THESIS DEFENSE

Dynamic Pick-and-Place System for a

Manipulator on a Quadruped Using
Object Detection

Abhishek Jagadeesh Kasaragod
Master of Science in Mechanical Engineering
University of lllinois at Chicago, 2024

Thesis Committee:

Dr. Pranav Bhounsule, Chair and Advisor

Dr. Michael Scott, Department of Mechanical Engineering

Dr. Jonathan Komperda, Department of Mechanical Engineering

RAM @

INTRODUCTION

* Developmentin Robotics

* Aland machine learning

* Sensortechnology
 Efficient and powerful robotic actuators

* Applications in various Fields
* Agriculture, Military, Medicine
* Collaborative Robots (cobots)
* Drones forcommercial and industrial applications

INTRODUCTION

* Importance of Mobile Manipulation

« Enhanced Flexibility and Reach
e Autonomous Operations
 Versatility in Applications OpenManipulatorX WidowX 250s

* Challenges
* Controland Coordination
* Manipulation in Unstructured Environments
* Energy Efficiency

Navigation Difficulties in Autonomous Robotécs

INITIAL WORK
OpenManipulatorX

* Forward Kinematics (FK) & Inverse
Kinematics (IK)
* High Level Control

Challenges Faced:

* LessReach

* |mproving motion

* Mobile object detection limitations
e Compatibility Issues

Object Detection

* cvlib python library

* PD control-based tracking

* Pixel-to-realdistance scaling

https://github.com/arunponnusamy/cvlib P

INITIAL WORK

e Motivation

* Enable mobile applications and
custom object detection

* Improve robotic accuracy and reliability

* Objectives
* Develop robust FK and IK
* Depth camera integration
* Mobile platform implementation
* Train custom object detection models

Robotic Arm Setup

Specifications

Arm used - WidowX 250S by Trossen Robotics
Degrees of Freedom: 6 Degrees of Freedom (DOF)
Payload Capacity: Up to 250 grams

Reach: approx. 650 mm

Dynamixel Motors used: Seven XM430-W350 &
two XL430-W250

Joint

Waist
Shoulder
Elbow
Forearm Raoll

Wrist Angle

Wrist Rotate

Gripper

XM430-W350 XL430-W250

-180

-100

-180

30mm

Max

180

114

Q2

180

123

180

T4mm

Joint Limits

Servo ID(s)

1

Q

Robotic Arm Setup

USB Cable gy
& “g,r

 Control System = — Power Line
« U2D2 Microcontroller
* Dynamixel SDK for motor control
* Programmed in Python

PC to DYNAMIXEL

. . Firmare version «
jio-003)
Io:0ed] v o 2 w
. . :::;E :ma . pacd mate (ous) 3 e
. 1ID-007] XM430-W3SD 9 urn Daley Tise 250) (] e
AW —
. o] utzawaso T ke ' b T
110:005] XL430-W250. " a a0 comtrol o
n =
1 2

* Configuring the motors o= e >
* Tuning, real-time monitoring and S ——

firmware updates e

 Setup of control parameters : i‘»j}}“f:"" . °

Dynamixel Wizard 2.0

Kinematics Modelling - Forward Kinematics

* Denavit-Hartenberg (DH) Parameters

* 4 DOFwas considered

* Defined parameters: link length (q;),
link twist (a;), link offset (d;), and joint
angle (0;), B=11.537(offset angle)

A 83 A A

50 250 "o

4,? H

;T 3 PP ; F .

s 3 65 | 5
L s _
43.1
176.1
a4
& g

Y ﬁ
Za ﬁ

110.25
1o

T

233.54

DH Table
0.11025
2 0.25495 0 0 6, - B
3 0.25 0 0 0; +

4 0.17415 O 0 0,

Configuration of Robot Arm

Kinematics Modelling - Forward Kinematics

* H!™! describes the position and orientation of
- 0.4

joint i with respect tojointi — 1

c0; —sB;ca; sO;sa; a;cH;
i-1_ |s6; cOica; —cOisa; a;sO;
HiT1 =
0 sa; ca; d;
0 0 0 1

Where s6; = sin0;,cH; = cos0;,sa; = sina;,ca; =

* The position and orientation of the
end-effector is found using the formula:

d2]

0
HY = HY H} H H = [%4 -

CoS Q; .

