoskeleton link placement was optimized using MAT-
LAB’s Optimization Toolbox, specifically the fmincon func-
tion, which is well-suited for solving constrained nonlinear
minimization problems. The objective was to minimize the
sum of squared errors (SSE) and root mean square error
(RMSE) between the spinal curve and the proposed link
configuration, subject to the following constraints:

1) The number of links (n) must be between 3 and 10
2) Each link must have a length between 25 mm and 100

mm
3) The first link must start at the base of the spinal curve
4) The final link must end at the top of the spinal curve
5) All links must connect consecutively without skipping

z-values along the spinal spline
By executing fmincon under these constraints, the algorithm

identified the optimal number, lengths, and spatial placements
of links that best conformed to the spinal curve. Once the
optimal configuration was determined, geometric and angular
parameters were calculated using the following equations:

Li =
√

(Yi+1 − Yi)2 + (Zi+1 − Zi)2, for i = 0, . . . , N−1.
(1)

Equation 1: This equation calculates the Euclidean distance
(segment length) between two consecutive points in a 2D
plane, where Y and Z represent the vertical and depth
coordinates, respectively.

θ = cos−1

(
vi · vi+1

∥vi∥∥vi+1∥

)
(2)

Equation 2: This equation computes the angle θi between
two adjacent vectors vi and vi+1 using the dot product
formula. The numerator represents the dot product of the
vectors, while the denominator normalizes by the product of
their magnitudes.

While the optimal link configuration minimized geometric
deviation from the spinal curve, it did not account for external
factors such as material cost or structural durability. To incor-
porate these additional design criteria, the Analytic Hierarchy



Fig. 9: Screenshots from Mokka showing 3D body map tracking (left) and 2D marker trajectory plots (right). These tools
enabled precise extraction and visualization of spinal marker motion over time.

Fig. 10: Visualization of spinal marker trajectories in the X–Y
plane using MATLAB. The plot represents averaged marker
coordinates used to generate individual spinal curves.

Process (AHP) was employed. AHP is a structured multi-
criteria decision-making method that breaks down complex
problems into a hierarchical model of goals, criteria, and al-
ternatives. It utilizes pairwise comparisons and a standardized
numerical scale (typically ranging from 1 to 9) to assess the
relative importance of each criterion. A weight vector is then
derived by calculating the principal eigenvector of the resulting
comparison matrix [23].

In this study, the following weights were assigned to the
design objectives: RMSE (0.714), cost (0.143), and durability
(0.143). This weighting reflects the central importance of min-
imizing root-mean-square error (RMSE) between the modeled
and experimental spinal trajectories, which directly influences
the ergonomic accuracy of the exoskeleton. RMSE was priori-

tized to ensure the anatomical fidelity of the design, while cost
and durability—though essential for manufacturability and
long-term viability—were weighted equally at a lower value.
This balanced weighting scheme allowed for performance
optimization without sacrificing practical feasibility.

Fig. 11: Workflow diagram summarizing the data processing,
optimization, and mechanical design phases of the exoskeleton
development process.

Following the completion of the optimization routine, the
next phase involves transitioning to mechanical design using
SolidWorks. SolidWorks is a parametric, feature-based 3D
computer-aided design (CAD) software developed by Das-
sault Systèmes, widely used for the design and simulation
of mechanical components and assemblies. In this project,
SolidWorks is used to model precise mechanical links, joints,



and structural frames; simulate the motion and load conditions
across components; visualize assembly interactions; and export
detailed technical drawings and part files for manufacturing
and 3D printing [21].

IV. ANALYSIS AND DESIGN

To assess spinal curvature across different movement con-
texts, four types of spinal mapping plots were analyzed:
(i) Participant 3’s second walking trial, (ii) Participant 7’s
average standing trial, (iii) the aggregate average standing
spine map, and (iv) the aggregate average walking spine map.
This comparative analysis underscored the importance of a
robust participant pool and multiple trials to produce accurate,
data-driven insights into spinal kinematics.

