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Wheeled robots are energy efficient but cannot travel across uneven terrain. Legged robots,

however, can traverse rough terrain, but are much more energy expensive. Rimless wheels are

a wheel-leg hybrid that blends the benefits of both together. This thesis presents the design and

control of a rimless wheel robot that achieves straight line walking and turning. The robot consists

of a center body and two rimless wheels, each with 10 dampened spokes. Each wheel is axially

connected to the body through a shaft. Each motor is connected to a shaft through two pulleys and

a belt, resulting in a reduction of 5.4:1 from the motor to the wheel. The body houses the sensor,

computer, microcontroller, motors and encoders, motor controller, and batteries. An inertial mea-

surement unit is used to measure the angle of the body with respect to the vertical axis. The robot

is controlled hierarchically; on the top is the Raspberry Pi, which reads sensor data, communicates

with the microcontroller, and collects data. In the middle is the Teensy microcontroller, which

collects the sensor data and calculates an output using a proportional-integral-derivative controller.

On the bottom is the motor controller, which receives the output from the Teensy and moves the

motors accordingly. The controller on microprocessor ensures the body maintains a steady pitch.

The steady pitch angle propels the robot forward. To achieve turning, a differential current was

applied, either added or subtracted, to each motor. The robot is able to achieve a steady state speed

of 1 m/s with an energy usage (power per unit weight per unit velocity) of 0.13, about half the

energy consumption of a human walking. The robot is also capable of sharp turns with a radius of

approximately 0.5 meters.
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CHAPTER 1: INTRODUCTION

Wheeled robots have been around since the late 1940’s [1]. They offer plenty of advantages,

such as many commercial options and detailed control literature [2]. However, wheeled robots

have one downfall: terrain. They cannot traverse uneven terrain, such as rocky outcrops or hills,

without using large, heavy wheels. Another solution for traversing terrain is legged robots. Boston

Dynamics’ Big Dog [3] and Little Dog [4] are quadruped robots that are robust, have multiple

locomotion gaits, and can walk in multiple environments. These robots are unfortunately power

hungry: Big Dog has a combustion engine onboard, and Little Dog has a walking time of just 30

minutes [4].

A rimless wheel is a similar to a wagon wheel, with the circular rim removed (Figure 1.1).

Instead of having a rolling surface that contacts the ground, the robot has many radial legs that

touch the ground as it rotates (Figure 1.1). This makes its behavior with the ground like taking

steps, rather than rolling, allowing the robot to traverse rough terrain. Because legs are arranged in

such a way that they emulate a wheel, a rimless wheel can evade the energy costs from traditional

legged walking.

Passive rimless wheels were first explored by McGeer [5] when examining passive bipedal

locomotion. In the early work, the rimless wheel robot was just simple links connected and coupled

together [6] that was rolled down an incline. There are now powered rimless wheeled robots

Figure 1.1: Rimless wheel on a slope
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capable of stepping over large obstacles, such as curbs [7], and even accompanying traditional

rovers on missions to Mars [8, 9].

1.1 Literature Review

McGeer determined motion of a single rimless wheel going downhill as having an equilibrium

speed that increased as the slope increased [5]. This is due to the collisions from each step taken

reducing the energy of the system. The single wheel model was expanded into a three dimensional

model by Coleman, Chatterjee, & Ruina [10]; the stability of a single rolling rimless wheel was

not determined to be asymptotically stable in three dimensions as the energy dissipation was not

enough to stabilize. Smith & Berkmemeier [11] then extended the scope from a single wheel to a

model of two rimless wheels with a fixed width.

Recent work on rimless wheels has been on the previously mentioned rimless wheel, Axel, by

Abad-Manterola [8] and Shankar & Burdick [11], IMPASS, by Jeans & Hong [7], and the Rowdy

Runner, by Bhounsule et al. [12]. Shankar and Burdick developed a model for a differential drive

rover and applied the model for motion planning. Bhounsule et al. developed a dead-beat controller

for a torso actuated rimless wheel with the torso angle being the control input.

