

DYNAMIC PICK-AND-PLACE SYSTEM FOR A MANIPULATOR ON A

QUADRUPED USING OBJECT DETECTION

BY

ABHISHEK JAGADEESH KASARAGOD

B.E., Sahyadri College of Engineering and Management, 2021

M.S., University of Illinois Chicago, 2024

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Mechanical Engineering

 in the Graduate College of the

University of Illinois at Chicago, 2024

Chicago, Illinois

Defense Committee:

Dr. Pranav Bhounsule, Chair and Advisor

Dr. Michael J. Scott, Department of Mechanical Engineering

Dr. Jonathan Komperda, Department of Mechanical Engineering

ii

ACKNOWLEDGMENT

I wish to convey my sincere gratitude to my advisor and mentor, Professor Pranav

Bhounsule, for his unwavering support, wisdom, and encouragement all throughout this

journey.

I deeply appreciate my committee members, Professor Michael Scott and Professor

Jonathan Komperda, for being a part of my thesis committee and for their valuable

feedback and encouragement.

I express my deep gratitude to each member of my laboratory for their valuable

contributions and companionship. I gained invaluable knowledge from each of them,

participating in profound research discussions and sharing some of the most enjoyable

recollections. I am especially grateful to Chun-Ming Yang, Daniel Torres, Ernesto

Hernandez, James Bittler, Prashanth Chinthalapati, Safwan Mondal, Salvador Echeveste,

Subramanian Ramasamy for their unwavering support and cooperation.

Finally, I would like to thank my family. This journey would not have been possible

without the unwavering support of my brother and parents, who have always provided me

with guidance throughout my life. Their presence and encouragement have been

instrumental in making this journey possible. Thank you all for everything.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT .. ii

LIST OF TABLES ... v

LIST OF FIGURES ... vi

ABSTRACT ... viii

CHAPTER

1. INTRODUCTION .. 1

1.1 Context ... 1

1.2 Motivation .. 2

1.3 Objectives .. 4

1.4 Document Structure ... 5

2. LITERATURE REVIEW ... 6

2.1 Quadruped robots with manipulation capabilities 6

2.2 Synthetic Data Generation and Domain Randomization 11

2.3 Object Detection .. 12

3. METHODS ... 14

3.1 Kinematic Modelling ... 14

3.2 Trajectory Planning .. 19

3.3 Simulation with MuJoCo ... 21

3.4 Synthetic Image Generation ... 22

3.5 Object Detection .. 25

4. EXPERIMENTAL SETUP ... 28

4.1 Robotic Arm Control ... 28

4.2 Depth Camera .. 33

4.3 Computing Hardware ... 35

4.4 Unitree A1 Quadruped .. 39

4.5 Operational Modes .. 40

iv

5. RESULTS ... 43

5.1 Object Detection .. 43

5.2 Trajectory Comparison .. 45

5.3 Real-Time Grabbing Success ... 48

6. CONCLUSIONS ... 49

6.1 Key Contributions .. 50

6.2 Future Scope .. 50

6.3 Conclusion ... 51

BIBLIOGRAPHY .. 52

v

LIST OF TABLES

Table Page

1. DH parameters of WidowX 250s manipulator ... 16

vi

LIST OF FIGURES

Figure Page

1. Boston Dynamics' Spot .. 2

2. Examples of commercialized quadruped manipulators 8

3. Configuration of the Robot Arm .. 15

4. Combination of x and y axis as s-Axis .. 17

5. Plot of Trajectory of End Effector .. 19

6. MuJoCo Simulation of the Robotic Arm ... 21

7. 3D models created in SolidWorks .. 23

8. Collage of images generated .. 24

9. Annotation Verification using labelImg ... 25

10. Graphs showing Label Distribution and labels_correlogram 27

11. WidowX 250s Robot Arm .. 28

12. System Setup: Computer to Dynamixel Motor via U2D2 Microcontroller 29

13. Dynamixel Wizard 2.0 ... 30

14. Dynamixel Position Controller ... 32

15. Intel RealSense Depth Camera D435 ... 33

16. Depth Stream and Color Stream .. 34

17. Jetson Nano ... 37

18. U2D2 Microcontroller .. 38

19. Unitree A1 quadruped robot ... 40

20. Quadruped Manipulator Pick-and-Place System 42

vii

21. Graphs showing the training and validation loss over epochs, indicating

the model's learning progress ... 44

22. Screenshot of Implementing Object Detection .. 45

23. Position and Error Analysis for XYZ Coordinates - Trial 1 46

24. Position and Error Analysis for XYZ Coordinates - Trial 2 46

25. Position and Error Analysis for XYZ Coordinates - Trial 3 47

26. Position and Error Analysis for XYZ Coordinates - Trial 4 47

27. Position and Error Analysis for XYZ Coordinates - Trial 5 47

viii

ABSTRACT

The growing demand for versatile and efficient robotic systems in industries such as

logistics, manufacturing, and service robotics underscores the importance of advancing

mobile manipulation technologies. These systems must navigate and operate within

unstructured and dynamic environments, requiring seamless integration of locomotion,

manipulation, and perception capabilities. This thesis presents the development of a

dynamic pick-and-place system for a manipulator mounted on a quadruped robot. The

system employs real-time object detection using a custom-trained model, which leverages

synthetic images generated in Blender to enable precise identification and tracking of

objects. A key feature is the system's ability to perform real-time detection, sorting of

alphabets and numbers, and manipulation of multiple objects, showcasing its capability to

dynamically track and handle varying items. The manipulator uses inverse kinematics and

closed-loop control algorithms to adjust its movements in real-time, ensuring high

precision in complex and changing environments. To verify the system's performance, the

sorting results were compared between actual positions and motion capture (mocap) data,

while the number of successful real-time object tracking attempts was recorded. These

evaluations demonstrated that the system is robust and reliable in dynamic environments,

advancing mobile manipulation for automated tasks in logistics, manufacturing, and other

applications requiring high adaptability and precision. The combination of advanced

computer vision, robust control algorithms, and real-time adaptability positions this system

as a significant advancement in the field of mobile manipulation robotics.

1

CHAPTER 1

INTRODUCTION

This chapter introduces the work developed in this thesis, divided into four sections.

Section 1.1 provides context for the thesis topic and an overview of the current research

status. Section 1.2 explains the motivations behind defining the thesis. Section 1.3 outlines

the dissertation's objectives. Lastly, Section 1.4 details the dissertation's structure.

1.1 Context

The rapid evolution of robotics technology is driving significant advancements in various

industrial sectors, including logistics, manufacturing, and service robotics. As industries

seek to enhance efficiency and productivity, the demand for versatile and efficient robotic

systems has grown substantially. Among the most promising areas of development is

mobile manipulation, which combines locomotion and manipulation capabilities to enable

robots to navigate and operate within unstructured and dynamic environments. Mobile

manipulation technologies are essential for performing complex tasks that require the robot

to move and interact with objects simultaneously. These systems must seamlessly integrate

locomotion, manipulation, and perception capabilities to function effectively in real-world

settings. The ability to dynamically interact with and manipulate objects in real-time opens

up new possibilities for automation, making mobile manipulation a critical area of research

and development. The image in Figure 1 depicts Boston Dynamics' Spot robot equipped

with a manipulator arm, highlighting its ability to navigate and perform complex tasks in

industrial environments.

2

Figure 1. Boston Dynamics' Spot

Despite significant progress in the fields of manipulation and locomotion, mobile

manipulation remains a formidable challenge. Traditional robotic systems often focus on

either static manipulation or locomotion, lacking the coordination necessary to perform

tasks that require both. This lack of integration leads to issues such as compounding errors,

delays in decision-making, and a general lack of efficiency and precision. Addressing these

challenges requires innovative solutions that can bring together the various aspects of

mobile robotics into a cohesive and functional system.

1.2 Motivation

The integration of robotics into industry, defense, agriculture, and construction addresses

critical challenges through the combination of quadrupeds and robotic arms. In various

sectors, these advanced robotic systems offer tailored solutions to specific problems. The

manufacturing sector is currently challenged by labor shortages, the demand for higher

precision, and the need to meet increased production demands. Quadruped robots,

equipped with robotic arms, can navigate complex factory environments, carrying out tasks

such as assembly, quality inspection, and material handling. Their mobility allows them to

3

access areas difficult for fixed robots, and their arms provide the dexterity needed for

precise operations, improving efficiency and reducing downtime.

