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INTRODUCTION

• Development in Robotics
• AI and machine learning
• Sensor technology
• Efficient and powerful robotic actuators

• Applications in various Fields
• Agriculture, Military, Medicine
• Collaborative Robots (cobots)
• Drones for commercial and industrial applications
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INTRODUCTION

• Importance of Mobile Manipulation
• Enhanced Flexibility and Reach
• Autonomous Operations
• Versatility in Applications

• Challenges
• Control and Coordination
• Manipulation in Unstructured Environments
• Energy Efficiency

OpenManipulatorX WidowX 250s

Navigation Difficulties in Autonomous Robotics
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INITIAL WORK
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OpenManipulatorX
• Forward Kinematics (FK) & Inverse 

Kinematics (IK)
• High Level Control

Challenges Faced:
• Less Reach
• Improving motion
• Mobile object detection limitations
• Compatibility Issues

Object Detection
• cvlib python library
• PD control-based tracking
• Pixel-to-real distance scaling

https://github.com/arunponnusamy/cvlib



INITIAL WORK

• Objectives
• Develop robust FK and IK
• Depth camera integration
• Mobile platform implementation
• Train custom object detection models

• Motivation
• Enable mobile applications and 

custom object detection
• Improve robotic accuracy and reliability
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Robotic Arm Setup

• Specifications
• Arm used - WidowX 250S by Trossen Robotics
• Degrees of Freedom: 6 Degrees of Freedom (DOF)
• Payload Capacity: Up to 250 grams
• Reach: approx. 650 mm
• Dynamixel Motors used: Seven XM430-W350 & 

two XL430-W250

6Joint Limits
XL430-W250XM430-W350



Robotic Arm Setup

• Control System
• U2D2 Microcontroller
• Dynamixel SDK for motor control
• Programmed in Python

• Dynamixel Wizard 2.0
• Configuring the motors
• Tuning, real-time monitoring and 

firmware updates
• Setup of control parameters

U2D2
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PC to DYNAMIXEL

Dynamixel Wizard 2.0



Kinematics Modelling - Forward Kinematics

• Denavit–Hartenberg (DH) Parameters
• 4 DOF was considered 
• Defined parameters: link length (𝑎𝑖 ),

link twist (𝛼𝑖 ), link offset (𝑑𝑖 ), and joint 
angle (𝜃𝑖 ), β = 11.537 ̊ (offset angle)

Link 𝑎𝑖 (𝑚) 𝛼𝑖 (°) 𝑑𝑖 (𝑚) 𝜃𝑖 (°)

1 0 90 0.11025 𝜃1

2 0.25495 0 0 𝜃2 - β

3 0.25 0 0 𝜃3 + β

4 0.17415 0 0 𝜃4
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Configuration of Robot Arm

DH Table



Kinematics Modelling - Forward Kinematics

• 𝐻𝑖
𝑖−1 describes the position and orientation of 

joint 𝑖 with respect to joint 𝑖 − 1

𝐻𝑖
𝑖−1 =

𝑐𝜃𝑖 −𝑠𝜃𝑖𝑐𝛼𝑖 𝑠𝜃𝑖𝑠𝛼𝑖 𝑎𝑖𝑐𝜃𝑖

𝑠𝜃𝑖 𝑐𝜃𝑖𝑐𝛼𝑖 −𝑐𝜃𝑖𝑠𝛼𝑖 𝑎𝑖𝑠𝜃𝑖

0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖

0 0 0 1

Where 𝑠𝜃𝑖 = sin 𝜃𝑖 , 𝑐𝜃𝑖 = cos 𝜃𝑖 , 𝑠𝛼𝑖 = sin 𝛼𝑖 , 𝑐𝛼𝑖 = cos 𝛼𝑖 .

