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Abstract 

This project focused on the design, fabrication, and testing of a small-scale autonomous 

vehicle capable of navigating between lanes marked by white tape. The vehicle was 

mechanically designed in SolidWorks, 3D printed using PETG filament and assembled with 

custom and oE-the-shelf parts. The car is made of 54 parts (41 diEerent parts). The design 

used an Intel RealSense D435i depth camera, a Youyeetoo A1M8 LIDAR, and an Nvidia 

Jetson Orin Nano running ROS 2 Humble. Custom ROS 2 nodes were developed in Python 

to handle sensor data acquisition, lane detection, obstacle detection, data fusion, and 

motor control. A PID controller was implemented to smooth the steering response and 

ensure stable lane following. 

Testing demonstrated that the car was able to reliably follow straight and moderately 

curved lanes while successfully detecting and avoiding static obstacles such as walls 

using LIDAR feedback. Key challenges encountered included sensor noise, environmental 

lighting variability, and mechanical durability, which were addressed through multiple 

design improvements and software filtering techniques. Although the system struggled 

with sharp turns and cluttered environments, it laid a strong foundation for future 

enhancements involving neural network-based lane detection, advanced path planning, 

and dynamic obstacle avoidance. The project provided valuable experience in 

multidisciplinary system integration for real-time autonomous robotics. 

 

 

 

 

 

 

 



Introduction  

In recent years, autonomous vehicles have emerged as one of the most transformative 

technologies in the fields of robotics, mechanical engineering, and artificial intelligence. 

The purpose of this project was to design and develop a small-scale autonomous car 

capable of navigating between lanes denoted by white tape, simulating the lane-following 

behavior seen in full-size autonomous vehicles like Tesla’s. The project provided an 

opportunity to integrate mechanical design, electronics, and software control into a 

cohesive system, demonstrating fundamental principles of perception, decision-making, 

and actuation. 

The project was done during the Spring 2025 semester. The design phase took 

approximately seven weeks, during which thirteen diEerent designs were created and 3D 

printed, ultimately leading to a final, sturdy car design optimized for strength and 

integration. 

The parts were 3d printed using Bambo Lab A1 mini and filament used was Bambo Lab’s 

PETG. 

The project involved both mechanical and electrical design. The mechanical design of the 

car chassis was created using SolidWorks to ensure proper integration of all components 

while maintaining a compact structure. The electronics used are Intel RealSense D435i 

depth camera and a Youyeetoo A1M8 360-degree LIDAR for environmental perception. The 

motion of the car was made possible using a PCA9685 servo driver controlling a 995MG 

servo and an Injora motor with integrated gearbox and ESC. 

For computation and control, the Nvidia Jetson Orin Nano served as the onboard 

processing unit, running ROS 2 Humble. ROS 2 nodes were written in Python to process 

sensor data, detect lane markings, plan motion paths, and generate commands which 

were sent to motor. Depth and LIDAR data were fused to improve obstacle detection and 

lane-following accuracy. 



The system aimed to achieve robust lane-following behavior under varying conditions in a 

laboratory environment, simulating real-world autonomous driving scenarios at a smaller 

scale. In addition to the autonomous navigation functionality, a major focus was placed on 

modular design and scalability, allowing future enhancements such as dynamic obstacle 

avoidance, overtaking, and real-time bird’s eye visualization similar to commercial 

autonomous vehicle systems. 

Methods/Approach  

The design of the autonomous car was created in SolidWorks, consisting of 25 individual 

parts assembled together. A total of thirteen chassis designs were made, tested, and 

improved. After creating the designs, the parts were fabricated using 3D printing. Many 

initial prototypes failed mechanical tests, exhibiting issues such as excessive flexing, 

instability, and lack of suEicient strength. The complete design and fabrication process to 

reach a final sturdy model took approximately seven weeks.  

               

 Image: Final Design of Car 



 

Figure 1: Assembled car 

The parts were printed using Bambu Lab’s A1 Mini 3D Printer with PETG filament. PETG was 

selected due to its balance between strength, durability, and ease of printing. In addition to 

3D printed components, several oE-the-shelf mechanical parts were incorporated, 

including 3 mm and 8 mm bearings bought from Amazon. The assembly was joined 

together using M2 screws for structural connections. To make car more balanced and to 

prevent the structure from flexing, two metel rods run along front and back bottom plate of 

car. 