Initial position configuration

Angles: (@, -15, -75, 990)
Position of end-effector: [2.88655450e-01 -1.34160019e-18 8.83400061e-02]

Orientation of end-effector: [[1.00000000e+00 2.22063518e-16 ©0.00000000e+00]

[-1.16686955e-32 6.12323400e-17 -1.00000000e+00]
[-2.15862338e-16 1.00000000e+00 6.12323400e-17]]

Kinematics Modelling - Inverse Kinematics

Method Used — Geometric:

* Chosenforits simplicity and clarity

 Suitable for the specific robotic arm
configuration

Trajectory Planning

* Path Generation

* Inverse Kinematics
 Interpolation of Joint Angles

* Velocity and Acceleration Profiles

Note: Detailed angle equations are included in the appendix

X 2 0.2 -0.3

Trajectory Plot of Robotic Arm using Matplotlib

10

Kinematics Modelling Simulation

Object Detection

« Why YOLOV5s?

* Computational Efficiency

* High Accuracy

* Real-Time Performance

* Ease of Training and Deployment

* Model Training Workflow

« Dataset Preparation

« Data Augmentation

* Training the Model
 Validation and Testing

https://github.com/ultralytics/yolov5

> X = B

Small

YOLOv5s

14 MB

FP16
2.2 ms,,.o

36.8 mAP

COCO

Medium Large
YOLOvV5mM YOLOvSI
41 MBFP16 90 MBFP16
2.9 ms,,..o 3.8 ms,,. .

44 .5 mAP 48.1 mAP

COCO COCOo

Family of YOLOv5

XLarge

YOLOv5x

168 MB

FP16
6.0 mS,,.00

50.1 mAP

COCO

12

Synthetic Image Generation

* 3D Modeling and Scene Creation

« 3D models created using SolidWorks
and exported as STL files
* HDRIimages for realistic backgrounds

3D printed Objects

13

Synthetic Image Generation

* Rendering and Annotation
* Image Rendering
* Annotation Generation with Python
* Verification with labellmg
e 8000 images are generated

uuuuuu efoult label £

eeeeeeee

g g
x3@:m 51 ¢e
it

Delete RectBox

@gmggm

Collage of generated images

Annotation verification using labellmg
14

Model Training and Validation s
* Classes and Distribution -
* ObjectClasses: 0_number, 5_number, e
N_alphabet, and U_alphabet
* Dataset Composition oo T
e Class Distribution o [
* Model Training I
* Image size —640x480 pixels = o
* Number of epochs-100

Class Distribution

* Validation and Testing

* Validation Process
 Testing on Real-World Data

15

Hardware - Vision

* Depth Camera - Intel RealSense D435
e Specifications:
* Resolution: Up to 1280 x 720 for depth and
RGB streams
* Field of View: 87° x 58° x 95° (£3°)
* DepthRange:0.2to 10 m
* Frame Rate: 90 fps for depth data

* Functionality and Integration

e Captures both RGB and depth information
e Connectedto the Jetson Nano via USB 3.0
* pyrealsense2: python library

16

Computing Hardware

 Jetson Nano
e Specifications:

e CPU: Quad-core ARM Cortex-A57 MPCore
processor

e GPU:128-core Maxwell GPU

e Memory: 4GB LPDDR4

 Storage: microSD card slot

e Connectivity: Includes USB 3.0, HDMI,
and Ethernet port

* Functionality and Integration
* Runthe YOLOv5s custom trained model
* Central Processing Unit for the robotic
system
* Operateson alLinux-based system