Figure 12 illustrates the relationship between the number of
exoskeleton links (n) and the resulting root mean square error
(RMSE). The results show a substantial 13.2 mm reduction
in RMSE when increasing the link count from n=5 to n=6.
Beyond six links, the improvement becomes more gradual,
with only a 1.8 mm gain observed from n = 6 to n = 10. These
findings suggest that six links represent a critical threshold
for achieving acceptable ergonomic fit, while configurations
exceeding nine links offer diminishing returns relative to the
increased mechanical complexity, alignment sensitivity, and
fabrication cost.

Fig. 12: Optimization results using MATLAB’s fmincon
function showing the sum of squared error (SSE) and root
mean square error (RMSE) for link counts ranging from n = 3
to n = 10. The data illustrates a sharp RMSE reduction from
n = 5 to n = 6, followed by diminishing returns beyond
n = 9.

Figures 13a and 13b highlight the postural differences
between standing and walking conditions. As expected, the
standing spine is more vertically aligned, while the walk-
ing posture displays a slight anterior lean—consistent with
momentum-induced adjustments in spinal orientation during
locomotion.

Figures 14a and 14b further illustrate these trends by com-
paring individual spine maps from representative MATLAB

(a) Average standing spinal map derived from all participant
trials.

(b) Average walking spinal map derived from all participant
trials.

Fig. 13: Comparison of average spinal trajectories during
standing and walking. The standing posture shows a more ver-
tical alignment, while the walking posture exhibits a forward
lean consistent with locomotion.

trials. The standing trial shows reduced curvature and a more
upright posture, while the walking trial reveals greater spinal
flexion, particularly in the lumbar region.

With all spinal maps analyzed, we proceeded to the
MATLAB-based fmincon optimization routine to evaluate the
relationship between link count and geometric fidelity. As
shown in Figure 12, the optimization results reveal a sub-
stantial reduction in root mean square error (RMSE) when
increasing the number of links from n=5 to n=6, with a 13.21
mm improvement in average distance between the modeled
exoskeleton and the spinal curve. In contrast, configurations
with fewer than six links exhibit significantly larger deviations,
making n=3 to n=5 unsuitable for ergonomic design due to ex-
cessive spacing between the exoskeleton and spinal trajectory.

Beyond six links, the reduction in RMSE becomes in-
creasingly marginal. The improvement from n=6 to n=10 is
only 1.82 mm, indicating diminishing returns in performance.
While additional links may enhance anatomical fidelity, they
also introduce increased mechanical complexity, greater align-



(a) Walking trial spinal map generated in MATLAB.

(b) Standing trial spinal map generated in MATLAB.

Fig. 14: Representative spinal maps from individual walking
and standing trials. The walking posture shows a forward lean
and increased curvature, especially in the lumbar region.

ment sensitivity, and higher fabrication costs. Based on these
trade-offs, the ergonomic “goldilocks zone” appears to lie
between six and ten links. The final selection within this
range—balancing performance with manufacturability—is dis-
cussed in the subsequent section.

Figure 12 also provides insights into the geometric charac-
teristics of the optimized link configurations, specifically in
terms of segment length and inter-link angle. Link lengths
range from 25 mm to 100 mm, with angles between ad-
jacent links spanning from 2.91° to 15.80°. The longest
segment—Link 3—consistently measures 100 mm across con-
figurations and is positioned near the transition between the
lumbar and thoracic regions, corresponding to the most linear
portion of the spine. The recurrence of this length suggests a
biomechanically flatter region in that area, supporting the use
of longer segments where curvature is minimal.

Conversely, the largest angular transition (15.80°) occurs
between Links 1 and 2 in the lumbar region, which exhibits
the highest degree of spinal curvature. This observation sup-
ports future design strategies that employ variable segment
density: shorter links in high-curvature zones (e.g., lumbar and
cervical regions) and longer links in flatter regions (e.g., mid-
thoracic). Additionally, as the number of links n increases, the
reduction in average inter-link angle suggests improved fidelity
in curvature replication. Lower angles between adjacent links
may help distribute pressure more evenly and reduce localized
stress concentrations—an important consideration for comfort

and long-duration wear.
Across all configurations, the mean and median link lengths

were 52.28 mm and 47.58 mm, respectively, while the mean
and median inter-link angles were 10.2° and 10.7°.

