
Dynamic Pick-and-Place System for a
Manipulator on a Quadruped Using

Object Detection

THESIS DEFENSE

Thesis Committee:

Dr. Pranav Bhounsule, Chair and Advisor

Dr. Michael Scott, Department of Mechanical Engineering

Dr. Jonathan Komperda, Department of Mechanical Engineering

Abhishek Jagadeesh Kasaragod

Master of Science in Mechanical Engineering

University of Illinois at Chicago, 2024

1

INTRODUCTION

• Development in Robotics
• AI and machine learning
• Sensor technology
• Efficient and powerful robotic actuators

• Applications in various Fields
• Agriculture, Military, Medicine
• Collaborative Robots (cobots)
• Drones for commercial and industrial applications

2

INTRODUCTION

• Importance of Mobile Manipulation
• Enhanced Flexibility and Reach
• Autonomous Operations
• Versatility in Applications

• Challenges
• Control and Coordination
• Manipulation in Unstructured Environments
• Energy Efficiency

OpenManipulatorX WidowX 250s

Navigation Difficulties in Autonomous Robotics
3

INITIAL WORK

4

OpenManipulatorX
• Forward Kinematics (FK) & Inverse

Kinematics (IK)
• High Level Control

Challenges Faced:
• Less Reach
• Improving motion
• Mobile object detection limitations
• Compatibility Issues

Object Detection
• cvlib python library
• PD control-based tracking
• Pixel-to-real distance scaling

https://github.com/arunponnusamy/cvlib

INITIAL WORK

• Objectives
• Develop robust FK and IK
• Depth camera integration
• Mobile platform implementation
• Train custom object detection models

• Motivation
• Enable mobile applications and

custom object detection
• Improve robotic accuracy and reliability

5

Robotic Arm Setup

• Specifications
• Arm used - WidowX 250S by Trossen Robotics
• Degrees of Freedom: 6 Degrees of Freedom (DOF)
• Payload Capacity: Up to 250 grams
• Reach: approx. 650 mm
• Dynamixel Motors used: Seven XM430-W350 &

two XL430-W250

6Joint Limits
XL430-W250XM430-W350

Robotic Arm Setup

• Control System
• U2D2 Microcontroller
• Dynamixel SDK for motor control
• Programmed in Python

• Dynamixel Wizard 2.0
• Configuring the motors
• Tuning, real-time monitoring and

firmware updates
• Setup of control parameters

U2D2

7

PC to DYNAMIXEL

Dynamixel Wizard 2.0

Kinematics Modelling - Forward Kinematics

• Denavit–Hartenberg (DH) Parameters
• 4 DOF was considered
• Defined parameters: link length (𝑎𝑖),

link twist (𝛼𝑖), link offset (𝑑𝑖), and joint
angle (𝜃𝑖), β = 11.537 ̊ (offset angle)

Link 𝑎𝑖 (𝑚) 𝛼𝑖 (°) 𝑑𝑖 (𝑚) 𝜃𝑖 (°)

1 0 90 0.11025 𝜃1

2 0.25495 0 0 𝜃2 - β

3 0.25 0 0 𝜃3 + β

4 0.17415 0 0 𝜃4

8

Configuration of Robot Arm

DH Table

Kinematics Modelling - Forward Kinematics

• 𝐻𝑖
𝑖−1 describes the position and orientation of

joint 𝑖 with respect to joint 𝑖 − 1

𝐻𝑖
𝑖−1 =

𝑐𝜃𝑖 −𝑠𝜃𝑖𝑐𝛼𝑖 𝑠𝜃𝑖𝑠𝛼𝑖 𝑎𝑖𝑐𝜃𝑖

𝑠𝜃𝑖 𝑐𝜃𝑖𝑐𝛼𝑖 −𝑐𝜃𝑖𝑠𝛼𝑖 𝑎𝑖𝑠𝜃𝑖

0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖

0 0 0 1

Where 𝑠𝜃𝑖 = sin 𝜃𝑖 , 𝑐𝜃𝑖 = cos 𝜃𝑖 , 𝑠𝛼𝑖 = sin 𝛼𝑖 , 𝑐𝛼𝑖 = cos 𝛼𝑖 .

