

 UTILIZATION OF SUPERVISED AND REINFORCEMENT

 LEARNING IN THE AUTOMATION OF THE

CLASSICAL ATARI GAME “PONG”

by

ANDREW J. WATERREUS, B.S.

THESIS

Presented to the Graduate Faculty of

The University of Texas at San Antonio

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

COMMITTEE MEMBERS:

Pranav Bhounsule, Ph.D., Chair

Yufei Huang, Ph.D.

Adel Alaeddini, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO

College of Engineering

Department of Mechanical Engineering

August 2019

DEDICATION

This thesis is dedicated to my dear mother Pauline Waterreus. Thank you for all of your support

and tolerating me for so long while I worked to fulfill one of my life goals.

iii

ACKNOWLEDGEMENTS

 First of all, I would like to thank my family for all the love, support, and encouragement

that they have provided me as I worked to complete my postgraduate education and embark on

my career, finally no longer a student, to the great excitement of my mother. I would also like to

thank my advisor Dr. Pranav Bhounsule for all of the fabulous education and life advice that he

has provided, committee members Dr. Yufei Huang and Dr. Adel Alaeddini, and all of my

colleagues in the Robotics and Motion Laboratory for all of the support that they have provided

me as I worked towards completion of this machine learning project and research. Lastly, I

would like to thank the many UTSA staff members that have tolerated and encouraged me

throughout the past five years, including Dr. Yesh P. Singh, Dr. Amir Karimi, Dr. James

Johnson, and especially Mrs. Cayla Jimenez, who likely doesn’t get enough recognition for how

much she does for the mechanical engineering students, and for always being so pretty.

August 2019

iv

UTILIZATION OF SUPERVISED AND REINFORCEMENT

 LEARNING IN THE AUTOMATION OF THE

CLASSICAL ATARI GAME “PONG”

ANDREW J. WATERREUS, M.S.
The University of Texas at San Antonio, 2019

Supervising Professor: Pranav Bhounsule, Ph.D.

 The classical “Pong” game resembles 2-player table tennis and was developed by Atari in

1972. In this game, each player controls a small paddle to bounce a ball across the rectangular

area to defend a small goal on either side of the arena. Pong became extremely popular and is

generally considered to be the first commercially successful video game. It has even earned itself

a spot in the Smithsonian Institution in Washington, D.C. because of its level of cultural impact.

 This research project was an attempt to automate Pong through the use of two radically

different machine learning methods, supervised learning and reinforcement learning. In

supervised learning, an expert provides the training data, which consists of example input-output

pairs to be used for the learning. In our case, a human controlled one paddle in response to the

ball, while the other paddle moved up and down at a defined rate of 2.64 seconds per cycle.

Then, an artificial neural network with four layers was trained from this dataset. In reinforcement

learning, by using a reward system developed to encourage the paddle to defend the goal by

bouncing the ball and receiving points, a controller agent was trained using Deep Q-Neural

Networks (DQN). This method allows the computer to teach itself through trial and error.

 The supervised learning method generated an automated paddle that was deemed

unbeatable by several challengers; while the reinforcement learning method was only capable of

producing a controller agent with an average of 3-5 ball bounces per episode.

v

TABLE OF CONTENTS

Acknowledgements .. iii

Abstract .. iv

List of Tables .. vi

List of Figures ... vii

Chapter One: Introduction ...1

Chapter Two: Background and Literature Review ..3

Chapter Three: Methods ..11

Chapter Four: Results ..25

Chapter Five: Discussion ...28

Chapter Six: Conclusion and Future Work ..32

References ..35

Vita

vi

LIST OF TABLES

Table 1 Supervised Learning Training and Test Accuracy...25

vii

LIST OF FIGURES

Figure 1 Pong Arcade Video Game Console ...4

Figure 2 Original Pong Screen Layout ...5

Figure 3 Matlab Supervised Learning Pong Screen Layout...5

Figure 4 Python Reinforcement Learning Pong Screen Layout...6

Figure 5 Mark I Perceptron at the Cornell Aeronautical Laboratory9

Figure 6 Multi-Perceptron Layer ..9

Figure 7 Dataset Sample for Supervised Learning ..12

Figure 8 Example Neural Network ..14

Figure 9 Gradient Decent Example ..16

Figure 10 Forward Propagation Example ..16

Figure 11 Back Propagation Example ..17

Figure 12 Reinforcement Learning Model ...18

Figure 13 Q-table and Game Environment Example ...19

Figure 14 Deep Q Neural Network Diagram ...20

Figure 15 TensorFlow and Keras Neural Network Modeling ..22

Figure 16 Left Paddle DQN Running Average Training Plots ...26

Figure 17 Right Paddle DQN Running Average Training Plots ..27

Figure 18 Standard DQN Running Average Training Plot from Example30

1

CHAPTER ONE: INTRODUCTION

1.1 Thesis Contribution

 This Thesis offers multiple benefits in its completion; with the automation of the classic

Atari game Pong offering experience in the use of machine learning, and the product of the

project being able to be used in future research projects. With the development of supervised and

reinforcement learning Pong programs, by the utilization of both Matlab and Python IDEs,

software development abilities were significantly improved for future utilization. Initially, in the

procedure of completing this Thesis, supervised learning is used with labeled data of the state of

the game system to train a fully connected Deep Neural Network (DNN) to make predictions on

the movement of the paddle at each time step. This system was developed using

MATLAB_R2018b and a version of the Pong game downloaded from the Internet. Both a

computer vs. computer system, and a computer vs. human system were developed. This

supervised learning method is considered to be a form of pattern-based detection because it is

trained on data generated by volunteer human players, with random time steps having the current

state and paddle movement label recorded. In order to effectively train the paddles, only data

recorded from skilled players was saved to the data files.