Fig. 15: SolidWorks model of the passive spinal exoskeleton
shown from back, side, and isometric views. This config-
uration reflects the nine-link optimized design, illustrating
curvature conformity and anatomical alignment.

Evaluating broader trends across configurations with n=6 to
n=10, a clear pattern emerges in both link lengths and inter-
link angles. As the number of links increases, the average link
length decreases—dropping by approximately 14 percent from
n=6 to n=7, followed by a gradual reduction of about 1 percent
per additional link. Cumulatively, this results in a 34.97 mm
decrease in average link length from n=6 to n=10. Among the
frequently recurring segments (Links 0 through 5), Link 0 is
consistently the shortest, while Link 3 is the longest—showing
a length difference of 38.83 mm. Notably, Link 3 often reaches
the upper limit of 100 mm, indicating a relatively linear section
of the spine and suggesting that future designs might benefit
from a relaxed upper bound for improved conformity.

A parallel trend is observed in inter-link angles. The average
angle between adjacent links decreases by approximately
10–15 percent with each incremental increase in n, though
the decline is not strictly linear. The largest average angle
consistently occurs between Links 0 and 1—corresponding to
the high-curvature lumbar region—while the smallest angle is
found between Links 3 and 4 in the thoracic region. These
patterns reinforce the need for adaptive segment density and
angular resolution to replicate spinal curvature accurately.

To finalize the exoskeleton design, the Analytic Hierarchy
Process (AHP) was employed to incorporate multi-criteria
decision-making beyond geometric optimization. The evalua-
tion considered three weighted factors: root mean square error



Fig. 16: AHP-based weighted score matrix generated in MATLAB for link configurations ranging from n = 3 to n = 10. The
nine-link configuration achieved the lowest composite score, indicating optimal performance across RMSE, cost, and durability
criteria.

(RMSE) with a weight of 0.714, material cost with 0.143,
and structural durability with 0.143. These weights reflect
the prioritization of ergonomic conformity while maintaining
practical considerations for manufacturability and longevity.
As illustrated in Figure 16, the nine-link configuration yielded
the lowest composite score of 0.26164, designating it as the
most balanced and optimal solution based on the specified
criteria.

V. CONCLUSION

This research presents a comprehensive, data-driven frame-
work for the design of an ergonomically optimized pas-
sive spinal exoskeleton. By integrating motion capture data,
MATLAB-based numerical optimization, anatomical con-
straints, and multi-criteria evaluation via the Analytic Hi-
erarchy Process (AHP), we developed a methodology that
yields biomechanically sound and user-centered outcomes.
The resulting nine-link configuration achieved the best trade-
off between spinal conformity, material cost, and structural
durability, minimizing root mean square error (RMSE) relative
to the spinal curve.

This computational approach was further supported by de-
tailed engineering design, including battery system selection,
joint architecture, form factor analysis, and embedded elec-
tronics integration. Key decisions—such as employing a 24V,
15Ah LiFePO4 battery, voltage regulation via a buck converter,
and Arduino-based control—were grounded in performance,
efficiency, and safety considerations specific to wearable as-
sistive devices.

Nonetheless, several limitations should be acknowledged.
The motion capture dataset consisted of only eleven partici-
pants and twelve spinal markers, limiting both biomechanical
resolution and population generalizability. The current model
does not account for soft-tissue compliance, dynamic load-
ing, or fatigue-related effects. Ergonomic validation was also
limited in scope.

Future work will address these gaps by increasing marker
density, expanding participant trials, and incorporating soft-
tissue modeling, real-time actuator simulation, and dynamic
compliance features. Prototyping and load-bearing validation
will further advance the design toward practical deployment.

Ultimately, this study advances spinal exoskeleton design
from trial-and-error engineering toward an evidence-based,

user-informed paradigm—paving the way for more adaptable,
comfortable, and functional human-robot interaction.
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