In defense operations, which involve high-risk tasks such as bomb disposal, reconnaissance

in hazardous areas, and logistical support in difficult terrains, quadruped robots with

robotic arms can perform bomb disposal, handle hazardous materials, and conduct

reconnaissance missions safely. Their ability to traverse rough terrains and their

manipulative capabilities make them ideal for transporting supplies, setting up equipment,

and providing real-time surveillance, thus enhancing soldier safety and mission

effectiveness.

The agriculture sector struggles with labor shortages, the need for sustainable practices,

and increasing food demand. Quadruped robots equipped with robotic arms can automate

labor-intensive tasks such as planting, weeding, and harvesting. Their mobility allows them

to move across uneven fields, while their arms can handle delicate crops, apply pesticides

precisely, and monitor plant health. This enhances productivity, reduces the reliance on

human labor, and promotes sustainable farming practices.

In the construction industry, quadruped robots are being deployed to address issues such

as worker safety, efficiency, and the complexity of modern building sites. These robots can

navigate uneven terrain, perform inspections, and assist in tasks like material placement

and site surveying. The integration of robotic arms further enables them to handle tools,

perform precise construction tasks, and reduce the risk of injuries on-site. This combination

of mobility and manipulation enhances overall productivity and safety in construction

projects.Quadruped robots have emerged as a promising solution to the limitations of

traditional wheeled or tracked robots. These robots possess remarkable agility and

4

adaptability, allowing them to traverse rough terrains with minimal impact on the land.

Equipping these robots with manipulation capabilities has the potential to greatly enhance

the operations and decrease the need for manual labor.

This thesis presents the development of a dynamic pick-and-place system for a manipulator

mounted on a Unitree A1 quadruped robot, incorporating advanced object detection using

a custom-trained YOLOv5s model, precise control algorithms, trajectory planning, and

real-time feedback mechanisms to enable efficient and accurate real-time object tracking

and sorting in dynamic and unstructured environments.

1.3 Objectives

Given the context and motivation outlined in the previous sections, the primary objective

of this dissertation is to develop a quadruped robot capable of teleoperated navigation and

precise task execution using an attached robotic arm. To tackle the earlier mentioned

challenges, this approach involves utilizing the Unitree A1 quadruped robot and

augmenting its capabilities with a Trossen Robotics WidowX 250S robotic arm. The

following steps will be pursued to achieve this goal:

1. Conduct a comprehensive literature review on quadruped manipulators and object

detection.

2. Develop a system to analyze and test the arm's behavior, kinematic configurations,

and object detection capabilities.

3. Implement control algorithms and trajectory planning.

4. Train and fine-tune the YOLOv5s object detection model using synthetic and real-

world datasets.

5

5. Construct, integrate, and validate the complete system, including teleoperation and

autonomous modes.

1.4 Document Structure

In addition to this introductory chapter, this document comprises seven additional chapters:

• Chapter 2 provides an in-depth review of existing literature on quadruped robots

equipped with manipulation capabilities and object detection technologies.

• Chapter 3 details the methodologies used in developing the system, including

control algorithms, trajectory planning, and synthetic data generation for object

detection training.

• Chapter 4 describes the hardware components and experimental setup, including

the integration of the Jetson Nano, U2D2 microcontroller, and Unitree A1

quadruped robot.

• Chapter 5 presents the results of the experiments, including object detection

accuracy, sorting efficiency, and a comparison of expected vs. actual trajectory

tracking for the manipulator.

• Chapter 6 discusses the main conclusions drawn from this research and suggests

future work to further enhance the system's capabilities.

6

CHAPTER 2

LITERATURE REVIEW

This section provides an overview of the existing research and technological advancements

in the field of mobile manipulation, object detection, and robotic control systems. Section

2.1 examines the current techniques used to enhance the ability of quadruped robots to

manipulate objects. Following that, Section 2.2 discusses the different approaches to

generating images and annotations for a custom dataset and Section 2.3 outlines various

methods for object detection.

2.1 Quadruped robots with manipulation capabilities

Legged robots outperform wheeled, tracked, and airborne robots when it comes to

navigating challenging terrain and other forms of unpredictable settings. Equipping these

robots with manipulation capabilities has the potential to greatly enhance the operations

and decrease the need for manual labor. Quadruped robots, popularized by companies such

as Boston Dynamics and ANYbotics, have garnered significant attention due to their

unique capabilities and versatility across various real-world applications. Unlike wheeled

or tracked robots, quadrupeds excel at navigating rough and unstructured terrains, thanks

to their ability to climb, step, and crawl. Equipped with sophisticated sensors like high-

definition cameras, thermal cameras, lidars, and gas sensors, these robots can

autonomously navigate and detect objects, making them suitable for numerous practical

applications. One of the most documented uses of quadruped robots is in remote inspection,

where their capability to traverse difficult terrains allows them to inspect hazardous or

repetitive environments, such as buildings for gas leaks and nuclear sites for contamination.

In the construction industry, quadruped robots are used for oversight and surveying,

7

moving across unpredictable and multi-leveled work sites, capturing images, and building

3D maps to assess construction progress and maintain project schedules. They also address

the limitations of traditional wheeled robots in delivery applications by transporting

materials across unstructured terrains, reducing the risk of injury and increasing operational

efficiency. Security applications for quadruped robots include acting as automated security

guards, patrolling buildings and outdoor areas, and alerting authorities to intruders. In law

enforcement, they are utilized for tasks such as bomb disposal and managing dangerous

situations like hostage scenarios, reducing risk to personnel. Additionally, quadruped

robots are highly effective in search and rescue operations, especially in the aftermath of

natural disasters, where they navigate debris, provide situational awareness, and map

affected areas, accelerating rescue efforts and saving lives. Despite their advantages,

challenges such as battery life and object detection in complex environments remain. The

autonomy systems of quadruped robots are advanced but still require human oversight,

with remote teleoperation being crucial for their operational and economic viability.

Effective robot operations platforms enable one human to manage multiple robots,

improving cost efficiency and operational scalability. This literature review highlights the

diverse applications of quadruped robots in inspection, construction, delivery, security, law

enforcement, and search and rescue, emphasizing the ongoing advancements in autonomy

and teleoperation systems to overcome current limitations and enhance their effectiveness

across various sectors [1].

8

Figure 2. Examples of commercialized quadruped manipulators

Several firms that market quadruped robots have initiated the creation of robotic arm

attachments to incorporate with their devices. For instance, Boston Dynamics has

developed an arm add-on for their well-known Spot robot. This arm enhances Spot's

capabilities, allowing it to perform a variety of tasks such as opening doors, picking up

objects, and manipulating tools, thereby expanding its utility in numerous applications

from industrial inspections to household chores (Figure 2a). Similarly, Unitree has

introduced the GO2 robot equipped with a versatile arm. The GO2's arm enables it to

handle complex manipulation tasks, such as precise assembly, material handling, and

interaction with various objects in unstructured environments, making it a valuable asset

in fields like construction, logistics, and research (Figure 2b). Additionally, DeepRobotics

has developed the Jueying X20, which features an advanced robotic arm designed for

intricate tasks. The Jueying X20's arm can perform delicate operations, such as electronic

component handling, intricate repairs, and detailed inspections, further broadening the

scope of what quadruped robots can achieve in specialized industrial settings (Figure 2c).

9

Sereinig et al. [2] provide a comprehensive review of the challenges and advancements in

mobile manipulation, particularly focusing on the integration of manipulator arms with

mobile platforms for enhanced flexibility and functionality. The paper discusses various

systems and their applications in unstructured environments, highlighting the importance

of robust system design for tasks such as disaster response and industrial automation. The

authors examine different robotic platforms, including tracked and omnidirectional

vehicles, and their respective control mechanisms to navigate and manipulate objects in

complex settings. They also explore the development and deployment of mobile rescue

robots, such as T.R.U.D.I., and industrial manipulators, such as the KAIROS robot,

emphasizing the need for precise control and motion planning to ensure effective operation

in diverse scenarios. The review underscores the potential of mobile manipulators to

revolutionize fields like search and rescue, agriculture, and manufacturing through

advanced robotics and control technologies.

Xin et al. [3] explores advanced control strategies for quadruped robots equipped with

robotic arms, focusing on the interaction between the arm and the quadrupedal platform

using a whole-body controller (WBC). They present an optimization-based dynamic WBC

to manage both the robot's stability and its manipulation capabilities simultaneously. This

controller enables the robot to execute multiple tasks by utilizing the system's redundancy,

ensuring that both locomotion and manipulation functionalities are maintained effectively.