IMHC (Institute for Human and Machine Cognition) in Florida developed a large rimless

wheeled robot called Hexrunner capable of achieving a speed of 22.9 mph or 36.8 km/h [13] [14].

Hexrunner had two three legged rimless wheels that were mounted together 60� out of phase with

each other. In between the rimless wheels, a torso held the electronics and the motors that drove the

wheel. This robot was limited to straight line walking and could neither turn nor stop. Hexrunner

led to the development of of Outrunner [15] [16], a miniaturized version with turning capabilities.

Outrunner’s turning approach was tilting the articulated end of its torso to the side it wanted to

turn. Changed the center of mass of the robot and caused the robot to tilt, allowing it to turn.

2



CHAPTER 2: DESIGN

2.1 Mechanical

The Rowdy Runner II, or RR II, (Figure 2.1) consists of two main sections. The two rimless wheels

and the center body.

(a) Isometric view (b) Front view

Figure 2.1: Rowdy Runner II

2.1.1 Rimless Wheels

The robot has two 3D printed rimless wheels (Figure 2.2), each axially attached to the center body.

The dimensions are carried over from the first iteration of the robot [12]; the wheels have a radius,

Figure 2.2: Assembled rimless wheel Figure 2.3: Rimless wheel hub
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or effective leg length, of 0.261 meters. Each wheel has 10 legs, each made up of three components:

a tube that attaches to the hub, a spring, a rod that slides into the aforementioned tube, and a rubber

foot. The rod has a lip which contacts the spring and compresses it whenever weight is placed on

the leg. A slot designed into the rod allows for constrained movement by securing a screw through

the rod and the tube.

After many failures from the first iteration of the robot, the hub was designed and milled from

aluminum, with small cylinders coming from each of the 10 faces (Figure 2.3). Set screws placed

into the hub prevent the cylinders from twisting of falling out. The cylinders are directly attached

to the tube of the leg and fastened with a screw.

The wheels attach to the shafts protruding from the body with a keyed shaft collar. This collar

is clamped onto the shaft; the clamping force exerted is enough to not need to use a key.

2.1.2 Torso

Figure 2.4: Rowdy Runner II torso

Belt 
Tensioner

Motor Pulley

Keyed 
Output  
Pulley

Mounted  
Bearing Mounted  

Bearing

Shaft Collar 
for  

Rimless 
WheelKeyed 

Shaft

Figure 2.5: Isolated power transfer mecha-
nism

The torso (Figure 2.4) of the Roadrunner II is 3D printed using fused deposition modeling

(FDM), a process in which melted plastic extruded layer by layer to form the desired final object.

The design was printed in order to create complex geometries within the body itself. This includes

the bearing alignment holes, circuit board mounts, vent holes, battery compartment, and the motor

attachment point.
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A pitfall of FDM printed parts is their lack of dimensional accuracy. Thus, instead of pressing

bearings directly into the plastic as is common if the material was metal, mounted bearings were

purchased and then fitted into the body. The mounted bearings have slots to allow them to be

placed as desired, allowing us to place them exactly where wanted, bypassing dimensional accu-

racy problems. Two bearings (Figure 2.5) are used for each shaft, one mounted to the sidewall of

the body and one at the end of the shaft inside the body. Having two perpendicularly supported

bearings prevents the shaft from moving around from the tension of the belt on the pulleys or from

the robot walking.

Power transfer from the motors to the output shaft is done through two pulleys and a toothed

belt, with a 5.4:1 reduction. The motor is mounted to a wall in the body with the face plate that was

provided by the manufacturer (Figure 2.6). The encoder is attached to the motor with the help of a

3D printed bracket and second output shaft. This bracket holds four nuts which thread the screws

coming through the wall and the face place. The pulley is attached to the output shaft of the motor

with two set screws. The motor and output pulley are aligned with each other are rotated by a GT3

toothed belt.

Figure 2.6: Closeup of motor assembly

The output shaft is a half inch keyed shaft that engages onto the output pulley. This pulley is

laterally held in place with a shaft collar and the side wall bearing surface. A small tensioner is

installed on the side wall of the body to stretch the belt and prevent the belt from slipping.

