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INTRODUCTION

* Developmentin Robotics

* Aland machine learning

* Sensortechnology
 Efficient and powerful robotic actuators

* Applications in various Fields
* Agriculture, Military, Medicine
* Collaborative Robots (cobots)
* Drones forcommercial and industrial applications




INTRODUCTION

* Importance of Mobile Manipulation

« Enhanced Flexibility and Reach
e Autonomous Operations
 Versatility in Applications OpenManipulatorX WidowX 250s

* Challenges
* Controland Coordination
* Manipulation in Unstructured Environments
* Energy Efficiency

Navigation Difficulties in Autonomous Robotécs



INITIAL WORK
OpenManipulatorX

* Forward Kinematics (FK) & Inverse
Kinematics (IK)
* High Level Control

Challenges Faced:

* LessReach

* |mproving motion

* Mobile object detection limitations
e Compatibility Issues

Object Detection

* cvlib python library

* PD control-based tracking

* Pixel-to-realdistance scaling

https://github.com/arunponnusamy/cvlib P



INITIAL WORK

e Motivation

* Enable mobile applications and
custom object detection

* Improve robotic accuracy and reliability

* Objectives
* Develop robust FK and IK
* Depth camera integration
* Mobile platform implementation
* Train custom object detection models



Robotic Arm Setup

Specifications

Arm used - WidowX 250S by Trossen Robotics
Degrees of Freedom: 6 Degrees of Freedom (DOF)
Payload Capacity: Up to 250 grams

Reach: approx. 650 mm

Dynamixel Motors used: Seven XM430-W350 &
two XL430-W250
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Robotic Arm Setup

USB Cable gy
& “g,r

 Control System = — Power Line
« U2D2 Microcontroller
* Dynamixel SDK for motor control
* Programmed in Python
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Kinematics Modelling - Forward Kinematics

* Denavit-Hartenberg (DH) Parameters

* 4 DOFwas considered

* Defined parameters: link length (q; ),
link twist (a; ), link offset (d; ), and joint
angle (0;), B=11.537(offset angle)
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Configuration of Robot Arm




Kinematics Modelling - Forward Kinematics

*  H!™! describes the position and orientation of
- 0.4

joint i with respect tojointi — 1

c0; —sB;ca; sO;sa; a;cH;
i-1_ |s6; cOica; —cOisa; a;sO;
HiT1 =
0 sa; ca; d;
0 0 0 1

Where s6; = sin0;,cH; = cos0;,sa; = sina;,ca; =

* The position and orientation of the
end-effector is found using the formula:

d2]

0
HY = HY H} H H = [%4 -

CoS Q; .

Initial position configuration

Angles: (@, -15, -75, 990)
Position of end-effector: [ 2.88655450e-01 -1.34160019e-18 8.83400061e-02]

Orientation of end-effector: [[ 1.00000000e+00 2.22063518e-16 ©0.00000000e+00 ]

[-1.16686955e-32 6.12323400e-17 -1.00000000e+00 ]
[-2.15862338e-16 1.00000000e+00 6.12323400e-17]]




Kinematics Modelling - Inverse Kinematics

Method Used — Geometric:

* Chosenforits simplicity and clarity

 Suitable for the specific robotic arm
configuration

Trajectory Planning

* Path Generation

* Inverse Kinematics
 Interpolation of Joint Angles

* Velocity and Acceleration Profiles

Note: Detailed angle equations are included in the appendix

X 2 0.2 -0.3

Trajectory Plot of Robotic Arm using Matplotlib
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Kinematics Modelling Simulation




Object Detection

«  Why YOLOV5s?

* Computational Efficiency

* High Accuracy

* Real-Time Performance

* Ease of Training and Deployment

* Model Training Workflow

« Dataset Preparation

« Data Augmentation

* Training the Model
 Validation and Testing

https://github.com/ultralytics/yolov5

> X = B

Small

YOLOv5s

14 MB

FP16
2.2 ms,,.o

36.8 mAP

COCO

Medium Large
YOLOvV5mM YOLOvSI
41 MBFP16 90 MBFP16
2.9 ms,,..o 3.8 ms,,. .