Ulloa et al. [4] present a mixed-reality tele-operation method for high-level control of

legged-manipulator robots, focusing on enhancing operator control and situational

awareness using devices like Hololens. The proposed method optimizes the robot's

workspace in Matlab and simulates dynamic interactions in Gazebo. The study

10

demonstrates significant improvements in operator efficiency and decision-making during

search and rescue operations compared to conventional interfaces.

Fu et al. [5] propose a unified policy for whole-body control of legged robots with

manipulators using reinforcement learning (RL). This approach addresses the simultaneous

control of locomotion and manipulation, involving high degrees of freedom and dynamic

interactions between the robot's legs and arm. The key contributions include a single

curriculum parameter that mixes advantage functions for arm (manipulation) and leg

(locomotion) actions to streamline learning, and Regularized Online Adaptation to bridge

the Sim-to-Real gap by predicting environmental extrinsics from onboard observations.

This method was validated on a Unitree Go1 quadruped robot with an Interbotix WidowX

250s arm, showing superior performance in various metrics compared to separate and

uncoordinated policies, thus enhancing the robot's efficiency and stability during tasks.

Ferrolho et al. [6] present a robust loco-manipulation framework for quadruped robots

equipped with arms, focusing on enhancing motion robustness against disturbances. The

study proposes an optimization-based approach that integrates the dynamics of the

manipulated object into the robot's centroidal dynamics and full kinematics, allowing for

effective exploitation of base-limb coupling. The framework emphasizes proactive

robustness by incorporating uncertainties at the planning stage, enabling the generation of

robust trajectories that withstand external forces. This work extends previous research by

introducing a bilevel trajectory optimization problem to maximize robustness during

motion with contact changes, demonstrating significant improvements over traditional

reactive robustness methods.

11

Gai et al. [7] explores continual reinforcement learning (RL) for quadruped robot

locomotion, addressing the challenge of maintaining performance across sequential tasks

while avoiding catastrophic forgetting and loss of plasticity. The proposed method employs

the Piggyback algorithm to protect critical parameters for each task and reinitializes unused

parameters to enhance plasticity. The approach encourages policy network exploration by

maximizing entropy. Experiments validate the method's effectiveness, demonstrating

improved stability and adaptability compared to traditional continual learning algorithms.

This research offers significant advancements in enabling quadruped robots to learn

multiple tasks continuously in varying environments.

1.2 Synthetic Data Generation and Domain Randomization

Tremblay et al. [8] explore the use of synthetic data to train deep neural networks, aiming

to bridge the reality gap through domain randomization. The study proposes generating

diverse, randomized synthetic datasets to expose neural networks to a wide range of

variations during training. This approach enhances the robustness and generalization

capabilities of models when applied to real-world tasks. The authors demonstrate the

effectiveness of this method by training object detection models on synthetic data and

evaluating their performance on real-world datasets, showing significant improvements.

The paper highlights the potential of synthetic data generation as a cost-effective and

scalable solution for training deep learning models in various applications.

Borrego et al. [9] present a study on applying domain randomization to synthetic data for

object category detection. The authors address the challenge of creating robust object

detection models by leveraging synthetic datasets with varied and algorithmically

generated patterns. This approach aims to bridge the gap between simulated and real-world

12

domains, making the models perceive the transition as a minor disturbance. The study uses

a Single-Shot Detector (SSD) as the base object detector, enhanced with MobileNet for

feature extraction. The paper details optimizations to the Gazebo simulation environment,

which significantly improve scene composition and texture generation performance. The

experiments demonstrate the impact of different synthetic texture patterns on detection

accuracy, and the results highlight the effectiveness of domain randomization in enhancing

model robustness across multiple classes.

Tobin et al. [10] explore the use of domain randomization for training deep neural

networks to bridge the reality gap between simulated environments and real-world

applications. By randomizing the rendering parameters in simulations, the authors create a

wide variety of training scenarios, enhancing the model's ability to generalize to real-world

data. This technique allows neural networks trained on synthetic data to perform effectively

in real-world tasks, demonstrating significant potential for applications in robotics.

1.3 Object Detection

YOLOv5 is an open-source real-time object detection system developed by Ultralytics.

YOLOv5 leverages the advancements in the YOLO (You Only Look Once) family of

models, focusing on speed and accuracy for object detection tasks. This implementation is

highly efficient and user-friendly, featuring significant improvements in performance and

ease of use compared to its predecessors. The repository provides pre-trained models,

training scripts, and deployment solutions, making it accessible for various applications in

computer vision. [11]

Ren et al. [12] introduce Faster R-CNN, a groundbreaking object detection framework that

integrates Region Proposal Networks (RPNs) with Fast R-CNN. The RPNs generate high-

13

quality region proposals, which are then refined by Fast R-CNN for object detection. This

architecture significantly improves detection speed and accuracy by sharing convolutional

features. The authors demonstrate that Faster R-CNN outperforms previous state-of-the-

art methods on multiple benchmarks, establishing it as a robust solution for real-time object

detection tasks.

Redmon and Farhadi [13] present YOLOv3, an incremental improvement to the YOLO

object detection framework. YOLOv3 employs a deeper network, Darknet-53, and

introduces multi-scale predictions to enhance detection accuracy, particularly for small

objects. It also uses logistic regression for class prediction and binary cross-entropy loss

for multi-label classification. The model achieves state-of-the-art performance on the

COCO dataset, balancing speed and accuracy effectively.

Liu et al. [14] introduce SSD (Single Shot MultiBox Detector), a method for object

detection that eliminates proposal generation and subsequent pixel or feature resampling

stages. SSD discretizes the output space of bounding boxes into a set of default boxes over

different aspect ratios and scales per feature map location. During prediction, SSD scores

the presence of each object category in each default box and adjusts the box to better match

the object shape. The method achieves competitive accuracy with significantly faster

speed.

14

CHAPTER 3

METHODS

This section details the various methodologies employed in this research. Section 3.1

describes the kinematic modeling of the robotic arm, outlining the mathematical

formulations and transformations used. Section 3.2 focuses on trajectory planning,

discussing the algorithms and methods for generating optimal paths for the robotic arm. In

Section 3.3, the simulation with MuJoCo is elaborated, highlighting the creation and

benefits of the MuJoCo model for pre-implementation testing. Section 3.4 covers synthetic

image generation, explaining the process of creating and annotating synthetic images for

training object detection models. Finally, Section 3.5 discusses object detection method

used to enable the robot to identify and locate objects within its environment.

3.1 Kinematic Modelling

Kinematics is a branch of mechanics focused on studying the motion of bodies and

structures without considering the forces causing them. In robotics, kinematics analysis

focuses on the relationship between the robot arm's links and joints with its position,

orientation, and acceleration. This analysis employs geometry to study the movement of

multi-DoF kinematic chains which is crucial for planning the robot arm's trajectory.

Kinematics is divided into two main types: forward kinematics, which defines the position

and orientation of the robot based on its joint parameters, and inverse kinematics, which

determines the necessary joint parameters to achieve a desired position and orientation. For

this research, the Widow X 250S manipulator by Trossen Robotics is utilized. Although

this robotic arm is equipped with six degrees of freedom (DOF), only four DOF are

employed for the purposes of this study. This simplification is made to reduce the

15

complexity of control and programming, while still ensuring that the manipulator can

effectively perform the required tasks. [15, 16]

3.1.1 Forward kinematics. Forward kinematics involves using the kinematic equations

of a robotic arm to determine the position and orientation of the end-effector based on

specified joint angles. One of the most common methods used in forward kinematics is the

Denavit-Hartenberg (DH) method [17], which represents the relationship between the joint

coordinates of two links. Compared to inverse kinematics, which calculates the joint

parameters required to achieve a desired end-effector position and is generally more

complex, forward kinematics provides a simpler and more straightforward solution.

Figure 3. Configuration of the Robot Arm

The dimensions and Denavit-Hartenberg (DH) frames of the WidowX 250s are illustrated

in Figure 1. The DH convention is a popular convention to represent the kinematics of

robot manipulators. In the Denavit-Hartenberg (DH) convention, link notation is used to

describe the spatial relationships between connected joints. The parameters a, α, d, and θ

16

follow the standard Denavit-Hartenberg (DH) convention, where 𝜃1, 𝜃2, 𝜃3, and 𝜃4

represent the joint revolute angles. The notation 𝜃𝑖,0 refers to the angle of the 𝑖𝑡ℎ joint in

its initial configuration, as depicted in Figure 3. The frame associated with each joint

defines its position and geometric relationship relative to the adjacent joint. It is given by:

𝐻𝑖
𝑖−1 = 𝐻𝑧(𝜃𝑖) 𝐻𝑧(𝑑𝑖) 𝐻𝑥(𝑎𝑖) 𝐻𝑥(𝛼𝑖) (3.1)

Where,

1. 𝑎𝑖 is called link length which is the distance between 𝑧𝑖 and 𝑧𝑖−1 along 𝑥𝑖.