All circuit boards are directly mounted onto be body’s designed stand-offs. When mounting

5



directly into 3D printed plastic, the screws are able to self-tap themselves into the plastic, elimi-

nating the need for a nut. The inertial measurement unit (IMU) circuit board is mounted directly

to the bottom of the body using four screws. The motor controller and computer are also directly

mounted to the top of the body using screws into the designed stand-offs.

The top of the torso has eyelets for a harness and a cutout for the computer ports. The bottom

of the torso holds two batteries as well as the IMU.

2.2 Electrical

The Rowdy Runner II electrically consists of computation devices, motors, motor controller, sen-

sors, a joystick, and batteries. All of these work together to allow the robot to be run remotely,

monitored, and controlled.

Figure 2.7: Raspberry Pi Figure 2.8: Teensy 3.2 microcontroller

2.2.1 Computation

The Rowdy Runner uses a computer, a microcontoller, and an orientation sensor to walk. The

Raspberry Pi 3B (Figure 2.7) was chosen as the computer for the robot. This single board computer

features a 4 core 1.2 GHz processor with 1 GB of RAM. The Pi is responsible for data collection,

reading the sensors, and relaying data to a connected computer. A Teensy microcontroller (Figure

2.8) sends commands to the motor controller and runs a fast control loop. The microcontroller is

connected to the Pi through a USB connection and to the motor controller via serial.
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Figure 2.9: ODrive 3.5 and motors

2.2.2 Motor and Motor Controller

An ODrive 3.5 motor controller (Figure 2.9) is responsible for the robot’s locomotion. This motor

controller was chosen after trying several hobby motor controllers that did not meet our needs.

The ODrive allows for accurate control of relatively inexpensive brushless direct current (BLDC)

motors. BLDC motors are usually used for Radio-Controlled (R-C) cars, boats, and planes, making

them easily available. However they lack a feedback mechanism, which is why an encoder is

attached to the back of the BLDC motor (Figure 2.6). The motors and encoders are connected to

the ODrive, allowing the motor controller to accurately control the output from the motors. The

ODrive is connected to the Raspberry Pi through USB, as well as to the Teensy.

Two commercially available BLDC motors, with a KV rating of 280, were chosen to power

the Rowdy Runner. KV, which is not an acronym, is the counter electromotive force that the

motor would induce if it was spun at 1000 rotations per minute (RPM); i.e. the selected motor will

produce a single volt of counter electromotive force if the motor was spun at 280 RPM. The motors

were chosen with a low KV value as to limit the maximum physical speed of the motor. Low KV

values also correlate to a higher torque output for the motor.

The encoders attached to the back of each motor are CUI AMT102 quadrature encoders recom-

mended by the motor controller manufacturer. These encoders are counted by the motor controller

and allow the controller to accurately control each motor.

7



2.2.3 Sensors

Figure 2.10: BNO055 absolute orientation sensor

In order to control the robot’s walking, the robot’s torso orientation in space needs to be sensed.

A 9-Degree of Freedom (DOF) sensor from Adafruit was chosen. This sensor contains a BNO055

from Bosch, which has an on-board microcontroller that performs sensor fusion calculations. The

sensor can then be queried for the angle values that are needed to control the robot. The orientation

sensor is connected to the Raspberry Pi through a serial connection.

The ODrive is used as a sensor by querying for the position of the motors and the velocity,

thanks to the connected encoders. The bus, or battery, voltage and the current drawn from the

battery are also measured using the ODrive.

2.2.4 Joystick and Batteries

A Dualshock 3 Controller (Figure 2.11) is used as a remote joystick to control the robot. This joy-

stick has a Bluetooth transmitter which is paired with the Raspberry Pi. Using Bluetooth, compared

to an Xbee, another wireless transmitter radio module, based remote, removes the complexity of

setting up and configuring transmitters.