Initially, a high-RPM RC race car motor was considered. A custom reduction gearbox was 

designed in SolidWorks and printed using PETG to reduce the motor speed from 8000 RPM 

to approximately 350 RPM. Although successful initially, the gearbox proved unreliable over 

time, suEering from issues such as noise, the need for frequent lubrication, and 

mechanical failure under continuous operation. Consequently, the high-RPM motor was 

replaced with an Injora DC motor featuring an integrated metal-gearbox, oEering 

significantly higher reliability, lower noise, and greater robustness. 

For steering, a single-point push-pull mechanism with a rectangular linkage was 

developed. The front wheels were mechanically coupled via a rectangular solid bar, 

ensuring synchronized turning. One wheel was connected to the servo motor through a 

bent rod (L Shaped), allowing steering movement through the servo's rotation. 



 

Figure 1.12: Steering Mechanism   Figure 1.13: Steering mechanism at theta angle 

 

The rear axle integrated a bevel gear system (Figure 1.3) to transfer torque from the motor to 

the wheels, with a 90-degree transmission between motor shaft and axle. Both bevel gears 

were designed to have 30 teeth each. A custom connector hub, also designed in 

SolidWorks, linked the axle to the wheels, each used 4 M2 screws to mount wheels to hub, 

facilitating easy replacement of drivetrain components if failures occurred. 

Power was supplied by two independent battery systems. A 20,000 mAh external battery 

powered the Jetson Orin Nano, while a 1500 mAh 7.4V 35C LiPo battery exclusively 

powered the motor and ESC. The electronics were mounted systematically, with the 

PCA9685 motor driver placed above the battery compartment, and all wiring organized 

using jumper wires for modularity and easy maintenance. The servo was connecetd to BEC 

of ESC (5V 3A). 

The motor and ESC used operates at 1500ms pulse which is neutral. If ESC is supplied with 

1500-2000ms pulse, the car moves forward while below 1500 makes it go backward. 



 

Figure 1.2: Exploded View of car 

        

Figure 1.3: Design of gear   Figure 1.4: Design of front shield 

Sensor Integration 

Two main sensors were employed: 

1. Youyeetoo A1M8 LIDAR: Mounted above the motor casing, this 2D, 360-degree 

LIDAR with a 12-meter scanning radius was tasked with generating a virtual safety 

boundary (bounding box) around the vehicle. If any object was detected 



approaching or entering this bounding box, corrective control signals were sent to 

the motor and steering to avoid collision. 

2. Intel RealSense D435i Camera: Mounted at the front of the car, the camera served 

as the primary perception sensor. It provided both depth data and an Inertial 

Measurement Unit (IMU) feed. For lane following, only the lower portion of the 

camera’s depth feed was processed, focusing on identifying and tracking white tape 

lane markings on the ground. 

 

 

Software Architecture 

There are two methods of operating the car.   

Manual Method 

The manual method uses terminal to manually send commands to car. The usual WASD 

keys are used to operate the car.

 

 



The Autonomous Method: 

During the initial stages, a Raspberry Pi 4B+ was used for computation; however, it was 

quickly replaced by the Nvidia Jetson Orin Nano due to increased sensor data demands 

and frequent crashes due high load of data from multiple sensors. The Jetson Orin Nano 

provided superior performance at a relatively low cost, making it well-suited for real-time 

robotics applications. 

The system was built using ROS 2 Humble. Custom ROS 2 nodes were developed in Python 

for the following functionalities: 

1. Sensor Data Acquisition: Nodes subscribed to LIDAR and camera topics and 

gathered real-time data streams. 

2. Lane Detection: Depth images from the RealSense camera were processed using 

OpenCV techniques to detect lane boundaries formed by white tape on the ground. 

3. Obstacle Detection: LIDAR data was used to monitor the safety perimeter around 

the vehicle, identifying potential obstacles within a critical distance. 

4. Control Command Generation: Based on lane position and obstacle information, 

control commands (PWM signals) were generated and sent to the PCA9685 driver to 

adjust steering and motor speed. 