2. 𝛼𝑖 is called link twist which is the angle between 𝑧𝑖 and 𝑧𝑖−1 along 𝑥𝑖.

3. 𝑑𝑖 is called link offset and the distance between 𝑥𝑖−1 and 𝑥𝑖 along 𝑧𝑖−1.

4. 𝜃𝑖 is called joint angle which is the angle between 𝑥𝑖−1 and 𝑥𝑖 along 𝑧𝑖−1.

DH parameters of robot are given in Table 1.

Table 1. DH parameters of WidowX 250s manipulator.

Link 𝑎𝑖 (𝑚) 𝛼𝑖 (°) 𝑑𝑖 (𝑚) 𝜃𝑖 (°)

1 0 90 0.11025 𝜃1

2 0.25495 0 0 𝜃2

3 0.25 0 0 𝜃3

4 0.17415 0 0 𝜃4

Once the D-H parameters are determined, they are incorporated into the transformation

matrix. Given that 4 DOF are used, the resulting linked matrix is 𝐻0
4. The equations for the

transformation matrix can be formulated as follows:

𝐻𝑖
𝑖−1 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖𝑐𝛼𝑖 𝑠𝜃𝑖𝑠𝛼𝑖 𝑎𝑖𝑐𝜃𝑖

𝑠𝜃𝑖 𝑐𝜃𝑖𝑐𝛼𝑖 −𝑐𝜃𝑖𝑠𝛼𝑖 𝑎𝑖𝑠𝜃𝑖

0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖

0 0 0 1

] (3.2)

17

Where 𝑠𝜃𝑖 = sin 𝜃𝑖, 𝑐𝜃𝑖 = cos 𝜃𝑖, 𝑠𝛼𝑖 = sin 𝛼𝑖 , 𝑐𝛼𝑖 = cos 𝛼𝑖.

The position and orientation of the end-effector is found using the formula:

𝐻4
0 = 𝐻1

0 𝐻2
1 𝐻3

2 𝐻4
3 = [𝑅4

0 𝑑4
0

0 1
] (3.3)

The position of the end-effector is 𝑑4
0 and the orientation is 𝑅4

0.

3.1.2 Inverse kinematics. Inverse Kinematics (IK) is used to determine the necessary

joint angles for the robotic arm to achieve a specified position and orientation of its end-

effector. In this work, a geometric approach was employed to solve the inverse kinematics

for the robotic arm [18, 19]. Each joint angle can be calculated by assuming the position

given. It is assumed that 𝜃234 = 𝜃2 + 𝜃3 + 𝜃4. To keep the end-effector parallel to the

ground, 𝜃234 is considered to be 0. 𝜃1 can be calculates as:

𝜃1 = tan−1 (
𝑝𝑦

𝑝𝑥
) (3.4)

The angle for 𝜃1 ranges from -180° and 180°.

Figure 4. Combination of x and y axis as s-Axis

The x-coordinate and y-coordinate of the end-effector are combined into the s-coordinate

using the Pythagorean theorem, as follows:

18

𝑝𝑠
2 = 𝑝𝑥

2 + 𝑝𝑦
2 (3.5)

𝑝𝑠 = √𝑝𝑥
2 + 𝑝𝑦

2 (3.6)

The 𝑟 and 𝑧 coordinates for joint 3 can be calculated as follows:

𝑠3 = 𝑝𝑟 (3.7)

𝑧3 = 𝑝𝑧 − 𝑑1 (3.8)

𝜃2, 𝜃3, and 𝜃4 can be calculated using the following equations:

𝑠2 = 𝑠3 − 𝑎4 cos 𝜃234 (3.9)

𝑧2 = 𝑧3 − 𝑎4 sin 𝜃234 (3.10)

cos 𝜃3 = (
𝑠2

2 + 𝑧2
2 − (𝑎2

2 + 𝑎3
2)

2𝑎2𝑎3
) (3.11)

𝜃3 = ± cos−1 (
𝑠2

2 + 𝑧2
2 − (𝑎2

2 + 𝑎3
2)

2𝑎2𝑎3
) (3.12)

cos 𝜃2 = (
(𝑎2 + 𝑎3 cos 𝜃3)𝑠2 + (𝑎3 sin 𝜃3)𝑧2

𝑟2
2 + 𝑧2

2
) (3.13)

sin 𝜃2 = (
(𝑎2 + 𝑎3 cos 𝜃3)𝑧2 + (𝑎3 sin 𝜃3)𝑠2

𝑟2
2 + 𝑧2

2
) (3.14)

𝜃2 = tan−1 (
sin 𝜃2

cos 𝜃2
) (3.15)

𝜃4 = 𝜃234 − (𝜃2 + 𝜃3) (3.16)

Based on the configuration of the robot arm, the angle range for 𝜃2 is adjusted to between

0° and 180°, and the angle range for 𝜃3 is adjusted to between -180° and 0° and angle range

for 𝜃4 is between -90° and 90°.

19

3.2 Trajectory Planning

Trajectory planning is a crucial aspect of robotic arm control that ensures smooth and

efficient movement from an initial position to a target position. In this project, trajectory

planning involves calculating the optimal path for the robotic arm to follow, considering

constraints such as joint limits, and the need for smooth motions[20]. This section outlines

the methods and algorithms used for trajectory planning in the context of the WidowX

robotic arm. The initial position of the robotic arm is determined based on its current joint

angles. The target position is specified as a set of 3D coordinates obtained from the object

detection and 3D coordinate transformation process. Intermediate waypoints are generated

between the initial and target positions to guide the robotic arm along a smooth path. These

waypoints ensure that the arm moves in a controlled manner, avoiding sudden changes in

direction or speed. Once the trajectory is planned, the next step is to execute the trajectory

by controlling the robotic arm's joints. For each waypoint in the planned trajectory, the

inverse kinematics (IK) algorithm calculates the required joint angles to position the end

effector at the specified 3D coordinates.

Figure 5. Plot of Trajectory of End Effector

20

To ensure smooth and controlled movements, velocity and acceleration profiles are applied

to the controller. These profiles define the maximum speed and acceleration for each joint,

preventing abrupt changes in motion and reducing wear on the motors. The calculated joint

angles are sent as commands to the motors of the robotic arm. During trajectory execution,

the system continuously monitors the position and status of the robotic arm. Real-time

control is essential for the effective operation of the WidowX robotic arm, ensuring that it

can respond dynamically to changes in its environment and perform tasks with high

precision. The Intel RealSense depth camera provides real-time depth and RGB data, which

are crucial for detecting objects and determining their spatial coordinates. To smooth the

trajectory and reduce noise in the detected positions, a low-pass filter is applied to the

coordinates. A low-pass filter is a signal processing technique used to allow signals with

a frequency lower than a certain cutoff frequency to pass through while attenuating signals

with frequencies higher than the cutoff frequency. The equation used for the low-pass filter

in the code is:

𝑐𝑜𝑜𝑟𝑑𝑜𝑢𝑡𝑝𝑢𝑡 = 𝛼 ∙ 𝑐𝑜𝑜𝑟𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + (1 − 𝛼) ∙ 𝑐𝑜𝑜𝑟𝑑𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (3.17)

where:

• 𝑐𝑜𝑜𝑟𝑑𝑜𝑢𝑡𝑝𝑢𝑡 is the filtered output at the current step.

• 𝑐𝑜𝑜𝑟𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the new input value (the latest 3D coordinate) at the current step.

• 𝑐𝑜𝑜𝑟𝑑𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 is the filtered output from the previous step.

• α is the smoothing factor, set to 0.1 in the code, which provides a balance between

responsiveness and smoothing. A higher α would result in a faster response but less

smoothing.

21

It helps to smooth out the trajectory and reduce noise in the detected positions, ensuring

stable and precise movements. This helps in stabilizing the arm's movement by filtering

out sudden changes in the detected coordinates, leading to more accurate and stable control.

Real-time monitoring detects any deviations from the planned path, allowing the system to

adjust joint commands and correct the arm's position promptly.

3.3 Simulation with MuJoCo

To validate the kinematic model and ensure the proper functioning of the robotic arm

before implementing it on physical hardware, the MuJoCo (Multi-Joint dynamics with

Contact) physics engine was employed. MuJoCo is a high-performance simulation

framework that allows for the precise modeling of complex, articulated structures and their

interactions with the environment.