 Second, a reinforcement learning agent is trained using both Jupyter Notebook and

PyCharm. It was decided to switch from Matlab to a Python IDE while training the

reinforcement learning agent due to the availability of large machine learning libraries such as

TensorFlow and Keras. For this system a Pong environment needed to be developed from scratch

in order to allow the agent to effectively train and make accurate predictions of paddle

movements based on the current state of the game (e.g. paddle location, ball location, and ball

movement). This second approach is considered to be approximate dynamic programming, as the

2

development of the DNN is performed through a trail and error method on the part of the

program, and no labeled data needs to be supplied during training.

 An additional contribution due to the project is that the resulting program files have been

uploaded to GitHub.com, through the link, https://github.com/AJWater/Automated-Pong in order

to make the programs freely available to anyone interested in attempting future research on this

subject.

1.2 Thesis Organization

 In the following chapters a thorough description of this Thesis project is given, with the

structure being developed to provide clarity for each subsequent chapter. Chapter Two gives a

quick review about the development of Pong and any modifications made in the versions utilized

in this project. In this section the overall layout of the dataset and the game state utilized during

training are thoroughly described. Chapter Two also reviews the preliminary knowledge in the

field of machine learning as well as the subfield of deep learning, and how it is effective in

performing the automation of video games such as Pong and many others. Chapter Three

provides more thorough descriptions of the methods utilized throughout the course of this

project, as well as the experiments used to evaluate the effectiveness of the learned playstyles

developed during training sessions. Chapter Four presents the results acquired during the

experiments. Chapter Five reviews the results and evaluates the data acquired through both

machine learning techniques. This Thesis is concluded in Chapter Six with a description on the

use of these machine learning methods in video game automation, a review of the insights gained

throughout the completion of this project, and recommendations for future work to be performed

in order to further improve the trained Pong playing agents.

https://github.com/AJWater/Automated-Pong

3

CHAPTER TWO: BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

 This chapter quick reviews the history of the video game Pong developed by Atari, as

well as how the versions used in the completion of this project have small modifications due to

the programming being different from the original. Here, the overall layout of the datasets

developed and utilized during training is also thoroughly described. In addition, preliminary

knowledge of machine learning and the subfield of deep learning is introduced, as well as its

effectiveness in video game automation.

2.2 Pong

 Pong is a two-dimensional sports game that simulates table tennis developed by Atari

engineer Allan Alcorn as a training exercise by Atari co-founder Nolan Bushnell in 1972.

Surprised by the quality of his work, Bushnell and another Atari co-founder Ted Dabney decided

to manufacture the game and sell it. Pong became the first commercially successful video game

and is now even a permanent part of the collection at the Smithsonian Institution in Washington,

D.C. because of its level of cultural impact.

4

Figure 1: Pong Arcade Video Game Console

2.2.1 Pong Layout

 Pong was originally developed to simulate table tennis; therefore, it consists of two paddles

and a ball, with the paddles bouncing the ball back and forth and trying to get it beyond the other

paddle. The current score of each paddle is displayed on its side of the game screen. Evaluating

the game layout, it can be determined that an effective description of the current state of the

game came be made by just the (x,y) coordinates of the ball, current speed of the ball, x and y

components of velocity of the ball, and the y-coordinate of each paddle. This is because these are

the only components of the game that change while playing. This is commonly referred to as the,

“State-space,” of the data, and the, “Label,” of the data is the decision of how the paddle should

be moved based on each data set. The possible labels include up, down, or stay still. It was

attempted to keep this constant throughout the project, even if the Pong game’s programming

differed slightly from the original.

5

Figure 2: Original Pong Screen Layout

2.2.2 Matlab Supervised Learning Pong Layout

 The version of Pong utilized for supervised learning was developed for Matlab and was

downloaded from the Internet. The game is titled as, “DAVE’S MATLAB PONG v0.3,” and was

originally developed by a person named David Buckingham. It states that it is, “a fast-paced two-

player game inspired by Atari’s Pong,” although it does have some modifications, such as

aesthetics and side walls added to make the goals smaller. Even though there are some

modifications, the overall state space of the game at any time step can still effectively be

described with the same information as the original Pong, due to only the same components

changing during game play.

Figure 3: Matlab Supervised Learning Pong Screen Layout

6

2.2.3 Python Reinforcement Learning Pong Layout

 For a period of time, the Matlab version of Pong was attempted to be utilized for the

reinforcement learning section of this Thesis project, as the game worked effectively and the

program was well understood by this point, but for reinforcement learning, large changes would

need to be made in order to save the current game state and then determine the appropriate

reward to give to the agent based on that state. Essentially a new game program would need to be

made, but luckily in a course, EE 5453 Engr Programming II, several semesters earlier, a Pong

game had been developed from scratch that utilized Python as the programming language.

Because the game program was entirely developed by me, it was completely understood how it

worked and using Python opened the availability of using TensorFlow and Keras to further

simplify machine learning endeavors. The Python Pong program was largely developed to

operate like the Matlab program in order to keep the results from each of the machine learning

techniques comparable. The state space is the same, with the same number of components being

the only things that change during game play.