17

Hardware — Unitree A1 Quadruped

Specifications and Features

e Speed: Reach speeds upto 3.3 m/s

« Battery provides up to 2.5 hours of operation
« Can output power to attached devices

e Maximum payload of 5 kg

© © © © © 1. TX2 HDMI
SEURILT]) 2 TX2 USB3.0
3. TX2 USB2.0
1=~ = | - | 4. Ethernet Interface 1
) - okl - 5. Power Input 24V
) :11‘ - 6. Power Input 24V
%
e ol o o 7. Power Qutput (5V, 2A)
| P o | 8. Power Output (12V, 2A)
| = 08 | P -
__° Ele Oo9 B 9. Power Output (19V, 2A)
- 5 10. Ethernet Interface 2
11. MiniPC USB2.0
A\ 12. MiniPC USB3.0
© @[]@ © 13. MiniPC HDMI

18

Hardware - Power Setup

* Power Requirements * Buck Converter
 Jetson Nano: Requires a 5V 4A power supply * |nput: 19V 2A
* Robotic Arm: Requires a 12V 5A power supply * OQutputs: 5V for Jetson and
* Intel RealSense D435: Powered via USB 3.0 12V for arm

from the Jetson Nano

Ethernet (to A1)

Jetson

Camera Power 5V4A - Power 19V2A
Converter

Power 12V2A

Power (to Arm)
Power (to Jetson)

19

Hardware - Integration and Connectivity

e Communication and Control Flow

The Jetson Nano serves as the central processing unit
Ethernet Connection: Jetson Nano to A1 RaspberryPi

USB Connection: Depth Camera to Jetson and Arm to A1
RaspberryPi

Generates Depth
Trajectoryand Camera
CalculatesIK

JointAngles Jetson §
Nano Depth and Pixel

Value

RaspberryPi Iy TNy TIe Moves Arm i

20

Hardware — Custom Components

e 3D Printed Stand for Wood Base

* Attachthe wood base to the Unitree A1 quadruped
* Ensures stable and reliable mounting

e Wood Base for Arm and Jetson Nano
e Foundation for the arm and to house the Jetson

21

Hardware — Custom Components

3D Printed Support for Camera

* To mountthe depth camera for the arm
* To holdthe camera atan optimal angle

* AprilTag Labeled Glasses

* Each labeled with a unique AprilTag ID, to detect
alphabets and numbers.
* Precise identification and localization of the glasses

22

Operating Modes

* Teleoperation
* Manually controlled by an operator
* Precise and direct control of the
quadruped movements
* Remote Control

e Manual Overrides

e Autonomous

* ObjectDetection
e Autonomous Sorting

23

Results - Intel RealSense Depth Accuracy

24

Results — Object Detection

train/box_loss train/obj_loss train/cls_loss metrics/precision metrics/recall
0.05 1.0 1.000
—e— results
0.05 3
0.04 smooth 0.03 0.9] 0.975
0.04
0.03 0.950
0.03 ' 0.02 0.8
] 1 0.925
0.02
0.02 0.01 0.7 0.900
0.01 0.01
- 0.6 0.875
0.00
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
val/box_loss val/obj_loss val/cls_loss metrics/mAP_0.5 metrics/mAP_0.5:0.95
0.025 1 0.0175 0.0150 1.00 1.0
0.020 0.0150 0.0125 0.95 09
0.0125 0.0100 0.8
0.015 0.90
0.0100 0.0075 07 ¢
0.010 0.0075 0.0050 0.85
0.6
0.005 0.0050 0.0025
h 0.80 0.5
0.000 0.0025 0.0000
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

* Training Losses: Training losses decrease over the course of 100 epochs
* Validation Losses: The validation losses decrease over time
* Performance Metrics: The precision and recall metrics are high

25 1 of23

Results - Testing on Real-World Data

- 95 5 (U olphobet)

Pl stphobess |
po! ;_ i

-

26

Demonstration

27

Demonstration

Results - Trajectory Comparison

Position vs Time

1
0.6 n —— X Position (Desired)
—— Y Position (Desired)
—— Z Position (Desired)
X Position (Mocap)
Y Position (Mocap)
Z Position (Mocap)

Position vs Time:
e Y Position: noticeable deviations

0.4

Position (meters)
o
w

0.2-
0.1-
0.0+
0 5 10 15 20 25 30
Time (s)

29

Results - Trajectory Comparison

Error Analysis:
e PMean error and standard deviation
were calculated as error metrics

-0.0101
Y 0.0107
Z 0.0116

0.0239
0.0113

Error {meters)