Figure 6. MuJoCo Simulation of the Robotic Arm

Various experiments were conducted in MuJoCo to validate the kinematic model. The

simulated end-effector positions were compared with theoretical calculations for different

22

joint angles, ensuring the accuracy of the forward kinematics model. The inverse

kinematics algorithm was tested by setting target end-effector positions and verifying that

the computed joint angles achieved these positions in the simulation.

3.4 Synthetic Image Generation

Synthetic image generation is a crucial technique used in this project to create a robust

dataset for training the YOLOv5s model. By generating synthetic images, we can produce

a large and diverse set of training data, which enhances the model's ability to detect and

recognize objects in various conditions. This approach is particularly useful when real-

world data is limited or difficult to obtain. Generating synthetic images is significantly

more cost-effective than collecting and annotating real-world data, especially when large

datasets are required. The ability to control every aspect of the synthetic environment

allows for the creation of specific scenarios that might be rare or difficult to capture in real

life. Synthetic data can be easily augmented to include variations in objects and

environments, enhancing the diversity of the training set and improving the model’s

performance.

3.4.1 3D Modeling and Scene Creation. The initial 3D models of the objects were

created using SolidWorks. These models accurately represent the objects that the robotic

arm will interact with, including their shapes, textures, and colors. The 3D models created

in SolidWorks were exported as STL files, which were then imported into Blender for

further processing and rendering. This workflow ensures that the models maintain high

fidelity and accuracy. The objects 3D printed for this project include the letters "U" and

"N" and the numbers "0" and "5". These printed objects were used for real-world validation

of the model's detection capabilities.

23

Figure 7. 3D models created in SolidWorks

3.4.2 Image and Annotation Generation. Blender is an open-source 3D modeling and

rendering software, used to create detailed and realistic 3D models of the objects that the

robotic arm will interact with. These models are crafted to resemble their real-world

counterparts including a range of backgrounds, lighting conditions, and object orientations,

ensuring that the training data covers a wide array of scenarios. Alongside the synthetic

images, corresponding annotations are generated automatically. These annotations include

bounding boxes and class labels for each object in the image, formatted according to the

YOLOv5 requirements. Blender and additional scripts are used to automate the annotation

process, ensuring precision and uniformity across the entire dataset. Using Blender’s

powerful rendering engine, the scenes are rendered to produce high-quality images. The

engine is capable of simulating realistic lighting, textures, and materials.

24

Figure 8. Collage of images generated

The rendered images, along with their annotations, are compiled into a dataset ready for

training the YOLOv5 model. This dataset forms the foundation for the training process.

The generated annotations are verified using a Python library called LabelImg. This tool

allows for manual review and correction of the annotations, ensuring their accuracy and

reliability.

25

Figure 9. Annotation Verification using labelImg

3.5 Object Detection

Object detection is a critical component of this project, enabling the robotic arm to identify

and locate objects within its operational environment. YOLOv5 is a state-of-the-art object

detection model. It was employed for this task due to its high accuracy and real-time

performance capabilities. This section details the process of training and utilizing the

YOLOv5s model for object detection in the context of the robotic arm's operations.

YOLOv5s (You Only Look Once, version 5, small) is a version of the YOLO object

detection model optimized for speed and efficiency, making it suitable for real-time

applications. YOLOv5s is capable of detecting multiple objects within an image and

providing their bounding boxes and class labels.

3.5.1 Dataset Preparation. As described earlier, a large dataset of synthetic images was

generated using Blender. This dataset includes various scenarios with the target objects in

different positions, scales, and lighting conditions. The objects used for training the

YOLOv5s model include the letters "U" and "N" and the numbers "0" and "5". These

26

objects were classified into four distinct classes: 0_number, 5_number, N_alphabet, and

U_alphabet. Automatic annotations were generated alongside the synthetic images,

detailing the bounding boxes and class labels for each object. These annotations were

verified using the labelImg tool to ensure accuracy. The synthetic dataset consisted of 8,000

images. The dataset was split into 80% for training (6,400 images) and 20% for validation

(1,600 images). This split allows for effective training while maintaining a robust

validation set to evaluate the model's performance.

3.5.2 Data Augmentation. Images were randomly rotated to simulate different viewing

angles and orientations of the objects. This helps the model learn to recognize objects

regardless of their orientation. Random noise was added to the images to make the model

robust against varying image qualities and sensor noise. This ensures the model can

perform well even with noisy input data. Gaussian blur was applied to some images to

simulate out-of-focus conditions. This helps the model learn to detect objects even when

the image quality is not optimal.

3.5.3 Model Training. The YOLOv5s model was trained using the synthetic dataset to

generate custom weights tailored to the specific objects of interest. Data augmentation

techniques, including random scaling, flipping, and color adjustments, were applied to

enhance the model's robustness. The training was conducted with an image size of 640x480

pixels and ran for 100 epochs to ensure thorough learning.

3.5.4 Validation and Testing. A separate validation set, comprising both synthetic and

real-world images, was used to evaluate the model's performance during training. This

helped in fine-tuning the model and preventing overfitting. After training, the model was

27

tested on a diverse set of real-world images to assess its accuracy and generalization

capabilities.

The dataset used for training the model comprises four distinct classes: O_number,

5_number, N_alphabet, and U_alphabet. The distribution of these labels is depicted in

Figure 10. Each class represents a unique category that the model is trained to recognize.

The bar chart illustrates the number of instances for each class, showing that the dataset is

relatively balanced, with each class having a similar number of samples. This balance is

crucial for ensuring that the model does not become biased towards any particular class

during training. Additionally, understanding the distribution of these labels helps in

assessing the potential challenges in detection tasks, such as class imbalance, which can

significantly affect the model's performance.

Figure 10. Graphs showing Label Distribution (left) and labels_correlogram (right)

28

CHAPTER 4

EXPERIMENTAL SETUP

4.1 Robotic Arm Control

Figure 11. WidowX 250s Robot Arm

To control the WidowX robotic arm, the Dynamixel SDK was employed, which facilitated

direct communication with the arm's motors. The control implementation included several

critical steps to ensure precise, reliable, and safe operation of the robotic arm in performing

complex tasks. The following sections detail the steps and techniques used in the control

implementation. To utilize the DYNAMIXEL SDK for controlling the robotic arm, it is

essential to properly set up both the Controller and the DYNAMIXEL motors as shown in

the Figure 13. The U2D2 controller was used as an interface between the PC and the

DYNAMIXEL motors of the robotic arm. The U2D2 was connected to the PC via a USB

29

cable, and a separate power supply was connected to ensure the motors received adequate

power. The communication port on the U2D2 was linked to the DYNAMIXEL motors

using a dedicated cable. This setup provided a robust communication channel for

controlling the motors.

Figure 12. System Setup: Computer to Dynamixel Motor via U2D2 Microcontroller

The WidowX robotic arm utilizes a combination of seven XM430-W350 and two XL430-

W250 DYNAMIXEL motors. Both types of motors support the DYNAMIXEL Protocol

2.0, ensuring reliable communication and seamless integration with the control system.

The combination of these motors in the WidowX arm allows for smooth and controlled

movements, enabling the arm to perform intricate pick-and-place operations efficiently.

Additionally, the arm's design incorporates "shadow motors" at the shoulder and elbow

joints to enhance stability and precision. These shadow motors mirror the movements of

the primary motors, providing additional support and reducing the load on the primary

motors. This setup allows for smoother and more controlled movements, particularly

during complex tasks that require high accuracy and stability. DYNAMIXEL Wizard 2.0

is a comprehensive software tool designed to facilitate the configuration, monitoring, and

maintenance of DYNAMIXEL motors. It provides a user-friendly interface that allows

users to perform various tasks such as firmware updates, parameter adjustments, and real-

30

time diagnostics. The tool is essential for ensuring that DYNAMIXEL motors operate at

their optimal performance and can be easily integrated into robotic systems. Figure 14

below shows the DYNAMIXEL Wizard 2.0 interface, displaying detailed information

about the connected DYNAMIXEL motors, including model numbers, firmware versions,

operating modes, and various configuration parameters. [21, 22]

Figure 13. Dynamixel Wizard 2.0

4.1.1 Port Initialization. The communication port to which the robotic arm was

connected was initialized and configured to establish a stable connection. This step

involved opening the port using the PortHandler provided by the Dynamixel SDK and

setting the baud rate to 1,000,000 bps. This high baud rate was crucial for ensuring reliable

and fast data transmission between the control software and the motors, minimizing latency

and communication errors.