Figure 4: Python Reinforcement Learning Pong Screen Layout

7

2.3 Machine Learning Preliminaries

 Both methods utilized in this project, supervised learning and reinforcement learning, were

performed through the use of deep neural networks, which are commonly classified as deep

learning, a subfield of machine learning. Therefore, a background on artificial intelligence and

machine learning concepts will be reviewed, and a framework for each method of deep learning

utilized will be discussed.

2.3.1 Artificial Intelligence and Machine Learning

 The field of Artificial Intelligence (AI) was born in the 1950s when computer scientists set

out to determine if computers could “think” like humans. Alan Turing, a young British polymath

devised a mathematical description of how humans use information in order to solve problems

and make decisions, and thus set out to allow computers or machines to do the same. The

challenge was the computers of the 1950s not being able to store commands, and the cost of

using one being very expensive. In 1956, what is generally considered to be the first AI was

developed by the Research and Development (RAND) Corporation and presented at the

Dartmouth Summer Research Project on Artificial Intelligence (DSRPAI) conference. Although

the conference fell short of initial expectations, this event is generally considered to have

catalyzed the next twenty years of AI research. For the next two decades, AI thrived due to

improvements with computers and additional funding from the government. The Defense

Advanced Research Projects Agency (DARPA) was particularly interested in a machine that

could transcribe and translate spoken language. It was soon after this point where the obstacles of

AI were truly revealed, primarily in the lack of computational power for performing substantial

tasks. In order to develop a computer to understand language and its complexity, it was

determined that computers were still millions of times too weak. Funding from most

8

governments dwindled at this time, and it would be until the 1990s and 2000s when the landmark

goals of AI would finally be achieved. In 1997 the revolutionary match between IBM’s Deep

Blue and chess grand master Gary Kasparov occurred, with Deep Blue defeating the chess world

champion. In the same year, speech recognition software was developed and implemented on

Windows. These advancements are generally considered to have been achievable due to the

fundamental limit of computer storage had caught up to humanity’s requirements. We now live

in the age of “big data,” in which we have levels of stored data too cumbersome for humans to

process. Now AI has grown to the level of being everywhere, with many industries finding it

quite fruitful, such as technology, banking, and entertainment. Soon (generally believed to be

twenty years), we can expect to see driverless vehicles on the roads, machines that surpass

human intelligence, and even the possibility of sentient robots requiring us to discuss the topic of

machine policies and ethics.

2.3.2 Machine Learning and Deep Learning

 The birth of machine learning came about in 1958 with the development of what is known

as the Perceptron, a mathematical model of how the neurons in our brains operate. The

Perceptron would receive a group of signals like the dendrites of a neuron, and after processing

the inputs, the Perceptron would output a 0 or a 1, representing the neuron either firing or not out

through the axon. This allowed for binary classification, and with groups of Perceptrons being

operated together, they could learn to become more accurate with more training examples. This

will be more clearly defined in the following chapter. An image of the first trainable Perceptron

built with hardware can be seen below in Figure 5. A significant amount of progress was made

with grouping multiple Perceptrons in a layer, as seen below in Figure 6, as this offered

9

additional outputs, but a short-coming of the Perceptron was identified when additional layers

were attempted to be added in order to make an artificial neural network. The method by which

Figure 5: Mark I Perceptron at the Cornell Aeronautical Laboratory

Figure 6: Multi-Perceptron Layer

a Perceptron is trained only allows for an input and an output layer due to there being no method

to determine by how much the hidden layer weights impacted the outputs. It was not until 1986

10

where the solution, known as, “Learning representations by back-propagating errors,” by David

Rumelhart, Geoffrey Hinton, and Ronald Williams became popularized. Now multiple hidden

layers could be added networks and extremely powerful “deep” networks could perform

amazingly powerful achievements.

11

CHAPTER THREE: METHODS

3.1 Introduction

 This chapter looks at the two techniques used in this project as approaches for automating

Pong. First, the method of utilizing supervised learning will be reviewed, and then it will be

evaluated how well the method was followed. Second, the method of reinforcement learning will

be analyzed, and its effectiveness in automating Pong will be determined.

3.2 Supervised Learning

 The majority of practical machine learning consists of supervised learning; so, it should

not be a surprise that one method utilized in this project consists of its use. The “Machine

Learning Stanford University” course by Andrew Ng completed on coursera.org was a

significant assistant at this point in the project, as it had a section that focused on supervised

learning and neural networks being utilized in its fulfillment. The course was completed using

Matlab, and with it being the programming language best known at the time, it was decided to

utilize Matlab in this portion of the project. A working Matlab program of the Pong video game

developed by David Buckingham was downloaded from the Internet and then modified so that

the state space could be acquired at each time step, as well as that any data inputs and outputs

could be recorded to be utilized by machine learning program files. After evaluation, it was

determined that each paddle would need to be trained separately, and that each paddle did not

need to record the current location of the other paddle at each time step, as it did not play a

significant role in an effective play style. By doing this, the state space could be reduced to only

six input variables: ball x-coordinate, ball y-coordinate, ball speed, ball velocity x-component,

ball velocity y-component, and the y-coordinate of the paddle being trained. Due to a lack in

processing power on the computer being used, it was considered to reduce the inputs further by

12

combining the ball velocity components into a Theta variable to represent the direction that the

ball was traveling in, but this was determined unwise, as significant further modifications would

need to be made to the game file in order to change it to utilize a Theta value, and having the two

velocity components would actually be useful in the development of the classifier during

training.