44 .5 mAP 48.1 mAP

COCO COCOo

Family of YOLOv5

XLarge

YOLOv5x

168 MB

FP16
6.0 mS,,.00

50.1 mAP

COCO
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Synthetic Image Generation

* 3D Modeling and Scene Creation

« 3D models created using SolidWorks
and exported as STL files
* HDRIimages for realistic backgrounds

3D printed Objects

13



Synthetic Image Generation

* Rendering and Annotation
* Image Rendering
* Annotation Generation with Python
* Verification with labellmg
e 8000 images are generated
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Collage of generated images

Annotation verification using labellmg
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Model Training and Validation s
* Classes and Distribution -
* ObjectClasses: 0_number, 5_number, e
N_alphabet, and U_alphabet
* Dataset Composition oo T
e Class Distribution o [
* Model Training I
* Image size —640x480 pixels = o
* Number of epochs-100

Class Distribution

* Validation and Testing

* Validation Process
 Testing on Real-World Data

15



Hardware - Vision

* Depth Camera - Intel RealSense D435
e Specifications:
* Resolution: Up to 1280 x 720 for depth and
RGB streams
* Field of View: 87° x 58° x 95° (£3°)
* DepthRange:0.2to 10 m
* Frame Rate: 90 fps for depth data

* Functionality and Integration

e Captures both RGB and depth information
e Connectedto the Jetson Nano via USB 3.0
* pyrealsense2: python library

16



Computing Hardware

 Jetson Nano
e Specifications:

e CPU: Quad-core ARM Cortex-A57 MPCore
processor

e GPU:128-core Maxwell GPU

e Memory: 4GB LPDDR4

 Storage: microSD card slot

e Connectivity: Includes USB 3.0, HDMI,
and Ethernet port

* Functionality and Integration
* Runthe YOLOv5s custom trained model
* Central Processing Unit for the robotic
system
* Operateson alLinux-based system

17



Hardware — Unitree A1 Quadruped

Specifications and Features

e Speed: Reach speeds upto 3.3 m/s

« Battery provides up to 2.5 hours of operation
« Can output power to attached devices

e Maximum payload of 5 kg

© © © © © 1. TX2 HDMI
SEURILT]) 2 TX2 USB3.0
3. TX2 USB2.0
1=~ = | - | 4. Ethernet Interface 1
) - okl - 5. Power Input 24V
) :11‘ - 6. Power Input 24V
%
e ol o o 7. Power Qutput (5V, 2A)
| P o | 8. Power Output (12V, 2A)
| = 08 | P -
__° Ele Oo9 B 9. Power Output (19V, 2A)
- 5 10. Ethernet Interface 2
11. MiniPC USB2.0
A\ 12. MiniPC USB3.0
© @[ ]@ © 13. MiniPC HDMI

18



Hardware - Power Setup

* Power Requirements * Buck Converter
 Jetson Nano: Requires a 5V 4A power supply * |nput: 19V 2A
* Robotic Arm: Requires a 12V 5A power supply * OQutputs: 5V for Jetson and
* Intel RealSense D435: Powered via USB 3.0 12V for arm

from the Jetson Nano

Ethernet (to A1)

Jetson

Camera Power 5V4A - Power 19V2A
Converter

Power 12V2A

Power (to Arm)
Power (to Jetson)

19



Hardware - Integration and Connectivity

e Communication and Control Flow

The Jetson Nano serves as the central processing unit
Ethernet Connection: Jetson Nano to A1 RaspberryPi

USB Connection: Depth Camera to Jetson and Arm to A1
RaspberryPi

Generates Depth
Trajectoryand Camera
CalculatesIK

JointAngles Jetson §
Nano Depth and Pixel

Value

RaspberryPi Iy TNy TIe Moves Arm i

20



Hardware — Custom Components

e 3D Printed Stand for Wood Base

* Attachthe wood base to the Unitree A1 quadruped
* Ensures stable and reliable mounting

e Wood Base for Arm and Jetson Nano
e Foundation for the arm and to house the Jetson

21



Hardware — Custom Components

3D Printed Support for Camera

* To mountthe depth camera for the arm
* To holdthe camera atan optimal angle

* AprilTag Labeled Glasses

* Each labeled with a unique AprilTag ID, to detect
alphabets and numbers.
* Precise identification and localization of the glasses