5. Data Fusion: LIDAR and camera data were combined at the decision-making layer to 

ensure robust navigation even when one sensor’s data was compromised. 

The motor controller interpreted PWM signals, where a 1500 ms pulse indicated a neutral 

state, pulses above 1500 ms corresponded to forward movement, and pulses below 1500 

ms indicated reverse movement. The eEective range was between 1000 ms and 2000 ms. 

PID Controller Implementation 

To achieve smoother and more accurate lane-following behavior, a Proportional-Integral-

Derivative (PID) controller was implemented for the steering control system. 



The PID controller took the error between the center of the detected lane and the center of 

the camera's field of view as input. It then generated correction signals to the steering 

servo to minimize this error over time. 

1. The Proportional (P) term provided immediate corrective action proportional to the 

magnitude of the lane oEset. 

2. The Integral (I) term accounted for accumulated past errors, helping to eliminate 

steady-state drift. 

3. The Derivative (D) term predicted future error based on its rate of change, allowing 

the controller to dampen oscillations. 

Careful tuning of the PID was done to achieve a balance between fast lane-centering 

response and stable, oscillation-free driving. Without PID control, the car exhibited sharp, 

jerky steering corrections; with PID implemented, lane-following behavior became smooth 

and significantly more reliable. 

 



Design Challenges and Solutions 

Several challenges were encountered throughout the project: 

1. Mechanical Durability: Early prototypes were too fragile. The infill was increased to 

20% and wall loops were increased to 6. Material selection was improved by 

switching to PETG and reinforcing critical structural components. 

2. Motor Reliability: The initial gearbox solution was abandoned in favor of a 

commercially available motor with integrated metal gears, increasing motor 

mechanism integration. 

3. Processing Power: The Raspberry Pi lacked suEicient computational ability for real-

time perception and control. Upgrading to the Jetson Orin Nano resolved these 

issues and enabled multi-sensor integration. 

4. Sensor Noise: LIDAR and camera data had occasional noise. Smoothing filters and 

outlier rejection methods were applied in software to improve accuracy. 

5. During initial testing the car failed to respond as it was detecting the floor as nearest 

object, and it was getting detected inside bounding box. The bouding box was then 

shortened and the issue was fixed. 

6. The car was confusing other white color things with lanes and then getting stuck. It 

was tried to fix by cutting out the top part of camera feed but that failed multiple 

times. 

7. Jerky steering correction were corrected after implementing PID. 



 

Figure: Initial Design of car 

 

Bill of Materials 

S.no Part Name Quantity Price (USD) 

1 Servo Motor 1 11 

2 Intel RealSense D435i Camera 1 334 

3 Nvidia Jetson Orin Nano 1 249 

4 Injora Dc Motor with ESC 1 44 

5 Bearing 8mm 2 0.9 

6 Steel Rod 3 1.5 

7 Lidar A1M8 1 99 

8 PCA 9685 1 5 

9 Jumper Wire 15 4.8  

10 M2 Nut Bolt 30 0.36 

 Total  749.56 

Total Cost excluding printing material = $749.56 

Design Parts: 



ITEM NO. PART Name QTY. 

1 CarFront_base 1 
2 CarServo_mount 1 
3 Carfront_tyre_bearing_	

mount 
2 

4 Carmacro-servo2 1 
5 CarCap_servomount 2 
6 Carfront_tyre_mount 2 
7 Part7^Assem11 1 
8 Part8^Assem11 1 
9 Part11^Assem11 1 

10 Carsteering_link 1 
11 CarTyre_front 2 
12 CarCopy of 	

Part5^Assem1 
1 

13 Carback_tyre_mount 2 
14 CarTyre_Big 2 
15 Part17^Assem11 1 
16 Carback_mount 1 
17 CarMid_link_1 1 
18 Carmid_link_2 1 
19 CarJetson_mount 1 
20 Carmotor_mount 1 
21 Metric - Straight bevel 	