3.2.1 Supervised Learning Data Generation

 One of the characteristics of supervised learning is that the dataset provides the labels for

each state space sample. Due to this, a dataset needed to be generated, prior to training, that

labeled each state sample as a game state where the human player either moved up, stayed still,

or moved down. A sample of a normalized dataset can be seen below in Figure 7. Columns 1

through 6 represent samples of the state space, and the 7th column represents the label based on

the current state. Each row represents a separate sample to be utilized in training. A dataset for

Figure 7: Dataset Sample for Supervised Learning

training each paddle would need to be generated, as each paddle would be utilizing a different

trained agent for a controller.

 In generating the data, a human controlled one paddle while the other paddle was

automated to move up and down at a rate of 2.64 seconds per cycle, which allowed the

13

automated paddle to move over the majority of its side of the game screen. This would provide

additional randomness in the data collected, compared to if the paddle were to just stay still. A

barrier was then placed over the goal for the automated paddle. With this added feature, the only

way that the data collection episode could end would be if the ball were to get past the human

controlled paddle. This would allow for longer episodes with more data being collected per

game, and the paddle would be trained to play defensively. During the data generation phase, the

five features defining the ball, the vertical position of the human controlled paddle, and the

action chosen by the human were recorded. In order to prevent the training data from being

composed of sequential time step data, the data was recorded only from each fifth time step. It

required approximately 60-70 games to be played in order to develop the desired 40 thousand

training data examples, with an added feature of being able to exclude training data from games

where the human was determined to have played poorly. Next a separate test dataset, for the

same paddle, consisting of approximately 3 thousand data examples, was generated to be used to

evaluate the effectiveness of the trained neural network. Once completed, this entire process was

then repeated, with the human controlling the opposite paddle.

3.2.2 Neural Network Development

 After the training and test datasets were generated for both paddles, the next step is to

develop an effective Neural Network to be trained to match our input data to the labeled output

data. A simple example of a neural network can be seen below in Figure 8. In this example, the

x’s represent the input signals, the w’s represent the weights, the 𝛿’s represent the summation of

all of the signals being input to the next node, the a’s being the 𝛿’s after the activation function,

and the y’s represent the output predicted by the network.

14

Figure 8: Example Neural Network

Again, the machine learning course from coursera.org was extremely helpful, as it provided an

example of developing a neural network, as well as the extensive Matlab programs required to

train it. The course’s original exercise utilized a network consisting of three layers, but for

predicting the actions for Pong, an additional hidden layer was added, making our network one

of four layers. A significant amount of modifications needed to be made in order to have the

program utilize this new layer correctly, as it had originally been developed to have one hidden

layer. Our network had 6 inputs values, 6 neurons in the first hidden layer, 5 neurons in the

second hidden layer, and then 3 actions in the output layer.

3.2.2 Neural Network Training

 After the network model is developed, the weights need to be initialized and then the

technique known as gradient decent is used to optimize the weights to provide the network that

most accurately predicts the correct output for a given input.

 For gradient decent in optimizing a neural network, a cost function needs to be chosen in

order to define the network as a function with respect to the error between the predictions and the

target value. For Pong, the Mean Squared Error (MSE) function was chosen.

𝑀𝑆𝐸 =
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
 (3.1)

15

Where

• n is the total number of training examples.

• i is the current training example being evaluated.

• yi is the predicted output value from the network.

• �̂�𝐢 is the target value as defined by the training data.

The cost function is often indicated by 𝐽(𝜃(𝑖)) with 𝜃(𝑖) indicating the value of the “i”th weight.

This can be seen below in Figure 9. Next, for gradient decent, the technique known as forward

propagation is performed. Forward propagation will take the input values for each example and

determine the output that the neural network predicts for each. This will indicate our current

location on the chart as shown by Figure 9. While performing this action, the values of the

signals in each neuron are recorded, both before and after the activation function, which can be

seen in Figure 10. Next, back propagation is performed on the network in order to calculate and

record the partial derivatives for the cost function with respect to each weight in the network. An

example of this can be seen in Figure 11 below. In calculating the partial derivatives, the chain

rule is important in order to work backwards from the cost function to the weights. Figure 11 has

an example that shows how to calculate the partial derivative of the cost function with respect to

w1.

𝜕𝐽

𝜕𝑤1
=

𝜕𝐽

𝜕𝑎
∙

𝜕𝑎

𝜕𝑧
∙

𝜕𝑧

𝜕𝑤1
 (3.2)

Calculating the partial derivatives will allow us to understand how each weight effects the final

cost function and to know how the weights should be modified in order to reduce the cost

function to a minimum.

16

Figure 9: Gradient Decent Example

Figure 10: Forward Propagation Example

17

Figure 11: Back Propagation Example

3.2.3 Neural Network Testing

 After the neural network has been trained by using the training dataset, the trained

network is evaluated by using the test dataset. This would be performed by recording the

predicted output values from the network after each test example is run through it. These

recorded values are then compared to the test examples’ real-world labels, with an accuracy then

being calculated and recorded. This helps to determine if during the training phase, the gradient

decent converged to a local minimum, or if in a more ideal minimum. By performing multiple

trials of the training phase and testing each, the most optimal trained network can be utilized.

