
Iterative Learning Control for Accurate Task-Space Tracking with
Humanoid Robots

Pranav A. Bhounsule1 and Katsu Yamane2

Abstract— Precise task-space tracking with manipulator-type
systems requires accurate kinematics models. In contrast to
traditional manipulators, it is difficult to obtain an accurate
kinematic model of humanoid robots due to complex structure
and link flexibility. Also, prolonged use of the robot will lead
to some parts wearing out or being replaced with a slightly
different alignment, thus throwing off the initial calibration.
Therefore, there is a need to develop a control algorithm that
can compensate for the modeling errors and quickly retune
itself, if needed, taking into account the controller bandwidth
limitations and high dimensionality of the system. In this paper,
we develop an iterative learning control algorithm that can
work with existing inverse kinematics solver to refine the joint-
level control commands to enable precise tracking in the task
space. We demonstrate the efficacy of the algorithm on a theme-
park type humanoid that learns to track the figure eight in 18
trials and to serve a drink without spilling in 9 trials.

I. INTRODUCTION

Many applications of manipulator-type systems involve
precise task-space control. For example, industrial manipula-
tors that do welding or personal humanoid robots that folds
clothes. Industrial manipulators rely on good CAD models
and high-gain servo controllers to accomplish precise end-
effector motions. However, the techniques that work well for
industrial manipulators may not transfer to humanoid robots
for the following reasons:

1) Humanoid robots are made light weight due to weight
and size constraints leading to flexible links. Thus,
traditional CAD models which are based on rigid body
assumptions are not valid. Additional modeling terms
are needed to account for link flexibility, which can be
hard.

2) Humanoid robots tend to have small actuators for
safety reasons and/or may have a low bandwidth
controller. This makes it hard to implement a precise
servo.

3) Humanoid robots have large number of joints. Thus,
small parameters errors in the CAD model can lead to
big errors at the end-effectors.

4) When Humanoid robots are used long-term (e.g., per-
sonal robots), some parts may wear out or be replaced
with a slightly different alignment. Hence the original
CAD model is not valid anymore.

Thus, for accurate task-space control of humanoid robots,
one needs a method that can compensate for the modeling

1 Dept. of Mechanical Engineering, University of Texas San
Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
pranav.bhounsule@utsa.edu. 2 Disney Research, 4720
Forbes Avenue, Lower Level, Suite 110 Pittsburgh, PA 15213, USA.
kyamane@disneyresearch.com

errors by modifying the joint-level control commands and
to make up for part wear and/or replacement. We present
an iterative learning control algorithm that can address the
above issues.

In this paper, we show that a combination of constrained
optimization and iterative learning control can enable high
fidelity position tracking. We use constrained optimization to
solve the inverse kinematics using the imperfect kinematic
model. The cost for the constrained optimization is the
weighted squared sum of the deviation of the end-effector
from the desired pose. The result of the constrained optimiza-
tion is the joint motion as a function of time to produce the
desired end-effector motion. However, when the motion is
implemented on the robot, there is substantial tracking errors
because of the imperfect kinematic model. So next, we use it-
erative learning control to improve the tracking performance.
The iterative learning control algorithm modifies the desired
end-effector motion based on end-effector tracking errors to
account for modeling errors. We try out two example motions
on the humanoid: (i) drawing the figure eight, and (ii) serving
a drink without spilling.

II. BACKGROUND AND RELATED WORK

The main issue with task-space control is the lack of
accurate kinematic models due to reasons mentioned earlier.
Traditional feedback control methods such as Proportional-
Integral-Derivative Control [1] are the preferred methods
to correct for modeling errors because they have a simple
structure and can be relatively easy to hand-tune. However,
they are not preferred when the plant is subject to unexpected
disturbances. In this case, it is common to have an adaptive
controller that modifies the control parameters to make up for
the varying loads [2], [3]. However, most feedback control
techniques rely on setting high gains which necessitates the
use of high bandwidth feedback control, typically 500 Hz or
more. In our case, the control bandwidth of 120 Hz limits
us to relatively low gains.

Learning based method have also been used to do task-
space control. These approaches directly build a inverse
kinematics model experimental data [4], [5]. One of the
biggest issue with this approach is that the inverse mapping
is not unique [6]. To overcome the multiple solution nature of
the inverse mapping, Oyama et al. [7] used a multiple neural
networks to represent the inverse kinematic solutions locally
in different regions of the state space. These individual
networks are called experts. Next, another neural network,
called the gating network, is used to choose an expert to
obtain the inverse kinematics solution. One of the problem

X

Y

Z

7

1

2

3

4 5

6

8

9

10

12 13 14 15 16
17 18

20
212223242526

(a) (b)