The motor controller is rated for a maximum operating voltage of 24 volts. A suitable battery

was chosen by taking into account the needs of both the motor controller and the BLDC motors. A

6S 30C 3000 mAh (milli-Amp-hour) Lithium Polymer (LiPo) battery (Figure 2.12) was chosen for

the robot as its nominal voltage is 22.2 V. The 30C rating designates that this battery can output a

constant current of 90 Amps (A). The 6S rating means that this battery has 6 battery cells in series,

8



Figure 2.11: Dualshock 3 controller Figure 2.12: LiPo battery

totaling the 22.2 V nominal voltage.

A smaller battery is used to power the Pi. It is a double cell 3.7 V 4000 mAh LiPo battery. The

battery is connected to a circuit board soldered to the Raspberry Pi that boosts the battery voltage

to 5 V and prevents under voltage of the battery.

2.2.5 Miscellaneous

Because of the Raspberry Pi’s mediocre internal WiFi antenna range and performance, a small

wireless hotspot was attached to the robot for communication and data transfer. This hotspot is

connected to the Pi through an Ethernet cable and is powered by a USB battery bank (5000 mAh).

2.3 Controller

2.3.1 Torso Pitch Controller

ytorso

xtorso

�

Figure 2.13: Free body diagram of torso (only one leg shown)
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A proportional integral derivative (PID) controller is used to control the torso pitch, ✓ (Figure

2.13), of the robot. The pitch angle is correlated to a maximum speed that the robot can reach. This

is due to the torso’s center of mass position being in front of the axis of rotation, making the robot

perpetually fall forward. However, due to having rimless wheels, the next leg on the wheel catches

the robot, and so on. Then, commanding the motors to keep a certain ✓ propels the robot forward.

At a certain speed, the impact forces are greater than the motors can compensate for while holding

a desired pitch, even though the leg collisions are dampened with springs. Most commonly, the

angle setpoint for the controller to maintain is 50�.

! I

D

P Kpek

Ki�ekt

Kd
ek�ek�1

t
BAND LIMITED 

DERIVATIVE

LIMIT TO 25%  
OF MAX ! MOTOR 

CONTROLLER
+

- +
+

+
Desired  

Pitch
Motor 

Current
Body  
Pitch

PLANT
rk ek uk yk

Figure 2.14: PID control diagram (discrete time)

A standard PID controller architecture is used, with the exceptions of limits on the integral

term and derivative term. The discrete time form of the PID controller is used because the system

is sampled with a predefined time step. The desired pitch is set by pushing up button on the

Dualshock 3 joystick during operation. This setpoint (rk) is then subtracted from the actual torso

pitch (yk) from the orientation sensor, resulting in the error (ek). The error is then passed into

the PID portion of the controller. The proportional term constitutes of the Kp gain multiplied

by the error ek. Because numerical integration cannot be done as this is a discrete system, the

sum of the current and past errors are summed and multiplied by the time step. The summation

is then multiplied by the Ki gain, resulting in the integral term (I-term). The error derivative is

calculated by taking the difference of the current and previous error and dividing this by the time

step. Multiplying this with the derivative gain Kd yields the derivative term (D-term). These are

10



then summed and turn into the input for the motor controller, which is electrical current in amperes.

This causes the robot’s body pitch to change, starting the controller again.

The P and D terms were modified as to give more accurate results with the physical robot.

Without the modifications, the controller was prone to accumulating errors, causing the body pitch

to oscillate wildly. Because the integral term is the summation of the previous errors, any incon-

sistencies in the pitch add up, causing accumulation error, or integral windup. The derivative term,

being discrete, became very large as the robot was pushed. This caused the controller to compen-

sate, resulting in the error derivative increasing. As this is a loop, this problem compounded and

led to an uncontrollable robot. The solution for accumulating errors was capping the I-term con-

tribution at a certain number, initially at the maximum desired current. This proved unsatisfactory,

thus the contribution was capped to only ±25% of the maximum desired current. The trickier term

to solve was the D-term. Because of its dependence on a discretized derivative, any large changes

in pitch resulted in a large D-term, causing the torso to become unstable. A band-limited derivative

(Equation 2.1) [17]was used to prevent the derivative term from increasing too rapidly.