3.3 Reinforcement Learning

 Reinforcement learning is a very powerful form of machine learning, with the automation

of games being one area where it excels at. Google’s DeepMind AI has developed an artificial

neural network that can play multiple Atari games, has defeated the world champions for both

Chess and Go, and has even learned how to walk in simulated environments without even being

shown what walking looks like. All of this has been done by using reinforcement learning, and

through trial and error training. Reinforcement learning is generally achieved through the

18

training of an agent to choose actions to perform while operating in an environment, in order to

earn the greatest reward. The agent will perform an action and observe the effect it had on its

environment, as well as the reward it obtained by choosing that action at its original state. This is

performed in a continuous loop, or for a predefined number of episodes, in order for the agent to

improve from its previous experiences and rewards. This can be seen in Figure 12 below.

Figure 12: Reinforcement Learning Model

3.3.1 Standard Q-Learning

 One algorithm of reinforcement learning is known as Q-learning and utilizes what is

known as a Q-table to represent the agent and choose which actions to play while in its current

state. An example of a Q-table is visualized for clarity in Figure 13 below, with the Q-table being

on the right, and the game environment being on the left.

19

Figure 13: Q-table and Game Environment Example

The rows indicate the possible actions (a), while the columns represent all possible states (s) that

the game board can be in. Because the states only indicate where the race car is, there is only six

possible states. This means that there are only 24 possible (s,a) pairs, and 24 Q(s,a) values which

are indicated by the numerical values. For Q-learning, the Q(s,a) values are initialized, and the

agent acts in one of two ways, either the action depicted by the Q-table’s highest Q(s,a) value for

the current state, or a random action is chosen in order to encourage exploration of all (s,a) pairs

over time for ideal training. The action that was chosen is taken, and the next state (s’) and the

reward (r) are observed. In order to update the Q-table, the previous state’s Q(s,a) value is

updated by using the Bellman equation:

Q(s,a) = Q(s,a) + ⍺[R(s,a) + 𝛾maxQ(s’,a’) – Q(s,a)] (3.3)

Where

• Q(s,a) is the current state-action pair’s Q-value.

• 𝜶 is the learning rate, or how much you accept the new value versus the old value.

• R(s,a) is the reward obtained after completing a certain action at a certain state.

• 𝜸 is the discount factor, or how the immediate and future rewards are balanced.

• maxQ(s’,a’) is the maximum Q(s,a) value in the state that the agent moves to after the

action chosen in the original state.

20

The Bellman equation will update one Q(s,a) value per reinforcement learning loop; so this

method can be computationally expensive for large Q-tables. With enough training, the Q-table

will reach the optimal Q-values, or what is known as Q*(s,a). For Pong, there are three actions

per state, but due to the number of possible states when evaluating six input features, the number

of possible (s,a) pairs is enormous, particularly due to most of the features not being restricted to

integer values.

3.3.2 Deep Q Neural Networks (DQN)

 With the scale of our Q-table being too large, a technique that can be utilized is known as

Deep Q Neural Networks (DQN) which functions very similarly to Q-learning. The primary

difference is that the Q-table is replaced with a Deep Neural Network (DNN) which will attempt

to approximate the Q-table through, “Non-linear function approximation.” For this method, as

seen in Figure 14 below, the DQN now represents the agent, it only evaluates the current state

features as inputs, and the outputs are the approximations for the Q(s,a) values for each action

available at the original state.

Figure 14: Deep Q Neural Network Diagram

21

In Q-learning we want to update Q(s,a) values during each iteration of the reinforcement learning

loop, but for DQNs we want to update the weights (w) of the deep neural network. This is done

with a modification to the Bellman equation (3.3).

∆𝑤 = 𝛼[(𝑅 + 𝛾𝑚𝑎𝑥𝑄(𝑠′, 𝑎, 𝑤)) − 𝑄(𝑠, 𝑎, 𝑤)]∇𝑤𝑄(𝑠, 𝑎, 𝑤) (3.4)

Where

• ∆𝒘 is the change in weights

• 𝜶 is the learning rate

• R is the reward obtained after completing a certain action at a certain state.

• 𝜸 is the discount factor, or how the immediate and future rewards are balanced.

• 𝒎𝒂𝒙𝑸(𝒔′, 𝒂, 𝒘) is the maximum possible value from the next state with the current

weights.

• 𝑸(𝒔, 𝒂, 𝒘) is the current prediction of the Q-value with the current weights.

• 𝛁𝒘𝑸(𝒔, 𝒂, 𝒘) is the gradient of our current predicted Q-value.

• (𝑹 + 𝜸𝒎𝒂𝒙𝑸(𝒔′, 𝒂, 𝒘)) represents the maximum possible Q-value for the next state

This will allow for the calculation of how to modify the weights in the neural network in order to

get the current prediction of the Q-value to have a smaller difference between the maximum Q-

value of the next state. With enough training, the DQN will reach a state of very closely

approximating the Q*(s,a) values of a Q-table.

3.3.3 DQN Training

 The training of a DQN is similar to the optimization of a Q-table in that first it needs to be

developed and initialized, and then through trial and error it will learn the optimal method to

obtain higher rewards. In developing the DQN, a deep neural network is modeled for the proper

number of inputs and outputs, and the weights are given initial values as in the development of a

22

neural network. Next, the environment needs to have a reward function or system developed for

it that will assist the training agent in learning the proper actions to perform for specific states.