1119

A D

CB

E

Head

 Left

Hand

Right

Hand

Fig. 1. (a) The kinematic model of the humanoid robot in the zero reference pose. In this pose all the joint angles zero. The robot has a total of 37
actuated joints. The figure shows only 26 actuated joints and which are numbered from 1 through 26. The actuated joints not shown here are the 10 finger
joints and 1 eye-blink joint. The joints A through E are neither sensed nor actuated. In this paper, we only use the following 14 actuated joints for control;
1 through 7 in the body, and 19 through 26 in the right hand. (b) A photo of the humanoid robot that we used in this study. Gross robot specifications are:
height = 1.8 m (5’11”), body width = 0.28 m (9”), and length of hand = 0.67 m (2’2”). The above pose is our reference pose for the inverse kinematics
(see Sec III-C). A plastic glass is glued to the right hand of the robot and is shown inset. We put three markers on the top of the glass which we track
using Opti-track motion capture system.

with the above method is that the construction of the gating
network becomes difficult in high dimensions.

Iterative Learning Control (ILC) can make up for modeling
errors to enable high fidelity tracking. In its simplest form,
ILC modifies the control command in every iteration in the
following way: the command at trial i, is the sum of the
command in trial i−1, and a control gain times the tracking
error in trial i−1 [8]. Because the tracking errors are reduced
iteratively at every trial, the control gains can be kept small.

Traditionally, in ILC, the learning is at the joint level
[10]. However, it is quite straightforward to extend ILC to
task level using the appropriate mapping from the task-space
to the joint space. For example, Arimoto et al. [11], [12]
used the linearized mapping, i.e., the Jacobian, to map the
incremental change in position from the task level to the joint
level and showed the efficacy of their algorithm on a four
link manipulator in simulation. In our ILC algorithm, we use
the non-linear map from task-space to joint space and show
the efficacy of the algorithm experimentally on a humanoid.
Specifically, we evaluate the non-linear map by using an
inverse kinematics solver which find solutions within the
joint limits. The main improvement over Arimoto’s algorithm
is that our algorithm is able to handle joint limits [9].

III. METHODS

A. Robot hardware

We use a 37 degree of freedom, hydraulically powered,
fixed-base humanoid robot shown in Fig. 1. Each joint has
either a rotary potentiometer or a linear variable differential

transformer to sense joint position. There are two levels of
control. At the lowest level, there is a single processor per
joint. The processor runs a 1 KHz control loop that does
high gain position control using individual position data from
joint sensor, velocity from differentiated and filtered position
data from joint sensor and the force sensor in the valve. The
gains on the lowest level controller are pre-set and cannot
be changed. At the highest level, there is a single computer
that communicates with all the low level processors at 120
Hz, sending desired joint position commands and receiving
measured position. We control the robot at the highest level
in all experiments reported here, i.e. the input is a position
command and the joint position is the measured variable,
both of which occur at a bandwidth of 120 Hz.

B. Marker-based motion capture

We use an 8-camera motion capture system by OptiTrack
[13]. The motion capture system outputs the position and the
orientation of the end-effector by measuring the position of
the three retro-reflective markers that we place on the end-
effector.

We first use the motion capture system to develop a kine-
matic model of the robot. The robot joints are made to move
in a random fashion and the joint position from the robot
control system and the end-effector position and orientation
from the motion capture system are simultaneously recorded.
Then, a kinematic model is specified and parameters are
fit using non-linear least squares. The model has limited
accuracy due to unmodeled effects such as sensor noise

and link deflection due to load. We provide more details
in Bhounsule and Yamane [14].

We also use the motion capture system to track the end-
effector motion during the task-space experiments. We use
the tracking errors in the position and the orientation in the
iterative learning control algorithm which we describe in
detail in Sec. III-D.

C. Inverse Kinematics

We need an inverse kinematics solver to map the desired
end-effector motion to joint space for the low level position
servo. The use of optimization based inverse kinematics
solver provides a straight-forward and generalizable method
of creating solutions for redundant robots, such as humanoid
robots [15]. Specifically, by choosing a suitable cost function
one can bias the solution to use certain joints over the other
ones.

We use a constrained optimization software SNOPT [16]
to develop an inverse kinematics solver. The problem here
is to find the joint angles as a function of time, θ(t),
to minimize the cost function g, subject to end-effector
constraints h1, the lower joint limits h2, and upper joint
limits h3. We define these functions next:

g(θ(t)) =

ndof∑
i=1

wi(θi(t)− θref
i (t))2, (1)

h1(θ(t)) = Xdes(t)− f(θ(t)) ≤ |ε|, (2)
h2(θ(t)) = θ(t)− θmin ≥ 0, (3)
h3(θ(t)) = θ(t)− θmax ≤ 0. (4)

In the above scheme, we specify the desired motion of the
end-effector, Xdes(t) (e.g. trajectory of the pen to draw the
figure eight). Further, we define ndof to be the degrees of
freedom used by the robot in the experiment. We assume
ε = 10−3.

The following are free parameters which the motion de-
signer can tune in order to bias the motion.

1) The reference angles for the joints, θref
i (t). We choose,

θref
i (t) = θref

i (constant), and is the joint angles corre-
sponding to the robot pose shown in Fig. 1.