pinion 1.5M15PT 15GT 	
14.5PA 9FW ---	
15O7H17MD4N 

1 

22 Metric - Straight bevel 	
pinion 1.5M16PT 15GT 	
14.5PA 9FW ---	
16O7H17MD2N 

1 

23 Carmotor_mount_link 1 
24 Part21^Assem11 1 
25 Part24^Assem11 1 
26 Carbackwheen_bearin	

g_mount 
1 

27 Copy of Copy of 	
Part2^Assem11 

1 



28 CarFront_Shield 1 
29 CarCamera_mount 1 
30 Copy of 	

Part19^Assem11 
1 

31 CarRealSense_D435 1 
32 142-13449-1000-A02.stp 1 
33 142-63448-	

1GEN_A00.stp 
1 

34 PORG_LEAF_SPRING_D	
RAWN.stp 

1 

35 PORG_LEAF_SPRING_S	
CREW.stp 

4 

36 PORG_HEX_STANDOFF.	
stp 

2 

37 PORG_SYSTEM_SCREW.	
stp 

4 

38 155-0576-000.stp 1 
39 Car12Channel PWM 1 
40 Intel RealSensecamera 1 
41 Lidar_A1m8 1 

 

Parts = 41 

Total Parts = 54 

Results and Conclusion 

The final design successfully achieved the core goal of autonomously following lanes 

marked by white tape on the ground. Lane detection was implemented by detecting the 

tape edges and then averaging the detected lines to generate a straight centerline path for 

navigation. For straight-line segments, the system performed reliably, maintaining smooth 

and centered motion between lanes. When encountering curved paths or corners, the car 

was programmed to use one of the lanes as a reference and maintain a fixed distance from 

it. This strategy improved navigation around moderate curves, although performance 

degraded for sharper turns exceeding 70 degrees. 



Obstacle detection using the LIDAR was successful in identifying walls and nearby objects, 

providing rapid feedback to the obstacle detection node. The car was able to stop or adjust 

its motion appropriately when encountering objects within its safety bounding box. 

Overall, the car demonstrated smooth and accurate lane following on straight sections, 

with reliable obstacle avoidance behavior in controlled environments. 

Several findings emerged from the implementation and testing process: 

• Filtering based solely on detecting the white color of the tape proved unreliable 

under diEerent lighting conditions or when multiple white objects were present. 

More advanced image processing methods (such as perspective transformations or 

deep learning-based segmentation) would be necessary for improved performance. 

• The car struggled with sharp turns due to the lane-following algorithm’s limitations 

and the mechanical steering constraints of the rigid linkage system. More complex 

path-planning algorithms could enhance performance in the future. 

• The addition of a PID controller for steering significantly improved stability. Before 

PID, the car exhibited jerky and delayed corrections, but after PID tuning, the motion 

became smoother and more centered. 

• A major lesson learned was the importance of testing edge cases (e.g., 

overlapping white marks, broken lane markings) to evaluate robustness. 

In conclusion, a fully functional small-scale autonomous lane-following car was 

successfully designed, fabricated, and tested. It was able to follow white tape lanes and 

perform basic obstacle avoidance in a controlled indoor environment. The project 

integrated mechanical design, electronics, sensor fusion, and real-time software 

development using ROS 2 and the Nvidia Jetson Orin Nano platform. 

Apart from this several enhancements could be pursued: 



• Implementing more advanced lane detection methods, such as neural network-

based approaches (e.g., Nvidia’s PilotNet) to handle complex environments and 

lighting variability. 

• Improving path planning around curves and intersections using trajectory prediction 

algorithms. 

• Adding a real-time birds-eye-view visualization system to better monitor the car’s 

environment and decision-making. 

• Exploring dynamic obstacle avoidance and overtaking capabilities for multi-object 

environments. 

• Conducting extensive outdoor testing with diEerent surface materials and lighting 

conditions. 

This project provided valuable hands-on experience in integrating hardware and software 

for autonomous navigation and highlighted the complexities involved in real-world robotics 

applications. 

 

 

 

Appendix 1 

Some of the important part’s assembly drawing: 



 

Figure 2: Motor mount on which Injora Motor is mounted 

 



Figure 3: The base link which connects front plate and back plate of car. 

 

Figure 4: Mount on which servo is installed 

 

 

 

 

 

 

 

 

 

 

 



Appendix 2  

 

Figure 5: Side View of Car 

 

Figure 6: Top view of car 