22



Operating Modes

* Teleoperation
* Manually controlled by an operator
* Precise and direct control of the
quadruped movements
* Remote Control

e Manual Overrides

e Autonomous

* ObjectDetection
e Autonomous Sorting

23



Results - Intel RealSense Depth Accuracy

24



Results — Object Detection

train/box_loss train/obj_loss train/cls_loss metrics/precision metrics/recall
0.05 1.0 1.000
—e— results
0.05 3
0.04 smooth 0.03 0.9 ] 0.975
0.04
0.03 0.950
0.03 ' 0.02 0.8
] 1 0.925
0.02
0.02 0.01 0.7 0.900
0.01 0.01
- 0.6 0.875
0.00
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
val/box_loss val/obj_loss val/cls_loss metrics/mAP_0.5 metrics/mAP_0.5:0.95
0.025 1 0.0175 0.0150 1.00 1.0
0.020 0.0150 0.0125 0.95 09
0.0125 0.0100 0.8
0.015 0.90
0.0100 0.0075 07 ¢
0.010 0.0075 0.0050 0.85
0.6
0.005 0.0050 0.0025
h 0.80 0.5
0.000 0.0025 0.0000
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

* Training Losses: Training losses decrease over the course of 100 epochs
* Validation Losses: The validation losses decrease over time
* Performance Metrics: The precision and recall metrics are high
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Results - Testing on Real-World Data

- 95 5 (U olphobet)

Pl stphobess |
po! ;_ i

-
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Demonstration
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Demonstration




Results - Trajectory Comparison

Position vs Time

1
0.6 n —— X Position (Desired)
—— Y Position (Desired)
—— Z Position (Desired)
X Position (Mocap)
Y Position (Mocap)
Z Position (Mocap)

Position vs Time:
e Y Position: noticeable deviations

0.4

Position (meters)
o
w

0.2-
0.1-
0.0+
0 5 10 15 20 25 30
Time (s)
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Results - Trajectory Comparison

Error Analysis:
e PMean error and standard deviation
were calculated as error metrics

-0.0101
Y 0.0107
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Results — Real Time Grabbing

Performance Evaluation:

* Ability to detect, approach, and
successfully grasp objects in real-
time scenarios

* QOutof10 objects tested, the
system successfully picked up 8 of
them
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CONCLUSIONS

* Project successfully implemented a robotic arm
for pick-and-place tasks utilizing advanced
kinematics and computer vision techniques.

* Accurate object detection and positioning,
enhancing the system's overall efficiency and
precision.

Future Scope:

* Algorithm Optimization

* Integrate Depth camera with SLAM for navigation
and Obstacle Avoidance
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Appendix

In this work, a geometric approach was employed to solve the inverse kinematics for
the robotic arm. Each joint angle can be calculated by assuming the position given. It
is assumed that 6,34 = 0, + 05 + 0,. To keep the end-effector parallel to the ground,
6,34 is considered to be 0. 84 can be calculates as:

6, = tan! <&>
Dx Y

The angle for 8, ranges from -180° and 180°.

The x-coordinate and y-coordinate of the end-effector are combined into the s-
coordinate using the Pythagorean theorem, as follows:

2 _ 0 2 2
Ds” = DPx” T Dy
Ps = \/pxz + pyz
The r and z coordinates for joint 3 can be calculated as follows: Combination of x and y axis as s-Axis.
S3 = Pr
Z3 = py — dq

34



Appendix

6,, 685, and 8, can be calculated using the following equations:
Sy, = S3 — Q4 COSBOy34
Zy = Z3 — Ay SiNBOy34

S22+ 2% — (ap* + az?)
cos 03 =

2a2a3
2 2 2 2
S, + 7z, — (a,* + az~)
93=icos_1<2 2 2 3 )
2a2a3
(a, + a3 cosB3)s, + (as sinf3)z,
cos 0, = 5 5
&) + Zy
_ (ay, + a3 cosB3)z, + (asz sinf3)s,
Sin 92 = > >
&) + Zy
sin 6
0, = tan_1< 2>
cos 6,

0, = Op34 — (6, + 03)

Based on the configuration of the robot arm, the angle range for 8, is adjusted to
between 0° and 180°, and the angle range for 05 is adjusted to between -180° and 0°
and angle range for 8, is between -90° and 90°.
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