𝐻4
0 = 𝐻1

0 𝐻2
1 𝐻3

2 𝐻4
3 = 𝑅4

0 𝑑4
0

0 1

• The position and orientation of the
end−effector is found using the formula:

9

Initial position configuration

Kinematics Modelling - Inverse Kinematics

Method Used – Geometric:
• Chosen for its simplicity and clarity
• Suitable for the specific robotic arm

configuration

10

Trajectory Plot of Robotic Arm using Matplotlib

Trajectory Planning
• Path Generation
• Inverse Kinematics
• Interpolation of Joint Angles
• Velocity and Acceleration Profiles

Note: Detailed angle equations are included in the appendix

Kinematics Modelling Simulation

11

Object Detection

• Why YOLOv5s?
• Computational Efficiency
• High Accuracy
• Real-Time Performance
• Ease of Training and Deployment

• Model Training Workflow
• Dataset Preparation
• Data Augmentation
• Training the Model
• Validation and Testing

12

Family of YOLOv5

https://github.com/ultralytics/yolov5

Synthetic Image Generation

• 3D Modeling and Scene Creation
• 3D models created using SolidWorks

and exported as STL files
• HDRI images for realistic backgrounds

13

3D printed Objects

Synthetic Image Generation

• Rendering and Annotation
• Image Rendering
• Annotation Generation with Python
• Verification with labelImg
• 8000 images are generated

14

Collage of generated images
Annotation verification using labelImg

Model Training and Validation

• Classes and Distribution
• Object Classes: 0_number, 5_number,

N_alphabet, and U_alphabet
• Dataset Composition
• Class Distribution

• Model Training
• Image size – 640x480 pixels
• Number of epochs - 100

• Validation and Testing
• Validation Process
• Testing on Real-World Data

15

Class Distribution

Hardware - Vision

• Depth Camera - Intel RealSense D435
• Specifications:

• Resolution: Up to 1280 x 720 for depth and
RGB streams

• Field of View: 87° × 58° × 95° (±3°)
• Depth Range: 0.2 to 10 m
• Frame Rate: 90 fps for depth data

• Functionality and Integration
• Captures both RGB and depth information
• Connected to the Jetson Nano via USB 3.0
• pyrealsense2: python library

16

Computing Hardware

• Jetson Nano
• Specifications:

• CPU: Quad-core ARM Cortex-A57 MPCore
processor

• GPU: 128-core Maxwell GPU
• Memory: 4GB LPDDR4
• Storage: microSD card slot
• Connectivity: Includes USB 3.0, HDMI,

and Ethernet port

• Functionality and Integration
• Run the YOLOv5s custom trained model
• Central Processing Unit for the robotic

system
• Operates on a Linux-based system

17

Hardware – Unitree A1 Quadruped

• Specifications and Features
• Speed: Reach speeds up to 3.3 m/s
• Battery provides up to 2.5 hours of operation
• Can output power to attached devices
• Maximum payload of 5 kg

18

Hardware - Power Setup

• Buck Converter
• Input: 19V 2A
• Outputs: 5V for Jetson and

12V for arm

• Power Requirements
• Jetson Nano: Requires a 5V 4A power supply
• Robotic Arm: Requires a 12V 5A power supply
• Intel RealSense D435: Powered via USB 3.0

from the Jetson Nano

19

Hardware - Integration and Connectivity

• Communication and Control Flow
• The Jetson Nano serves as the central processing unit
• Ethernet Connection: Jetson Nano to A1 RaspberryPi
• USB Connection: Depth Camera to Jetson and Arm to A1

RaspberryPi

20

Hardware – Custom Components

• 3D Printed Stand for Wood Base
• Attach the wood base to the Unitree A1 quadruped
• Ensures stable and reliable mounting

• Wood Base for Arm and Jetson Nano
• Foundation for the arm and to house the Jetson

21

Hardware – Custom Components

• 3D Printed Support for Camera
• To mount the depth camera for the arm
• To hold the camera at an optimal angle

• AprilTag Labeled Glasses
• Each labeled with a unique AprilTag ID, to detect

alphabets and numbers.
• Precise identification and localization of the glasses

22

Operating Modes

• Teleoperation
• Manually controlled by an operator
• Precise and direct control of the

quadruped movements
• Remote Control
• Manual Overrides

• Autonomous
• Object Detection
• Autonomous Sorting

23

Results - Intel RealSense Depth Accuracy

24

Results – Object Detection

1 of 23

• Training Losses: Training losses decrease over the course of 100 epochs
• Validation Losses: The validation losses decrease over time
• Performance Metrics: The precision and recall metrics are high

25

Results - Testing on Real-World Data

26

Demonstration

27

Demonstration

28

Results - Trajectory Comparison

Position vs Time:
• Y Position: noticeable deviations

29

Results - Trajectory Comparison

Error Analysis:
• Mean error and standard deviation

were calculated as error metrics

30

Axis Mean Error (m) Standard Deviation (m)

X -0.0101 0.0113

Y 0.0107 0.0239

Z 0.0116 0.0113

Results – Real Time Grabbing

Performance Evaluation:
• Ability to detect, approach, and

successfully grasp objects in real-
time scenarios

• Out of 10 objects tested, the
system successfully picked up 8 of
them

31

CONCLUSIONS

• Project successfully implemented a robotic arm
for pick-and-place tasks utilizing advanced
kinematics and computer vision techniques.