3.3.3.1 DQN Modeling

 For modeling the Pong DQN, it was very useful to have developed a Pong environment

using Python IDE which was similar to the Matlab version, so that the machine learning and

neural network libraries known as TensorFlow and Keras could be utilized. These libraries are

developed for fast experimentation with neural networks and focus on being user friendly.

Unlike how much modification it took to introduce just one additional hidden layer to the

network in the Matlab code from the supervised learning section of the machine learning

coursera.org online course; to introduce any additional layers when using these python libraries

only takes one line of code as seen in Figure 15 below, which represents the modeling of an

entire deep neural network.

Figure 15: TensorFlow and Keras Neural Network Modeling

These libraries even allow for the easy modification of layer size, activation function, initializer,

cost function, and much more.

3.3.3.2 DQN Reward Function

 Developing a reward function to assist the training agent in learning the proper actions to

perform for specific states was one of the most challenging parts of this section of the project, as

it needed to model the environment and the positive and negative actions that could occur for the

training agent. Due to the multiple features being evaluated, and the multitude of state-action

23

pairs that were available, the reward function quickly became very complex. Although the goal

was primarily to train the paddles to defend the goal from the ball, events other than bouncing

the ball needed to be accounted for during training. Through multiple trials, the reward system

that achieved the best results was:

• +.1 points per time step (for playing longer) unless a different event occurred

• -2 points for bumping against a wall

• +.5 points per time step if in front of its goal

• +50 points for bouncing the ball

• -(0-25) points if it did not defend its goal from the ball. This was a function based on where

the defending paddle was located compared to the ball when the goal was made.

Developed to encourage the paddle to defend the goal from the ball.

• +(0-10) points if the paddle scored a goal. This was a function based on where the scoring

paddle was, relative to its goal, when the goal was scored. Developed to encourage the

goal to return to the center when the ball is on the other side of the game screen.

This reward function encourages the paddle to play defensively, reward it for staying alive

longer, and to give reward points for scoring goals if it returns to the optimal location of the

middle when the ball is on the other side of the game screen.

3.3.3 DQN Testing

 The trained DQN and the over-all reinforcement learning method can be evaluated by

plotting the total reward point number obtained by the agent per training episode. This will

indicate if the agent is improving with respect to time spent training, as the plotted line will

increase and should eventually converge to a higher value if it has enough time, data, and

computer processing power. The DQN weights are also recorded for each 100 episodes, so that if

24

a more ideal set of weights is obtained at an earlier episode, they can be used, rather than only

the last episodes set.

25

CHAPTER FOUR: RESULTS

4.1 Introduction

 This chapter looks at the results obtained in the completion of the two methods described in

the previous chapter and displays them in an easily understandable fashion. In the completion of

both methods, interesting results were obtained for both the supervised and the reinforcement

learning portions of the project. The results from each method are significantly different in how

they indicate the capabilities of the automated Pong game paddles, and the differences in the

game program files make the comparison of the methods challenging

4.2 Supervised Learning Results

 In supervised learning, the accuracy of the trained agent in making the same choice of

action for a given input state as the provider of the test dataset, is how the effectiveness of the

agent is generally evaluated. The results for the accuracy of each paddle, when tested on both the

training and the test datasets can be seen below in Table 1.

Table 1: Supervised Learning Training and Test Accuracy

Paddle Training Data Accuracy (%) Test Data Accuracy (%)

Left Paddle 68.41% 61.84%

Right Paddle 82.16% 72.82%

4.3 Reinforcement Learning Results

 In deep Q neural network reinforcement learning, the reward points per training episode

plots are generally used to indicate the improvement of the training agent from its initial state. If

a significant number of episodes are played, it is convenient to use a running average function in

order to generate a smoother plot line, compared to indicating the reward point value achieved

for many thousands of episodes. Due to the significant probability of randomness in the training

26

phase of reinforcement learning, with several random number generators being used, the plots

may take many thousand episodes to converge on a close approximation of Q*(s,a), or an

optimal operation technique for the agent in its environment. Below, you can see the resulting

plots for the left paddle in figure 16. The left plot represents the initial training of the left

paddle’s DQN, where the weights at episode 3500 are used. In the right plot, additional training

is performed, with the weights from 1500 being used afterwards. The large spike values at the

beginning of the plots is due to the running average function not having the required number of

data points yet, and this causing errors in the values that are output to the plots. So, the peaks at

the beginning of each plot are ignored for each case.

Figure 16: Left Paddle DQN Running Average Training Plots

The plots for the right paddle can be seen in Figure 17 below, with the left plot representing the

initial training, and the right plot representing the subsequent training. For the left plot, the

weights from episode 1700 were used for the subsequent training, and the weights from episode

4000 of the right plot were utilized in the DQN to control the right paddle.

27

Figure 17: Right Paddle DQN Running Average Training Plots

28

CHAPTER FIVE: DISCUSSION

5.1 Introduction

 This chapter discusses the results displayed in chapter four and any unique details that

were found in their evaluation. The results obtained in both methods of this project had

interesting features that quickly attract the attention of most observers and experienced machine

learning specialists. These features could be the subject of future work or projects, as both

methods could potentially be improved.