𝐻4
0 =  𝐻1

0 𝐻2
1 𝐻3

2 𝐻4
3 = 𝑅4

0 𝑑4
0

0 1

• The position and orientation of the
end−effector is found using the formula:
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Initial position configuration



Kinematics Modelling - Inverse Kinematics

Method Used – Geometric:
• Chosen for its simplicity and clarity
• Suitable for the specific robotic arm 

configuration
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Trajectory Plot of Robotic Arm using Matplotlib

Trajectory Planning
• Path Generation
• Inverse Kinematics
• Interpolation of Joint Angles
• Velocity and Acceleration Profiles

Note: Detailed angle equations are included in the appendix



Kinematics Modelling Simulation 
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Object Detection

• Why YOLOv5s?
• Computational Efficiency
• High Accuracy
• Real-Time Performance
• Ease of Training and Deployment

• Model Training Workflow
• Dataset Preparation
• Data Augmentation
• Training the Model
• Validation and Testing
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Family of YOLOv5

https://github.com/ultralytics/yolov5



Synthetic Image Generation

• 3D Modeling and Scene Creation
• 3D models created using SolidWorks

and exported as STL files
• HDRI images for realistic backgrounds
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3D printed Objects



Synthetic Image Generation

• Rendering and Annotation
• Image Rendering
• Annotation Generation with Python
• Verification with labelImg
• 8000 images are generated
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Collage of generated images
Annotation verification using labelImg



Model Training and Validation

•  Classes and Distribution
• Object Classes: 0_number, 5_number,

N_alphabet, and U_alphabet
• Dataset Composition
• Class Distribution

•  Model Training
• Image size – 640x480 pixels
• Number of epochs - 100

•  Validation and Testing
• Validation Process
• Testing on Real-World Data
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Class Distribution



Hardware - Vision

• Depth Camera - Intel RealSense D435 
• Specifications:

• Resolution: Up to 1280 x 720 for depth and 
RGB streams

• Field of View: 87° × 58° × 95° (±3°)
• Depth Range: 0.2 to 10 m
• Frame Rate: 90 fps for depth data

• Functionality and Integration 
• Captures both RGB and depth information
• Connected to the Jetson Nano via USB 3.0
• pyrealsense2:  python library
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Computing Hardware

• Jetson Nano
• Specifications:

• CPU: Quad-core ARM Cortex-A57 MPCore 
processor

• GPU: 128-core Maxwell GPU
• Memory: 4GB LPDDR4
• Storage: microSD card slot
• Connectivity: Includes USB 3.0, HDMI, 

and Ethernet port

• Functionality and Integration 
• Run the YOLOv5s custom trained model
• Central Processing Unit for the robotic 

system
• Operates on a Linux-based system
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Hardware – Unitree A1 Quadruped

• Specifications and Features 
• Speed: Reach speeds up to 3.3 m/s
• Battery provides up to 2.5 hours of operation
• Can output power to attached devices
• Maximum payload of 5 kg 
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Hardware - Power Setup 

• Buck Converter 
• Input: 19V 2A
• Outputs: 5V for Jetson and

12V for arm

• Power Requirements 
• Jetson Nano: Requires a 5V 4A power supply
• Robotic Arm: Requires a 12V 5A power supply
• Intel RealSense D435: Powered via USB 3.0 

from the Jetson Nano
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Hardware - Integration and Connectivity

• Communication and Control Flow 
• The Jetson Nano serves as the central processing unit
• Ethernet Connection: Jetson Nano to A1 RaspberryPi
• USB Connection: Depth Camera to Jetson and Arm to A1 

RaspberryPi
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Hardware – Custom Components

• 3D Printed Stand for Wood Base 
• Attach the wood base to the Unitree A1 quadruped
• Ensures stable and reliable mounting

• Wood Base for Arm and Jetson Nano 
• Foundation for the arm and to house the Jetson
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Hardware – Custom Components

• 3D Printed Support for Camera 
• To mount the depth camera for the arm
• To hold the camera at an optimal angle

• AprilTag Labeled Glasses 
• Each labeled with a unique AprilTag ID, to detect 

alphabets and numbers.
• Precise identification and localization of the glasses
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Operating Modes