0.08 +
0.06
0.04 A
0.02 1

0.00 1

0.0113

~0.04 -

Errors in X, Y, Z with Respect to Time

— Ermrorin X
—— Emoriny
— ErmorinZ

A

1-:"

T
10

15
Time (s)

T
20

T
25

30

Results — Real Time Grabbing

Performance Evaluation:

* Ability to detect, approach, and
successfully grasp objects in real-
time scenarios

* QOutof10 objects tested, the
system successfully picked up 8 of
them

31

CONCLUSIONS

* Project successfully implemented a robotic arm
for pick-and-place tasks utilizing advanced
kinematics and computer vision techniques.

* Accurate object detection and positioning,
enhancing the system's overall efficiency and
precision.

Future Scope:

* Algorithm Optimization

* Integrate Depth camera with SLAM for navigation
and Obstacle Avoidance

32

Q&A

Appendix

In this work, a geometric approach was employed to solve the inverse kinematics for
the robotic arm. Each joint angle can be calculated by assuming the position given. It
is assumed that 6,34 = 0, + 05 + 0,. To keep the end-effector parallel to the ground,
6,34 is considered to be 0. 84 can be calculates as:

6, = tan! <&>
Dx Y

The angle for 8, ranges from -180° and 180°.

The x-coordinate and y-coordinate of the end-effector are combined into the s-
coordinate using the Pythagorean theorem, as follows:

2 _ 0 2 2
Ds” = DPx” T Dy
Ps = \/pxz + pyz
The r and z coordinates for joint 3 can be calculated as follows: Combination of x and y axis as s-Axis.
S3 = Pr
Z3 = py — dq

34

Appendix

6,, 685, and 8, can be calculated using the following equations:
Sy, = S3 — Q4 COSBOy34
Zy = Z3 — Ay SiNBOy34

S22+ 2% — (ap* + az?)
cos 03 =

2a2a3
2 2 2 2
S, + 7z, — (a,* + az~)
93=icos_1<2 2 2 3)
2a2a3
(a, + a3 cosB3)s, + (as sinf3)z,
cos 0, = 5 5
&) + Zy
_ (ay, + a3 cosB3)z, + (asz sinf3)s,
Sin 92 = > >
&) + Zy
sin 6
0, = tan_1< 2>
cos 6,

0, = Op34 — (6, + 03)

Based on the configuration of the robot arm, the angle range for 8, is adjusted to
between 0° and 180°, and the angle range for 05 is adjusted to between -180° and 0°
and angle range for 8, is between -90° and 90°.

35

	Slide 1
	Slide 2: INTRODUCTION
	Slide 3: INTRODUCTION
	Slide 4: INITIAL WORK
	Slide 5: INITIAL WORK
	Slide 6: Robotic Arm Setup
	Slide 7: Robotic Arm Setup
	Slide 8: Kinematics Modelling - Forward Kinematics
	Slide 9: Kinematics Modelling - Forward Kinematics
	Slide 10: Kinematics Modelling - Inverse Kinematics
	Slide 11: Kinematics Modelling Simulation
	Slide 12: Object Detection
	Slide 13: Synthetic Image Generation
	Slide 14: Synthetic Image Generation
	Slide 15: Model Training and Validation
	Slide 16: Hardware - Vision
	Slide 17: Computing Hardware
	Slide 18: Hardware – Unitree A1 Quadruped
	Slide 19: Hardware - Power Setup
	Slide 20: Hardware - Integration and Connectivity
	Slide 21: Hardware – Custom Components
	Slide 22: Hardware – Custom Components
	Slide 23: Operating Modes
	Slide 24: Results - Intel RealSense Depth Accuracy
	Slide 25: Results – Object Detection
	Slide 26: Results - Testing on Real-World Data
	Slide 27: Demonstration
	Slide 28: Demonstration
	Slide 29: Results - Trajectory Comparison
	Slide 30: Results - Trajectory Comparison
	Slide 31: Results – Real Time Grabbing
	Slide 32: CONCLUSIONS
	Slide 33: Q & A
	Slide 34: Appendix
	Slide 35: Appendix