• Accurate object detection and positioning,
enhancing the system's overall efficiency and
precision.

32

Future Scope:
• Algorithm Optimization
• Integrate Depth camera with SLAM for navigation

and Obstacle Avoidance

Q & A

33

Appendix

34

In this work, a geometric approach was employed to solve the inverse kinematics for
the robotic arm. Each joint angle can be calculated by assuming the position given. It
is assumed that 𝜃234 = 𝜃2 + 𝜃3 + 𝜃4. To keep the end-effector parallel to the ground,
𝜃234 is considered to be 0. 𝜃1 can be calculates as:

𝜃1 = tan−1
𝑝𝑦

𝑝𝑥

The angle for 𝜃1 ranges from -180° and 180°.

The x-coordinate and y-coordinate of the end-effector are combined into the s-
coordinate using the Pythagorean theorem, as follows:

𝑝𝑠
2 = 𝑝𝑥

2 + 𝑝𝑦
2

𝑝𝑠 = 𝑝𝑥
2 + 𝑝𝑦

2

The 𝑟 and 𝑧 coordinates for joint 3 can be calculated as follows:
𝑠3 = 𝑝𝑟

𝑧3 = 𝑝𝑧 − 𝑑1

Combination of x and y axis as s-Axis.

Appendix

35

𝜃2, 𝜃3, and 𝜃4 can be calculated using the following equations:
𝑠2 = 𝑠3 − 𝑎4 cos 𝜃234

𝑧2 = 𝑧3 − 𝑎4 sin 𝜃234

cos 𝜃3 =
𝑠2

2 + 𝑧2
2 − 𝑎2

2 + 𝑎3
2

2𝑎2𝑎3

𝜃3 = ± cos−1
𝑠2

2 + 𝑧2
2 − 𝑎2

2 + 𝑎3
2

2𝑎2𝑎3

cos 𝜃2 =
𝑎2 + 𝑎3 cos 𝜃3 𝑠2 + 𝑎3 sin 𝜃3 𝑧2

𝑟2
2 + 𝑧2

2

sin 𝜃2 =
𝑎2 + 𝑎3 cos 𝜃3 𝑧2 + 𝑎3 sin 𝜃3 𝑠2

𝑟2
2 + 𝑧2

2

𝜃2 = tan−1
sin 𝜃2

cos 𝜃2

𝜃4 = 𝜃234 − 𝜃2 + 𝜃3

Based on the configuration of the robot arm, the angle range for 𝜃2 is adjusted to
between 0° and 180°, and the angle range for 𝜃3 is adjusted to between -180° and 0°
and angle range for 𝜃4 is between -90° and 90°.

	Slide 1
	Slide 2: INTRODUCTION
	Slide 3: INTRODUCTION
	Slide 4: INITIAL WORK
	Slide 5: INITIAL WORK
	Slide 6: Robotic Arm Setup
	Slide 7: Robotic Arm Setup
	Slide 8: Kinematics Modelling - Forward Kinematics
	Slide 9: Kinematics Modelling - Forward Kinematics
	Slide 10: Kinematics Modelling - Inverse Kinematics
	Slide 11: Kinematics Modelling Simulation
	Slide 12: Object Detection
	Slide 13: Synthetic Image Generation
	Slide 14: Synthetic Image Generation
	Slide 15: Model Training and Validation
	Slide 16: Hardware - Vision
	Slide 17: Computing Hardware
	Slide 18: Hardware – Unitree A1 Quadruped
	Slide 19: Hardware - Power Setup
	Slide 20: Hardware - Integration and Connectivity
	Slide 21: Hardware – Custom Components
	Slide 22: Hardware – Custom Components
	Slide 23: Operating Modes
	Slide 24: Results - Intel RealSense Depth Accuracy
	Slide 25: Results – Object Detection
	Slide 26: Results - Testing on Real-World Data
	Slide 27: Demonstration
	Slide 28: Demonstration
	Slide 29: Results - Trajectory Comparison
	Slide 30: Results - Trajectory Comparison
	Slide 31: Results – Real Time Grabbing
	Slide 32: CONCLUSIONS
	Slide 33: Q & A
	Slide 34: Appendix
	Slide 35: Appendix