4.1.2 Velocity and Acceleration Profiles. The velocity and acceleration profiles for the

motors were configured to ensure smooth and controlled movements. Setting these profiles

31

involved defining the maximum speed (velocity) and the rate of change of speed

(acceleration) for each motor. These parameters were crucial for achieving precise control

during pick-and-place operations, reducing the risk of overshooting or jerky movements.

4.1.3 Position Control. Position control of the WidowX robotic arm is a critical aspect

of ensuring precise and reliable movement, particularly for tasks such as pick-and-place

operations. The control process involves several steps to convert joint angle commands

into actual motor positions, taking into account the specific characteristics and

requirements of the DYNAMIXEL motors used. The joint angles required for the

manipulator's movements are read from a predefined text file. These angles are specified

in degrees, representing the desired positions for each joint of the robotic arm. To control

the motors accurately, these angles must be converted into the motor's native units,

typically encoder counts. The conversion formula used is:

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (
4096

2𝜋
) × (

𝑎𝑛𝑔𝑙𝑒 × 𝜋

180
) + 𝜋 (4.1)

This formula converts the angle from degrees to radians and then scales it to the range of

the motor's encoder counts. The added π ensures that the position value is correctly aligned

with the motor's zero position.

Figure 15 is the block diagram describing the position controller in Position Control Mode.

When a DYNAMIXEL motor receives an instruction from the user, it undergoes a detailed

process to ensure precise control of the horn (output shaft). The user command is

transmitted via the DYNAMIXEL bus and registered as the Goal Position. This Goal

Position is then converted into a desired position trajectory and a desired velocity trajectory

using the Profile Velocity and Profile Acceleration settings. These trajectories are stored

32

at specific addresses for position and velocity. The Feedforward and PID controllers then

calculate the Pulse Width Modulation (PWM) output required to achieve these trajectories.

The PID control utilizes proportional, integral, and derivative gains to make necessary

adjustments for accurate positioning and movement.

To ensure safe operation, the calculated PWM output is limited by the Goal PWM setting,

determining the final PWM value applied to the motor through an inverter. This action

drives the horn of the DYNAMIXEL motor. Throughout this process, the motor

continuously monitors and stores the Present Position, Present Velocity, Present PWM,

and Present Current, providing feedback for real-time adjustments and ensuring reliable

performance. This comprehensive control mechanism enables the DYNAMIXEL motor to

execute user commands with high precision and reliability, crucial for tasks requiring

accurate mechanical movements.

Figure 14. Dynamixel Position Controller

33

4.2 Depth Camera

Figure 15. Intel RealSense Depth Camera D435

The depth camera used is the Intel RealSense depth camera, which is a critical component

for providing high-resolution depth and RGB data. This enables precise object detection

and spatial understanding, essential for the effective operation of the robotic arm. The Intel

RealSense depth camera is mounted on the end effector of the robotic arm. This positioning

allows the camera to capture a clear and unobstructed view of the workspace, ensuring

accurate data collection for object detection and manipulation tasks. Once the camera is

calibrated, the transformation algorithms convert 2D image coordinates and depth

information from the camera into 3D world coordinates. The primary transformation

involves converting pixel coordinates (u, v) and depth (d) into 3D coordinates (X, Y, Z)

using the intrinsic parameters. The formula for this conversion is:

𝑋 = (𝑢 − 𝑐𝑥) ∙
𝑑

𝑓𝑥
 (4.2)

𝑌 = (𝑣 − 𝑐𝑥𝑦) ∙
𝑑

𝑓𝑦
 (4.3)

𝑍 = 𝑑 (4.4)

34

where (𝑐𝑥, 𝑐𝑦) are the coordinates of the principal point, and (𝑓𝑥, 𝑓𝑦) are the focal lengths

in the x and y directions. After obtaining the 3D coordinates in the camera frame, the next

step is to transform these coordinates into the robot's operational frame. This involves

applying the extrinsic transformation matrix obtained during calibration. The

transformation matrix T can be represented as:

𝑃𝑟𝑜𝑏𝑜𝑡 = 𝑇 ∙ 𝑃𝑐𝑎𝑚𝑒𝑟𝑎 (4.5)

where 𝑃𝑐𝑎𝑚𝑒𝑟𝑎 is the 3D point in the camera coordinate system, and 𝑃𝑟𝑜𝑏𝑜𝑡 is the

corresponding point in the robot's coordinate system. To ensure accurate mapping between

the depth and RGB data, the depth data must be aligned with the RGB images. This

alignment corrects for any discrepancies between the depth and color streams, providing a

coherent view of the environment. The Intel RealSense SDK includes tools for aligning the

depth to the color frame. This process involves matching the depth data pixels to their

corresponding pixels in the RGB image, ensuring both datasets are synchronized spatially.

Figure 16. Depth Stream (left) and Color Stream (right)

35

The transformed 3D coordinates are sent to the inverse kinematics (IK) module of the

robotic arm. The IK module calculates the required joint angles to position the end effector

at the specified 3D coordinates. These calculated joint angles are then used to control the

motors of the robotic arm, enabling precise and accurate movements to perform tasks such

as pick-and-place operations.

4.3 Computing Hardware

The computing hardware utilized in this project is crucial for managing the computational

demands of real-time object detection, 3D coordinate transformation, and robotic arm

control. The key components of the computing hardware setup include the NVIDIA Jetson

Nano and the DYNAMIXEL U2D2 microcontroller. These components work in

conjunction to ensure efficient and reliable operation of the robotic arm.

4.3.1 NVIDIA Jetson Nano. The NVIDIA Jetson Nano is a compact, powerful

computing device designed specifically for AI and robotics applications. It provides the

necessary computational power to run complex AI models and manage real-time data

processing tasks, making it ideal for this project. The Jetson Nano is capable of handling

intensive machine learning and computer vision workloads, thanks to its integrated GPU

and CPU architecture. The Jetson Nano draws power from the Unitree A1 quadruped robot

at 19V 2A, which is stepped down to 5V 4A using a buck converter. This ensures that the

Jetson Nano receives a stable power supply necessary for its operations.

Specifications:

• CPU: Quad-core ARM® Cortex®-A57 MPCore processor, which handles various

tasks, including reading data from the camera, preprocessing images, and running

36

control algorithms for the robotic arm. Its multi-core architecture allows for parallel

processing, ensuring smooth and efficient operation.

• GPU: 128-core NVIDIA Maxwell™ architecture GPU, accelerates the YOLOv5s

object detection model, enabling real-time inference on the RGB frames captured

by the Intel RealSense camera. The parallel processing capabilities of the GPU

ensure fast and accurate object detection, which is crucial for dynamic

environments.

• Memory: 4GB 64-bit LPDDR4 at 25.6GB/s, is used to load and run the machine

learning models, store intermediate data during processing, and manage the real-

time data streams from the camera. The 4 GB capacity ensures that the system can

handle large datasets and complex models without significant lag.

• Connectivity: Various I/O options, include USB 3.0 and USB 2.0 ports, HDMI

output, and Gigabit Ethernet. The USB port connects to the Intel RealSense camera.

Gigabit Ethernet provides a fast network connection for remote monitoring and

updates.

• Operating System: Linux-based JetPack SDK provides the necessary software tools

and libraries, including CUDA, cuDNN, and TensorRT, for optimized AI

processing. It also supports popular AI frameworks like TensorFlow and PyTorch,

facilitating easy development and deployment of machine learning models.

37

Figure 17. Jetson Nano

The Jetson Nano runs the YOLOv5s object detection model, utilizing its GPU to perform

accelerated inference. This allows the system to detect and identify objects in real-time, a

critical capability for the robotic arm's operation. It processes the RGB, and depth data

captured by the Intel RealSense camera. It handles the alignment of these data streams and

extracts the necessary 3D coordinates for object detection and manipulation tasks. The

Jetson Nano communicates with the Raspberry Pi computer on Unitree A1 via a Gigabit

Ethernet connection. This setup ensures reliable and high-speed data transmission,

allowing for real-time data exchange and command transmission.

4.3.2 DYNAMIXEL U2D2 Microcontroller. The DYNAMIXEL U2D2 is a

communication interface that bridges the computing hardware and the robotic arm's

motors. It converts the high-level commands from the Unitree A1 Raspberry Pi into precise

control signals for the DYNAMIXEL servos, ensuring accurate and responsive movements

38

of the robotic arm. The U2D2 interfaces with the Raspberry Pi via USB and communicates

with the DYNAMIXEL motors. This setup ensures reliable and fast data transmission,

which is essential for real-time control. The U2D2 draws power from the Unitree A1

quadruped using one of its ports that provides 12V 2A, ensuring consistent and reliable

power for motor control.