dk = Kd(1� add)(✓k � xdk�1) (2.1)

xdk = add ⇤ xdk�1 + (1� add)✓k (2.2)

⌧s =
1

Fs(1� add)
(2.3)

The equation weighs previous values of the D-term higher than the current by placing a contribu-

tion of add to the previous values and a contribution of 1� add to the current value. add was found

using equation 2.3 with the desired settling time, ⌧s, and PID frequency, Fs. The previous values

of the D-term are stored in the variable xdk denoted in Equation 2.2. If expanded, the xdk�1 term

in 2.1 keeps track of the previous two values (k � 1 and k � 2) and the update of xdk moves the

tracking forward one step. Because of its large weight on previous values, the band limited deriva-

tive smooths out the noise in D-term from the discrete derivative performed by the PID controller.

For the Rowdy Runner II controller, a D-term settling time of 0.1 seconds was chosen, and along

11



Table 2.1: PID gains
Kp 0.17
Ki 0.0005
Kd 16.0

with a PID frequency of 1000 Hz, the calculated add term was 0.9.

The PID coefficients were tuned experimentally on the physical robot while stationary, using

a pragmatic approach to tuning a PID controller detailed by Wescott [17]. Kd was tuned first. All

gains start off at zero and Kp is set at an arbitrary number between 0 and 1. The starting point for

Kd is 100 ⇥Kd, and Kd is increased until excessive noise, oscillation, or overshoots is seen from

the torso. The almost unstable Kd was then reduced by a factor of 2 to ensure a well behaved gain.

Next, Kp was tuned by starting with a value between 1 and 100. The Kp gain is tuned to the point

of oscillations, and then fine tuned by increasing/decreasing by a factor of 2. Lastly, Ki is tuned

by setting the gain to a value between 0.0001 and 0.01. The value can then be fine tuned using the

techniques for the previous gains.

2.3.2 Turning

Cu
rre

nt
 (A

)

PID Out

+!i

-!i

L

R

Turning Right

Figure 2.15: Graphical view of the turning method

The novel aspect of the Rowdy Runner II is that it is independently actuated and can turn. An

intuitive turning approach was chosen: commanding a differential current to the motors. Because

12



the torso angle should remain at the setpoint as the robot is turning, the PID output must stay as

the average value of commanded the motor currents. To do this, a �current, or �i, was added

to the motor current to be biased. A �i is then subtracted from the opposite motor. This can be

visually seen in Figure 2.15, where the left motor current is biased to turn the robot to the right.

The PID output remains the average current for the two motors, ensuring that the torso remains at

the desired angle as the robot turns.

2.4 Software

The software is categorized into three levels: high level, mid level, and low level (Figure 2.16).

Each corresponds to a different computing device in the robot.

HIGH LEVEL - RASPBERRY PI

MID LEVEL - TEENSY

LOW LEVEL - ODRIVE

SEND/RECEIVE DATA

READ PITCH

JOYSTICK

RUN PID

SEND COMMANDS

CONTROL MOTORS

Figure 2.16: Software hierarchy

As the high level block, the Raspberry Pi is the system’s scheduler and data logger. The Pi

communicates bidirectionally with both the Teensy microcontroller and the ODrive at 100 Hz

(Figure 2.17). The communication with the microcontroller is serial over USB. For the ODrive,

the communication is through a library that directly communicates through USB. The Teensy

calculates the PID loop at 1 kHz and communicates with the ODrive uni-directionally through

physical serial. Lastly, the ODrive controls the motors at a frequency of around 4 kHz.
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RASPBERRY 
PI