5.2 Features of Supervised Learning Results

 The first noticeable interesting feature is the significant difference in the accuracies

between the left and right paddles during the supervised learning portion of the project. Even

though both paddles had approximately equal training and test datasets, the neural networks

converged to a minimum with a significant difference in accuracy and playstyle. Although the

left paddle had 61.84% accuracy on the test dataset, and the right paddle had 72.82% accuracy,

the left paddle was considered significantly more challenging to defeat in a human vs. computer

match, with some challengers deeming it, “unbeatable,”. The left paddle would play completely

defensively and only move away from the middle of its goal for short periods of time. It was also

very skilled at predicting where it needed to be in order to intercept the ball from a significant

distance away. The right paddle on the other hand would move in short bursts towards the ball

when the ball was on its half of the game screen, and then stay stationary for extended periods of

time. The largest difference between the two paddles was that the left paddle would return to the

middle before staying stationary, and the right paddle would stay stationary as soon as the ball

began moving towards the other side of the screen. A potential cause of this uniqueness and large

difference in the accuracies, is that the right paddle’s training dataset may have a higher

29

percentage of samples where the training label was, “0,” or the action was to stay still. For a

human player, an effective Pong playstyle is to return to the center after bouncing the ball and

wait for the ball to start to come back, as this provides the shortest distance needed to move in

order to defend the entire goal. In doing this though, the player will not move for extended

periods of time compared to a player that does not return to the middle, who will need to attempt

to predict the ball’s future location much sooner and begin to move at an earlier time. If the

samples where the left paddle stayed still are primarily when it is in the middle, it could be

trained to associate those to features with each other, but if the right paddle has a large number of

points being away from the middle and stationary, it may not learn the powerful playstyle

characteristic of returning to the middle. Because only every fifth time step was recorded when

generating the datasets, the datasets have some randomness in the data collected, and they may

not collect data examples which would help emphasize ideal playstyle features. A potential

solution to this problem for the right paddle would be to filter the dataset from a percentage of

the samples when the paddle is staying still away from the goal. If this reduces the size of the

dataset by a significant amount, additional new data could be generated, with emphasis being put

into playing with a more ideal playstyle.

5.3 Features of Reinforcement Learning Results

 The results for the reinforcement learning quickly attract attention due to the unusualness

of the plots obtained when compared to the plot that is generally shown to be expected from a

deep Q neural network, which can be seen below in Figure 18. This plot is shown to gradually

increase until the average reward score converges to what could be considered the approximation

of the Q*(s,a) of Q-learning. The most noticeable difference between the plot in Figure 18 and

30

the DQN resulting plots in Figure 16 and Figure 17 is the large spike in the plots for the DQN

results.

Figure 18: Standard DQN Running Average Training Plot from Example

A solution for this is that a new or improved function needs to be utilized in the developed DQN

program, as it does not operate correctly until the first full set of the number of episodes that it is

intended to display the average of, have been calculated. This effects the initial section of the

plot, and ruins a portion of the data being displayed. Another feature that is noticeable is that the

result plots do not appear to converge to a value, as compared to the Figure 18 example DQN

plot. Because the example DQN plot appears to converge, it likely will not significantly improve

if more training is performed with the weights obtained at the end of its training. The resulting

DQN plots however, do not appear to converge, and this is why additional training was

performed during the training phase. The reward function was a significant challenge in the

development of the DQN, as it needed to represent the environment and the potential events that

could occur, and yet not become too complicated. The complexity of the reward function likely

is a significant cause of the resulting DQN plots not converging smoothly to any Q*(s,a).

Although the resulting plots do not appear to converge to any particular value, the use of

31

additional training was capable of boosting the performance of the paddles to a level of being

able to noticeably track the ball and attempt to bounce it back to the other paddle. On average,

the paddles could achieve between three and five bounces before either paddle would miss the

ball. Neither paddle achieved a performance level where it was deemed capable of challenging a

human opponent, so the Pong environment was never developed to accept inputs from anything

but the DQN agents as of this time.

5.4 Computational Processing Power and Time

 Another challenge of this project was the computational processing power and time

available to me, especially in the reinforcement learning phase. Originally, a lab computer that

had been used to perform deep learning experiments on in the past was deemed ideal for this

project, as it was believed to have a significant amount of RAM and a powerful GPU, but this

was not immediately confirmed. It was only after several months that it was investigated and

discovered that all of the hardware upgrades had been the previous user’s personal hardware and

had thus been removed when their project was completed. This was troublesome for performing

the training for the deep Q learning, as some training attempts could take up to 15 hours to

complete, and thus had to run all night long. This meant that if a new reward function or network

model was to be tested, I would have to wait until the following day before I could view the

results.

32

CHAPTER SIX: CONCLUSION AND FUTURE WORK

6.1 Introduction

 Machine learning is an extremely powerful and versatile development that is having, and

will have, a significant impact on society, with one area of prowess being that of automation.

Supervised and reinforcement learning are particularly effective in the area of automation of

video games, with major software developers like Google’s DeepMind AI and IBM even using

them in the automation of multiple complex games and activities. Throughout this project, a

significant amount of experience has been acquired in the areas of software development and

machine learning; all while developing functional programs of automated versions of Pong while

using two different programming languages. The results obtained contained interesting features

that present the opportunity of future research projects to attempt to develop and improve

performance on.