Figure 18. U2D2 Microcontroller

4.3.3 Communication Setup with Unitree A1 Raspberry Pi Computer. The

communication setup between the Jetson Nano and the Unitree A1 Raspberry Pi computer

is essential for coordinating the operations of the robotic arm mounted on the quadruped

robot. This communication is facilitated through a Gigabit Ethernet connection, ensuring

reliable and high-speed data transmission.

39

4.4 Unitree A1 Quadruped

The Unitree A1 quadruped robot serves as the mobile platform for the robotic arm,

providing the necessary locomotion capabilities to navigate and operate within dynamic

and unstructured environments. The integration of the quadruped with the robotic arm

enhances the system's versatility, allowing it to perform complex tasks that require both

movement and manipulation. The Unitree A1 is a highly agile and robust quadruped robot

designed for various applications, including research, inspection, and service robotics. Its

advanced locomotion capabilities and stability make it an ideal platform for mounting the

robotic arm, enabling it to move across different terrains and interact with objects in its

environment. Its four-legged design ensures stability and agility, enabling it to navigate

through various terrains and obstacles. The A1 is designed to carry payloads up to 5 kg,

providing sufficient capacity to support the robotic arm and other necessary equipment

such as the Intel RealSense camera and the Jetson Nano. The A1 provides power to the

Jetson Nano at 19V 2A, which is stepped down to 5V 4A using a buck converter.

Additionally, the DYNAMIXEL U2D2 microcontroller draws power from the A1 at 12V

2A, ensuring that all components receive a stable and sufficient power supply for their

operations. A Gigabit Ethernet cable connects the Jetson Nano to the Raspberry Pi

computer on the A1, ensuring reliable and high-speed data transmission. This setup allows

for real-time data exchange and command transmission between the computing hardware

and the quadruped robot. The 3D coordinates calculated by the Jetson Nano are sent to the

Raspberry Pi via a Python socket connection, facilitating precise control of the robotic arm.

40

Figure 19. Unitree A1 quadruped robot

4.5 Operational Modes

The robotic system implemented in this project operates in two distinct modes:

Autonomous Mode and Teleoperation Mode. These modes allow the system to perform a

variety of tasks efficiently and effectively, adapting to different operational requirements

and environmental conditions.

4.5.1 Teleoperation Mode. Teleoperation Mode allows for direct human control of the

robotic system, providing input and guidance for performing tasks. This mode is

particularly useful for complex or non-routine tasks that require human judgment and

decision-making. During the experimental phase of this project, Teleoperation Mode was

extensively utilized to fine-tune the system's performance and to handle tasks that

demanded a high degree of precision and adaptability.

41

Upon booting up the quadruped robot, the system starts in trotting mode. In this mode, the

quadruped can be teleoperated to move in all directions, allowing the operator to navigate

the environment effectively. The operator can adjust the pitch and tilt of the quadruped,

providing precise control over its orientation. This capability is crucial for positioning the

robot correctly before switching to Autonomous Mode. In this mode, the robotic arm's

torque is disabled, meaning the arm cannot be used for manipulation tasks. This limitation

ensures the safety and stability of the system during navigation. Once the quadruped

reaches close proximity to the target object, a button can be pressed to switch the system

to Autonomous Mode. This action enables the torque on the robotic arm, preparing it for

manipulation tasks.

4.5.2 Autonomous Mode. In Autonomous Mode, the robotic system operates without

direct human intervention, relying on pre-programmed instructions, real-time sensor data,

and AI algorithms to perform tasks. This mode leverages the full capabilities of the

integrated hardware and software components, ensuring high levels of precision and

efficiency. When switching to Autonomous Mode, the torque on the robotic arm is enabled.

This activation allows the arm to perform manipulation tasks, such as object detection,

sorting, and placement. Another button press initiates the object detection and inverse

kinematics (IK) processes. The system uses the YOLOv5s object detection model to

identify and locate objects. The 3D coordinates of the detected objects are calculated using

the depth data from the Intel RealSense camera. The system is trained to detect four custom

objects: the letters "U" and "N" and the numbers "0" and "5". These objects are sorted

based on their type, with the robotic arm placing them into designated cups. Two cups are

used for sorting, each marked with a different AprilTag ID. One cup is designated for

42

alphabet objects and the other for number objects. The arm detects the appropriate cup

using the AprilTags and places the objects accordingly. The dual operational modes of

Teleoperation and Autonomous Mode provide a comprehensive and versatile approach to

robotic control. The ability to switch between these modes enhances the system's

functionality and adaptability, making it suitable for a wide range of industrial applications.

Figure 20. Quadruped Manipulator Pick-and-Place System

43

CHAPTER 5

RESULTS

This section presents the outcomes of the experimental setup, evaluating the system's

performance in both Teleoperation Mode and Autonomous Mode. The key metrics

assessed include the accuracy of object detection, the efficiency of object sorting, and the

overall system robustness in dynamic and unstructured environments. Specific metrics

were also used to evaluate the performance of the manipulator: trajectory tracking

comparison and real-time grabbing success rates.

5.1 Object Detection

The object detection capabilities of the system were evaluated using a custom-trained

YOLOv5s model. Training was conducted over 100 epochs with a batch size of 16 and an

image resolution of 640x480 pixels. The evaluation metrics focused on precision, recall,

and mean average precision (mAP). Additionally, the precision, recall, and mean Average

Precision (mAP) metrics are plotted, showing high values near 1.0, which signify excellent

performance in detecting and classifying objects. These metrics demonstrate that the model

has learned to accurately predict object locations and classifications, achieving robust

performance across various evaluation criteria. The Figure 22 below illustrates the training

and validation performance metrics over 100 epochs, providing a comprehensive view of

the model's learning process. The top row displays the training losses for bounding box

regression (train/box_loss), objectness score (train/obj_loss), and classification accuracy

(train/cls_loss). These losses consistently decrease, indicating effective learning and

convergence. The bottom row presents the corresponding validation losses (val/box_loss,

44

val/obj_loss, val/cls_loss), which also show a similar downward trend, confirming the

model's ability to generalize well to unseen data.

5.1.1 Evaluation Metrics. The model achieved an average precision of 99.5%,

indicating a high level of accuracy in identifying and classifying objects within the images.

The recall rate was also 99.5%, demonstrating the model's effectiveness in detecting the

majority of relevant objects in the dataset. The mAP score for the four classes was 99.5%,

reflecting the model's balanced performance across all object categories.

5.1.2 Qualitative Analysis. The model successfully detected objects under different

lighting conditions, angles, and backgrounds, showcasing its robustness and generalization

capability. During live testing, the model maintained a high detection speed, processing

frames at an average of 15 frames per second (FPS), which is suitable for real-time

applications.

Figure 21. Graphs showing the training and validation loss over epochs, indicating the

model's learning progress

45

Figure 22. Screenshot of real-world testing

5.2 Trajectory Comparison

The manipulator's performance in following planned trajectories was assessed by

comparing the expected to the actual trajectory recorded using a motion capture system.

The expected trajectory represented the calculated path for the manipulator to move from

its initial position to all pick-and-place locations based on detected object positions. The

actual trajectory was tracked in real time to measure deviations and assess accuracy.

5.2.1 Evaluation Metrics. The deviation between the expected and actual paths was

measured to evaluate the accuracy of the manipulator's movement.

5.2.2 Qualitative Analysis. The manipulator's ability to follow the planned trajectory

closely and perform accurate movements highlights its precision and control, essential for

effective operation in industrial applications. The system's adaptive movements, as

46

observed through the motion capture data, demonstrate its capability to handle dynamic

changes and adjust its path as needed. The figures 23 - 27 below illustrate a comparison

between the expected trajectory and the actual trajectory recorded using a motion capture

system, along with the corresponding error analysis. The left side of each figure displays

the trajectory plots for the X, Y, and Z coordinates, comparing the desired positions with

those captured by the motion capture system. The right side of each figure presents the

error in these coordinates over time. The close alignment between the desired and actual

trajectories, combined with the error plots, highlights the precision of the system, while the

occasional deviations reveal areas where fine-tuning may further enhance accuracy.