• Teleoperation
• Manually controlled by an operator
• Precise and direct control of the 

quadruped movements
• Remote Control
• Manual Overrides

• Autonomous
• Object Detection
• Autonomous Sorting
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Results - Intel RealSense Depth Accuracy
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Results – Object Detection

1 of 23 

• Training Losses: Training losses decrease over the course of 100 epochs
• Validation Losses: The validation losses decrease over time
• Performance Metrics: The precision and recall metrics are high
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Results - Testing on Real-World Data
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Demonstration

27



Demonstration
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Results - Trajectory Comparison

Position vs Time:
• Y Position: noticeable deviations
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Results - Trajectory Comparison

Error Analysis:
• Mean error and standard deviation 

were calculated as error metrics
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Axis Mean Error (m) Standard Deviation (m)

X -0.0101 0.0113

Y 0.0107 0.0239

Z 0.0116 0.0113



Results – Real Time Grabbing

Performance Evaluation:
• Ability to detect, approach, and 

successfully grasp objects in real-
time scenarios

• Out of 10 objects tested, the 
system successfully picked up 8 of 
them
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CONCLUSIONS

• Project successfully implemented a robotic arm 
for pick-and-place tasks utilizing advanced 
kinematics and computer vision techniques.

• Accurate object detection and positioning, 
enhancing the system's overall efficiency and 
precision.
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Future Scope:
• Algorithm Optimization
• Integrate Depth camera with SLAM for navigation 

and Obstacle Avoidance



Q & A
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Appendix
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In this work, a geometric approach was employed to solve the inverse kinematics for
the robotic arm. Each joint angle can be calculated by assuming the position given. It
is assumed that 𝜃234 = 𝜃2 + 𝜃3 + 𝜃4. To keep the end-effector parallel to the ground,
𝜃234 is considered to be 0. 𝜃1 can be calculates as:

𝜃1 = tan−1
𝑝𝑦

𝑝𝑥

The angle for 𝜃1 ranges from -180° and 180°.

The x-coordinate and y-coordinate of the end-effector are combined into the s-
coordinate using the Pythagorean theorem, as follows: 

𝑝𝑠
2 = 𝑝𝑥

2 + 𝑝𝑦
2

𝑝𝑠 = 𝑝𝑥
2 + 𝑝𝑦

2

The 𝑟 and 𝑧 coordinates for joint 3 can be calculated as follows:
𝑠3 = 𝑝𝑟

𝑧3 = 𝑝𝑧 − 𝑑1

Combination of x and y axis as s-Axis.



Appendix
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𝜃2, 𝜃3, and 𝜃4 can be calculated using the following equations:
𝑠2 = 𝑠3 − 𝑎4 cos 𝜃234

𝑧2 = 𝑧3 − 𝑎4 sin 𝜃234

cos 𝜃3 =
𝑠2

2 + 𝑧2
2 − 𝑎2

2 + 𝑎3
2

2𝑎2𝑎3

𝜃3 = ± cos−1
𝑠2

2 + 𝑧2
2 − 𝑎2

2 + 𝑎3
2

2𝑎2𝑎3

cos 𝜃2 =
𝑎2 + 𝑎3 cos 𝜃3 𝑠2 + 𝑎3 sin 𝜃3 𝑧2

𝑟2
2 + 𝑧2

2

sin 𝜃2 =
𝑎2 + 𝑎3 cos 𝜃3 𝑧2 + 𝑎3 sin 𝜃3 𝑠2

𝑟2
2 + 𝑧2

2

𝜃2 = tan−1
sin 𝜃2

cos 𝜃2

𝜃4 = 𝜃234 − 𝜃2 + 𝜃3

Based on the configuration of the robot arm, the angle range for 𝜃2 is adjusted to 
between 0° and 180°, and the angle range for 𝜃3 is adjusted to between -180° and 0°
and angle range for 𝜃4 is between -90° and 90°.
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