6.2 Machine Learning and Automation

 The impact of machine learning has been quickly growing in society, with the power of

computers playing a significant role in that growth. With the development of powerful new

neural network techniques and deep learning, the automation of more and more complex things

has become available to humanity. Initially, simple Atari games were automated, but now, games

like Doom, Go, and even StarCraft II have been automated to a super-human level. This level of

automation of these games may seem irrelevant to many at this time, but by automating them, it

allows for the development of more powerful AI techniques and ideas. An example of this being

Google’s AlphaFold, an AI that can correctly predict the folding of proteins at a much higher

accuracy than any human, even with it being one of the most challenging problems in all of

33

science. This could have significant effects on research in associated areas, due to the ability to

predict future protein structures.

6.3 Insights Obtained

 Throughout the completion of this project, a large number of insights have been obtained,

with the most significant being those in software development and knowledge in how to perform

machine learning for unique environments or conditions. During the completion of this project, a

working, basic AI, was developed to play Pong with both a supervised learning technique, and a

reinforcement learning technique. The supervised learning trained agent was even deemed,

“unbeatable,” by some, and has yet to be defeated since its training. The reinforcement learning

portion of the project was more interesting on a personal level, but the ability of getting the agent

to operate at a human challenging level has not yet been achieved.

 The challenges of developing supervised and reinforcement learning systems have become

much clearer; with the area of reinforcement learning appearing to require a more significant

amount of effort in order to develop an effective controlling agent. Throughout this project I

have obtained a significant amount of knowledge for programing with both Matlab and with

Python, and greatly appreciate the machine learning and neural network libraries available to us,

such as “TensorFlow” and “Keras”.

6.4 Future Work

 There are several potential areas of future research opportunities offered by this project due

to the unique results obtained during testing of both machine learning methods. The supervised

learning portion has unusual results in that there is a large difference between the test accuracies

for both paddles, and yet the left paddle with its lower accuracy result is much more challenging

to defeat. Future work could be done to improve the right paddle which spends a very large

34

portion of the time staying stationary, even though it shows a noticeably higher test accuracy

than the left paddle.

 The reinforcement learning has several areas that could be improved. A potentially easier

task would be to improve the display of the data after training through the improvement of the

running average function being used. A more challenging task would be to optimize the reward

function in order to improve the training results and cause the rewards per episode plots to

noticeably converge to a value after increasing from an initial point.

35

REFERENCES

Libguides.utsa.edu. (2019). LibGuides: Dissertations and Theses: Find Dissertations & Theses.

[online] Available at: https://libguides.utsa.edu/dt/findDT [Accessed 9 Aug. 2019].

Science in the News. (2019). The History of Artificial Intelligence - Science in the News. [online]

Available at: http://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/ [Accessed 9

Aug. 2019].

Coursera. (2019). Coursera | Online Courses & Credentials From Top Educators. Join for Free.

[online] Available at:

https://www.coursera.org/?skipBrowseRedirect=true&skipRecommendationsRedirect=true&tab

=completed [Accessed 9 Aug. 2019].

Brownlee, J. (2019). Supervised and Unsupervised Machine Learning Algorithms. [online]

Machine Learning Mastery. Available at: https://machinelearningmastery.com/supervised-and-

unsupervised-machine-learning-algorithms/ [Accessed 9 Aug. 2019].

En.wikipedia.org. (2019). Artificial neural network. [online] Available at:

https://en.wikipedia.org/wiki/Artificial_neural_network#Deep_stacking_networks [Accessed 9

Aug. 2019].

Vink, R. (2019). Programming a neural network from scratch - Ritchie Vink. [online]

Ritchievink.com. Available at: https://www.ritchievink.com/blog/2017/07/10/programming-a-

neural-network-from-scratch/ [Accessed 9 Aug. 2019].

dzone.com. (2019). An Introduction to the Artificial Neural Network - DZone AI. [online]

Available at: https://dzone.com/articles/an-introduction-to-the-artificial-neural-network

[Accessed 9 Aug. 2019].

Developer News. (2019). An introduction to Deep Q-Learning: let’s play Doom. [online]

Available at: https://www.freecodecamp.org/news/an-introduction-to-deep-q-learning-lets-play-

doom-54d02d8017d8/ [Accessed 9 Aug. 2019].

Medium. (2019). 5 Regression Loss Functions All Machine Learners Should Know. [online]

Available at: https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-

know-4fb140e9d4b0 [Accessed 9 Aug. 2019].

Medium. (2019). Qrash Course: Reinforcement Learning 101 & Deep Q Networks in 10

Minutes. [online] Available at: https://towardsdatascience.com/qrash-course-deep-q-networks-

from-the-ground-up-1bbda41d3677 [Accessed 9 Aug. 2019].

Medium. (2019). Simple Reinforcement Learning: Q-learning. [online] Available at:

https://towardsdatascience.com/simple-reinforcement-learning-q-learning-fcddc4b6fe56

[Accessed 9 Aug. 2019].

36

Zokaie, T., Osterkamp, T.A., and Imbsen, R.A. 1991. “Distribution of Wheel Loads on Highway

Bridges,” A report prepared for N.C.H.R.P., Transportation Research Board.

VITA

Andrew Waterreus is from Bulverde, TX, just north of San Antonio. He earned both a

Bachelor’s and Master’s degree in Mechanical Engineering, with a concentration in Robotic

Systems and Controls at The University of Texas at San Antonio. His research focus is on

robotic systems and machine learning. His future plans include becoming a PE (Professional

Engineer) in mechanical engineering, and work with a research and development company, to be

able to help push the boundaries of technology to new levels.