TEENSY ODRIVE MOTORS

100 Hz

1000 Hz

4000 Hz

10
0 

Hz
Figure 2.17: Communication diagram

STARTUP 
CHECKS

START MAIN 
LOOP

JS THREAD

I/O PROCESS

CHECK JS 
STATES

SPEED 
CHECK

UPDATE 
POS

UPDATE MOTOR 
STATES I/O TO TEENSY SEND CURR 

DATA

SAVE TO 
FILE

PRINT TO 
TERMINAL

Figure 2.18: Raspberry Pi software diagram

2.4.1 Raspberry Pi

The Raspberry Pi software is written as a single script using Python 3, and uses both multi-

threading and multi-processes to run functions simultaneously (Figure 2.18). Once the program

is started, the Pi performs startup checks by connecting to the orientation sensor, the ODrive, and

the Teensy. The main program consists of three loops: a main loop, an I/O process, and a joystick

update thread. These are all run simultaneously to avoid the latency from writing acquired data

to the disk. The I/O process collects data from the main loop, saves it to the disk, and prints de-

sired information to the console. The data logged data includes: torso pitch, motor position, motor

speed, PID output, pitch setpoint, battery voltage, and battery current. These are all saved for later

analysis of walking trials for the robot. Data is collected at 100 Hz from the main loop, by pass-

ing all of the values in a Python dictionary. This is necessary when using multi-processes, as the

14



processes do not share memory space. A multi-process approach was taken with the I/O process

because writing to disk is the slowest portion of the Pi code. The separate process can be run on a

different core, alleviating bottlenecking from too many slow instructions in a single process.

The main loop starts a thread that monitors the Dualshock 3 joystick states. This is done using

the built-in Linux linux_js application programming interface and a script that maps all of the

buttons and axes into usable dictionaries. Since the joystick monitoring is event based, e.g. the loop

waits until a button or axis value changes, the joystick function was placed in a thread, preventing

it from stopping the main loop. The benefit of a thread, however, is that it shared memory space

with the main loop, so no deliberate communication must happen between the thread and the main

loop. All joystick related commands are placed within this thread. Pitch setpoint changes, motor

calibrations, and motor on/off are all done in this thread.

The first action from the main loop is to check the motor speed as a safety precaution. The

script queries the motors for their velocity, and if either one is greater than our speed limit, the Pi

instructs the motor controller to turn off the motors immediately. Next, the torso pitch read from

the position sensor at 100 Hz. The ODrive is then queried for the information from the power

system: motor velocities and positions, bus (battery) voltage, and bus current. The current body

pitch is then sent to the Teensy at 100 Hz, and, if available, the PID out is received from the Teensy.

Lastly, the data is placed into a dictionary and that is sent to the I/O process to be saved and viewed.

2.4.2 Teensy

INITIALIZESTART MAIN 
LOOP

CHECK STPNT 
ON

UPDATE 
PID

SEND PID TO 
ODRIVE

SEND TO PI 
(100 HZ)

GET & PARSE 
FROM PI

Figure 2.19: Teensy software diagram

The Teensy microcontroller was programmed using C++ and the Arduino IDE. The PID library

for Arduino [18] was modified by enabling sub millisecond PID operation frequency, adding an I-

term limit, and adding a band limited derivative term (Equations 2.1,2.2,2.3). The microncontroller
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is reset each time the main program on the Raspberry Pi is run. The reset pin is pulled to low

using the Pi’s I/O pins. Once the Teensy initializes, the main loop starts by checking the value

setpoint_on (Figure 2.19). This value is sent from the Pi when the start button is pressed, and

if True, the PID controller starts. The PID is then updated with a built in function, completing the

calculation. If the PID update function is called faster than the time step for 1 kHz (1 millisecond),

the calculation is not performed. If the calculation has been performed, the PID output, in amps, is

sent to the ODrive over serial with the correct formatting required by the ODrive. The PID output

is then sent to the Pi over serial at 100 Hz. Lastly, the Teensy receives and parses the setpoint,

the boolean setpoint_on, and the torso pitch. The information from the Pi must be parsed,

because the message, encoded in ASCII, begins with a < and ends with a >. This prevents partial

or corrupted messages from irregularities in communication.
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CHAPTER 3: TESTING AND RESULTS

The Rowdy Runner II was evaluated on the following categories: pitch control, turning, maximum

speed, and cost of transport.

