SUMMER INTERNSHIP

DEPARTMENT: MECHANICAL AND INDUSTRIAL ENGINEERING SUPERVISOR: DR. PRANAV A. BHOUNSULE INTERN: NGUYEN HOA PHAM

Project description

- Title: Data mining human walking data
- Conducted research on experimental data collected by Ohio State University
- Fitted model of person to data to obtain joint torques
- Objectives: Identify how human balance based on relationship between joint torques and joint angles.

Responsibilities

- Using data mining and regression techniques to figure out how human balance.
- 1. Learn regression tools in MatLab
- 2. Fit models to data
- 3. Visualize the fitting results using figures and plots
- 4. Optimize the model using feature selection methods.

Tools regression

- Used functions in matlab to generate the regression models.
- Gaussian Process regression: fitrgp function
- Neural network regression: fitrnet function, fitnet function
- Objective: Fit a controller to predict the torques used in physical model.

Neural network layer size experiment

Objective: determine the hidden layer sizes that give the lowest mean squared error on predictions of fitnet function

Neural Network	raining (nin	traintoolj		
Neural Network				
In put	Hidden	Output		2
Algorithms				
Data Division: Rand Training: Leve Performance: Mea Calculations: MEX	dom (divid nberg-Mar n Squared	erand) quardt (trainIn Error (mse)	ר)	
Progress				
Epoch:	0	13 iteratic	ons	1000
Time:		0:00:00		
Performance:	0.00340	3.28e-00	5	0.00
Gradient:	0.0186	1.11e-0	5	1.00e-07 7
Mu:	0.00100	1.00e-08	3	1.00e+100
Validation Checks:	0	6		6
Plots				
Performance	(plotperf	orm)		
Training State	(plottrainstate)			
Error Histogram	(ploterrhist)			
Regression	(plotregression)			
Fit	(plotfit)			
110	(piotit)			
Plot Interval:	hantantantantar	dontontration 1	epochs	
Validation stop				

Neural network layer size experiment

Result:

- Layer sizes = 149, 180, 127, 178, 162, 114, 60, 32 for each section k respectively
- The variance of the prediction decreased but not significant
- The time for training the model increases as the layer sizes increase, but not affect the time to get the predictions from the model

Tools – feature selection

- Objective: Identify the importance of the features in predicting the output
- Tools used: used separate length scale for predictors.

Thank you for listening