Figure 23. Position and Error Analysis for XYZ Coordinates - Trial 1

Figure 24. Position and Error Analysis for XYZ Coordinates - Trial 2

47

Figure 25. Position and Error Analysis for XYZ Coordinates - Trial 3

Figure 26. Position and Error Analysis for XYZ Coordinates - Trial 4

Figure 27. Position and Error Analysis for XYZ Coordinates - Trial 5

48

5.3 Real-Time Grabbing Success

The success rate of real-time grabbing was evaluated to assess the manipulator's ability to

accurately and reliably pick up objects in dynamic environments. The success rate was

calculated based on the number of successful grabs out of the total attempts during the

testing phase.

5.3.1 Evaluation Metrics. The manipulator achieved a grabbing success rate of 80%,

successfully picking up 8 out of 10 objects during the tests. The failure rate was mainly

due to the Intel RealSense camera's difficulty in detecting objects that were too close to the

sensor, resulting in occasional failures to grab objects accurately.

5.3.2 Qualitative Analysis. The manipulator's high success rate in grabbing objects

reflects its accuracy and reliability in dynamic environments. The system's ability to adapt

to slight positional changes of objects during the grabbing process indicates robust

handling of real-time operations.

49

CHAPTER 6

CONCLUSIONS

This thesis presents the development and evaluation of a dynamic pick-and-place system

for a manipulator mounted on a Unitree A1 quadruped robot. The system integrates

advanced object detection using a custom-trained YOLOv5s model, precise control

algorithms, trajectory planning, and real-time feedback mechanisms to enable efficient and

accurate real-time object tracking and sorting in dynamic and unstructured environments.

The experimental results demonstrate the system's high accuracy in object detection. The

YOLOv5s model achieved an impressive average precision and recall rate of 99.5%. This

high level of accuracy ensures reliable identification and classification of objects, which is

crucial for effective manipulation tasks. The manipulator's performance in following

planned trajectories also showed excellent accuracy. This indicates the system's capability

to execute precise movements, essential for tasks requiring high precision and

coordination.

In terms of real-time operations, the system maintained a grabbing success rate of 80%.

The primary source of errors was identified as the Intel RealSense camera's difficulty in

detecting objects at close range, which occasionally resulted in failed grabs. Despite this

limitation, the system demonstrated robust handling of dynamic tasks, adapting effectively

to positional changes of objects during the grabbing process.

50

6.1 Key Contributions

• The system successfully combines the locomotion capabilities of a quadruped robot

with the dexterity of a manipulator, enhanced by advanced object detection. This

integration allows the robot to navigate and interact with its environment

efficiently, making it suitable for a wide range of applications.

• Sophisticated control algorithms were developed for precise trajectory planning

and real-time feedback. These algorithms ensure accurate and efficient movements

of the robotic arm, essential for performing complex manipulation tasks.

• A custom YOLOv5s model was trained on a synthetic dataset, achieving high

detection accuracy for the targeted objects. This demonstrates the effectiveness of

synthetic data in training robust object detection models.

• The system's ability to operate in real-time, maintaining high detection speeds and

efficient object sorting, highlights its potential for industrial applications requiring

rapid and accurate manipulation.

6.2 Future Scope

While the current system exhibits strong performance, several areas offer opportunities for

further enhancement and research. Addressing the limitations of the Intel RealSense

camera in detecting objects at close range could further improve the grabbing success rate.

Exploring alternative sensors or enhancing the existing setup with additional cameras could

mitigate this issue. Developing more sophisticated gripping mechanisms that can handle a

wider variety of object shapes and sizes would enhance the system's versatility and

effectiveness in diverse scenarios. Expanding the dataset to include more object classes

and increasing the variety of objects in training could further improve the model's

51

generalization and robustness, making it more adaptable to different environments.

Integrating advanced navigation algorithms to enable the quadruped robot to autonomously

navigate complex environments without human intervention would significantly enhance

the system's autonomy and operational efficiency. Conducting extensive testing in real-

world industrial settings, such as warehouses and manufacturing plants, to validate the

system's performance and reliability in practical applications would provide valuable

insights into the system's robustness and scalability. Investigating energy-efficient

algorithms and hardware optimizations to extend the operational time of the robot, making

it more viable for prolonged industrial tasks, would enhance the system's practicality and

sustainability in real-world applications.

6.2 Conclusion

In conclusion, this thesis showcases significant advancements in mobile manipulation,

object detection, and robotic control. The developed system demonstrates high accuracy,

precision, and robustness, highlighting its potential for real-world applications in various

industries. By addressing the identified areas for improvement and continuing to build on

this foundation, future research can further enhance the capabilities and applications of

such robotic systems. This will contribute to greater efficiency, productivity, and

sustainability in industrial operations, paving the way for more advanced and versatile

robotic solutions.

52

BIBLIOGRAPHY

[1] John George. 5 real-world applications of quadruped robots, 2022. Accessed on

Dec. 28, 2022. URL:

https://www.robotics247.com/article/5_real_world_applications_of_quadruped_ro

bots.

[2] Sereinig, M., Werth, W., & Faller, L. M. (2020). A review of the challenges in

mobile manipulation: systems design and RoboCup challenges. Elektrotech.

Informationstechnik, 137(6), 297-308.

[3] Xin, G., Zeng, F., & Qin, K. (2022). Loco-manipulation control for arm-mounted

quadruped robots: Dynamic and kinematic strategies. Machines, 10(8), 719.

[4] Cruz Ulloa, C., Domínguez, D., Del Cerro, J., & Barrientos, A. (2022). A mixed-

reality tele-operation method for high-level control of a legged-manipulator robot.

Sensors, 22(21), 8146.

[5] Fu, Z., Cheng, X., & Pathak, D. (2023, March). Deep whole-body control: learning

a unified policy for manipulation and locomotion. In Conference on Robot

Learning (pp. 138-149). PMLR.

[6] Ferrolho, H., Ivan, V., Merkt, W., Havoutis, I., & Vijayakumar, S. (2023). Roloma:

Robust loco-manipulation for quadruped robots with arms. Autonomous Robots,

47(8), 1463-1481.

[7] Gai, S., Lyu, S., Zhang, H., & Wang, D. (2024). Continual Reinforcement Learning

for Quadruped Robot Locomotion. Entropy, 26(1), 93.

[8] Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., ... &

Birchfield, S. (2018). Training deep networks with synthetic data: Bridging the

reality gap by domain randomization. In Proceedings of the IEEE conference on

computer vision and pattern recognition workshops (pp. 969-977).

[9] Borrego, J., Dehban, A., Figueiredo, R., Moreno, P., Bernardino, A., & Santos-

Victor, J. (2018). Applying domain randomization to synthetic data for object

category detection. arXiv preprint arXiv:1807.09834.

[10] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017,

September). Domain randomization for transferring deep neural networks from

simulation to the real world. In 2017 IEEE/RSJ international conference on

intelligent robots and systems (IROS) (pp. 23-30). IEEE.

https://www.robotics247.com/article/5_real_world_applications_of_quadruped_robots
https://www.robotics247.com/article/5_real_world_applications_of_quadruped_robots

53

[11] https://github.com/ultralytics/yolov5

[12] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards real-time

object detection with region proposal networks. IEEE transactions on pattern

analysis and machine intelligence, 39(6), 1137-1149.

[13] Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767.

[14] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C.

(2016). Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th

European Conference, Amsterdam, The Netherlands, October 11–14, 2016,

Proceedings, Part I 14 (pp. 21-37). Springer International Publishing.

[15] Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2020). Robot modeling and

control. John Wiley & Sons.

[16] Angeles, J. (Ed.). (2003). Fundamentals of robotic mechanical systems: theory,

methods, and algorithms. New York, NY: Springer New York.

[17] Denavit, J., & Hartenberg, R. S. (1955). A kinematic notation for lower-pair

mechanisms based on matrices.

[18] JhA, P. (2015). Inverse kinematic analysis of robot manipulators (Doctoral

dissertation).

[19] El-Sherbiny, A., Elhosseini, M. A., & Haikal, A. Y. (2018). A comparative study

of soft computing methods to solve inverse kinematics problem. Ain Shams

Engineering Journal, 9(4), 2535-2548.

[20] Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.

[21] https://emanual.robotis.com/docs/en/dxl/

[22] https://docs.trossenrobotics.com/interbotix_xsarms_docs/specifications/wx250

.html

https://github.com/ultralytics/yolov5
https://emanual.robotis.com/docs/en/dxl/
https://docs.trossenrobotics.com/interbotix_xsarms_docs/specifications/wx250.html
https://docs.trossenrobotics.com/interbotix_xsarms_docs/specifications/wx250.html