Figure 3.1: Physical Rowdy Runner II

3.1 Pitch Control

3.1.1 Testing Approach

The first approach was to have the robot walk forward, without turning. First, the program is started

on the Raspberry Pi, and the motors are calibrated if needed. After calibration, the torso pitch of

the robot is increased by changing the PID setpoint in increments of 5. Between each increase, the

body pitch is allowed to settle. The setpoint is increased until the pitch hits 50�. The robot is then

gently pushed forward on the topmost rimless wheel legs. The robot is allowed to walk forward

until it is about to hit an obstacle. Once the run is complete, the walking data collected by the Pi is

transferred to a local computer for analysis.

3.1.2 Results

Figure 3.2 shows a typical walking trial, one of eight, with extraneous data removed. By pushing

the robot, the body torso dips from the setpoint to 40�. The PID controller is able to raise the pitch

17



5 10 15 20
Time (s)

40

42

44

46

48

50

52

54

D
eg

re
es

Pitch and Setpoint Over Time

Pitch
Setpoint

Figure 3.2: Pitch and setpoint over time
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Figure 3.3: Velocity (radians) over time

to 10% of the setpoint in 0.216 seconds. The pitch is then kept steady, within ±10 degrees, for

the remainder of the trial, 23 seconds in this case. The accompanying velocity for the same trial

can be seen in Figure 3.3. In both figures very regular spikes can be seen in the data. These spikes

corresponds to each step taken by the robot. Each step slows the robot down, even with the passive

damping from the springs, and disrupts the steady pitch. Another possible explanation is cogging

from the motor. Because of the nature of brushless DC motors, there is resistance when one of the

magnets moves from one coil to the next. The cogging resistance increases as the current into the

motors increase. This results in the pitch movement looking like steps; or the space between the

cogging.

3.2 Turning

3.2.1 Testing Approach

The turning capability of the robot is tested by using the same starting procedure as a forwards

walking. After the robot stabilizes from the push, the joystick is used to turn the robot. The robot

is then run for as long as possible; either until there is an obstacle or the torso becomes unstable.
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r = 0.5 m

Figure 3.4: Rowdy Runner turning radius

3.2.2 Results

The plots of body pitch and speed for the turning trials are very similar to Figures 3.2 and 3.3.

Thus, a much clearer example is a video still shot from top-down. Five frames were superimposed

upon each other to clearly illustrate the turning capabilities of the robot (Figure 3.4). The turning

radius was calculated to be approximately 0.5 meters by scaling the image to life size, overlaying

a circle and measuring the radius of the circle. Thanks to the sharp turning radius, the Rowdy

Runner was able to maneuver well inside the testing site, a building’s atrium. The whole trial from

Figure 3.4 is visible in Figure 3.5. A YouTube video of the robot in action can be seen here.

Figure 3.5: Rowdy Runner trial trajectory
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3.3 Cost of Transport

3.3.1 Testing Approach

Total cost of transport (TCOT) is a dimensionless value that allows for a comparison of transport

energy efficiency between different animals, robots, or vehicles. It is the ratio between the total

power consumed over the weight times the velocity of the subject (Equation 3.1) [19].

TCOT =
total power

mass⇥ gravity ⇥ velocity
(3.1)

To calculate TCOT for the robot, the raw data saved from the robot is trimmed of the extraneous

data, i.e. raising the pitch to 50� and empty data. Because the goal is to look at the TCOT as the

robot is walking, the first few steps taken are also removed as the robot is recovering from the initial

push. The average velocity and power are then calculated for the selected trial. These values, along

with the power consumption of the Raspberry Pi and mass of the robot, are substituted into 3.1 and

evaluated. The TCOT is then used to compare the efficiency of the Rowdy Runner II walking on

different surface or to other legged robots.

3.3.2 Results

Table 3.1: Cost of Transport and Velocities on Different Surfaces
COT Avg. Velocity (m/s)

Polished Concrete 0.129 0.936
Asphalt 0.108 1.379

Polished Wood 0.121 1.197
Indoor Running Track 0.111 1.268

Outdoor Running Track 0.108 1.280
Average COT 0.115

The Rowdy Runner was tested on a variety of surfaces. Total cost of transport (TCOT) was

used to compare the results of walking on each surface (Table 3.1). A breakdown of the COT

calculation for walking on polished concrete (Figures3.3 and 3.2) can be seen in Table 3.2.
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Table 3.2: Cost of Transport Breakdown for Concrete

Power
RPi & Sensor 5 W

Teensy 0.2 W
ODrive 3 W

Mass 6.9 kg
Velocity (m/s) 3.6 rad/s 0.936 m/s

COT 0.129

Compared to similar rimless wheel robots, the Rowdy Runner II has a lower cost of transport,

and thus is more energy efficient. HexRunner, the large rimless wheel robot from IHMC, has

a theoretical TCOT of 0.13 [14]. Axel, the tethered Mars rover robot, has an average energy

consumption per unit traveled of 180 J/m [8, 9], where as the Rowdy Runner II has an average of

7.86 J/m, calculated from Table 3.2. Overall, there are not many published rimless wheel robots

with TCOT that can be compared against the RR II. The Rowdy Runner II is one of the few tested

and working rimless wheel robots, and is, to our knowledge, the most energy efficient rimless

wheel robot.

3.4 Maximum Speed

3.4.1 Testing Approach

Maximum speed was tested by increasing the pitch setpoint ✓ (Figure 2.13) above the standard

50�. The pitch increase started at 60� up to 85� at 5� increments. The robot was raised to the

desired setpoint and then pushed to start the robot walking, exactly like the pitch control tests. The

robot walked straight, as a differential current from turning would slow the robot down. The trial

continued until an obstacle was reached and the motors were turned off.

3.4.2 Results

Seven trials were run between 60� and 85�. The maximum speed was reached in the second trial

at 85�. The robot reached a maximum speed of 17.04 radians/s or 4.32 m/s before running out of

space and hitting an obstacle (smacking into a trash can). Increasing the pitch angle allows the
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motor controller to apply more current to the motors, in turn increasing the speed while keeping

the torso still. Using this correlation, the the maximum speed increased around three times from a

50� angle (Table 3.1).

3.5 Future Work

The next step for the robot is to overturn the minimum cost of transport record for legged robotics.

The current record is held by Cargo, a monopod robot with a minimum COTmech of 0.1069 [20].

From the COT breakdown, the largest power consumption is from the Raspberry Pi, at 5W. There

are two possible approaches: to increase the weight of the robot or to remove the Raspberry Pi

and solely use the Teensy microcontroller. Increasing the weight by just one kilogram, primarily

around the point of rotation, would decrease the COT by 13% in the polished concrete trial. This

would clearly reduce the RRII’s cost of transport and beat the record.

The robot currently requires a push to initiate walking. The push is done by a human, so it is

never consistent. Too hard of a push could easily render the robot unstable. Eliminating the need

for a push could be done by using more complex control methods, such as dynamic programming,

to start walking. This could be applied to the robot to make the robot launch much more reliable.

In this current work, simple PD controller was used to control the torso. However, a model-

based controller such as Lyapunov-based controller [21] or PD sliding mode controller [22] that

takes into account the dynamics of the walker is more suitable when the walker faces external

disturbances. This approach could be used in the future to control the robot while going over

complex terrain and slopes.
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CHAPTER 4: CONCLUSION

In this thesis, an independently actuated rimless wheel robot, the Rowdy Runner II, was developed

and controlled . The majority of the robot was 3D printed for ease fo manufacturing and to create

complex geometries. A PID controller was used to control the pitch of the torso relative to the

ground perpendicular. After reaching a pitch of 50�, for most tests, the robot was pushed and it

walked forward without human intervention. Turning was achieved by applying differential current

to bias one motor over the other. Our robot achieved an average cost of transport of 0.115, lower

than similar rimless wheeled robots, and close to the record minimum for legged robots.

Ultimately, the Rowdy Runner II is a remote controlled, energy efficient, legged robot that is

agile and can walk on varied surfaces.

23



APPENDIX A: CODE

The code for the Rowdy Runner II is made up of a main Python script, an Arduino program for the

microcontroller, and a modified PID library for Arduino. The code can be seen in the following

GitHub repo: https://github.com/s3basti/RowdyRunner2
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