2) The joint weighting wi. We intuitively chose a weight
of 1 for the joints for the hand degrees of freedom
and choose a weight of 10 for the joints in the
mid- and lower-body. This choice of this particular
weight distribution has the effect of finding solutions
that involve bigger excursions of the hand degrees of
freedom than the body degrees of freedom, similar to
what humans would do when doing tasks using their
hands. Alternately, the weights can be chosen using
inverse optimization using motion capture data (e.g.,
See Liu et al. [17])

D. Iterative Learning Control (ILC) Algorithm

The joint angle solution θ(t) leads to poor performance
when we implement it on the robot because of the imperfect
kinematic model. So, we implement an iterative learning

 From
Memory

Save To
Memory

Xi
des (j)

ei(j)

Memory (All computations offline)

-+

Xi
act(j)Xref(j)

 Robot

Iterative Learning Control Update Rule

 Inverse
Kinematics

Xi
des (j) = Xi

des(j) + γ (j)-1 i -1e

θi(j)

(j)i -1e

Saved errors
 from i-1 trial
after filtering

Low Level
Controller

vi(j)

Cartesian
 Error

 Position
Command

 Valve
Command

Fig. 2. Block diagram of our end-effector space iterative learning control
algorithm. We filter the cartesian space errors ei−1(j) using a zero phase
filter before applying the iterative learning update rule. The super-script i
denotes the trial number and j denotes a time instance.

control to improve the tracking performance of the inverse
kinematics solution. We describe the algorithm next.

Let i represent the trial number and j the time index that
goes from 1 to nj (end time). Let the reference motion in
task-space be defined by Xref(j). Here we have concatenated
the position and the orientation in the vector X. The input
to the inverse kinematics solver are the desired poses in
end-effector space, which we denote by Xi

des(j). Let the
measured position in task-space be defined by Xi

act(j). Let
the error between actual end-effector position and reference
position be denoted by ei(j) = Xi

ref(j)−Xact(j). Our ILC
algorithm is shown in Fig. 2 and described below:

1) Set the error e0(j) = 0 and initialize the desired
position in the task-space X0

des(j) = Xref(j).
2) For subsequent trials do:

• Command modification in end-effector space: Up-
date the feed-forward position command using the
tracking error at trial i, Xi

des(j) = Xi−1
des (j) +

Γei−1(j). The manually tuned learning gain, Γ, is
a 6x6 matrix of the form; Γ = diag{γ1, γ2, ...γ6}.
Further, for ILC to converge we need, 0 < γi ≤ 1.

• Command initialization in joint-space: For the
desired position in task-space Xi

des(j), use the
inverse kinematics solver to find a desired joint
command θi(j).

• Command execution on robot: Send the feed-
forward commands θi(j) (j = 1, 2, ..., nj) to
the low level controller. Save the resulting track-
ing errors in the end-effector space, ei(j) (j =
1, 2, ..., nj).

3) Stop when the error metric einorm does not improve
between trials. The learnt feed-forward command is
then θi(j) (j = 1, 2, ..., nj).

The error metric to check convergence is given as follows

einorm =
1

nj

nj∑
j=1

neff∑
k=1

(eik(j))2, (5)

where eik(j) is the tracking error in the pose element k, at
iteration i and at time j, neff = 6 and nj is the total data
points in the trial.

E. Performance of the algorithm
a) System equations: The ILC update equation is:

Xi
des(j) = Xi−1

des (j) + Γei−1(j) (6)

Next, we linearize the output equation which relates the
actual joint position, Xi

act with the control equation Xi
des.

Xi
act(j) = f(f̂−1(Xi

des(j)))

= F(Xi
des(j))

≈ GXi
des(j) where G =

∂F

∂Xi
des

(7)

where f , f̂ are the true model and approximate model
respectively, F = f(f̂−1(.)). A first order approximation of
F has to be linearly proportional to Xi

des for the equation to
be dimensionally consistent.

b) Convergence analysis: To do convergence analysis,
we need to express the error between successive trials. This
is done as follows.

ei(j) = Xref(j)−Xi
act(j)

= Xref(j)−GXi
des(j)

= Xref(j)−GXi−1
des (j)−GΓei−1(j)

= Xref(j)−Xi−1
act (j)−GΓei−1(j)

= ei−1(j)−GΓei−1(j)

= (I−GΓ)ei−1(j)

The condition for convergence is that the |ei−1(j)| < |ei(j)|.
This condition is met when the eigenvalues of (I−GΓ) are
less than 1.

c) Stability analysis: We simplify the ILC update equa-
tion as follows:

Xi
des(j) = Xi−1

des (j) + Γ(Xref(j)−Xi−1
act (j))

= Xi−1
des (j) + ΓXref(j)− ΓGXi−1

des (j)

= (I− ΓG)Xi−1
des (j) + ΓXref(j)

The condition for stabile learning is that the control com-
mand, Xi

des(j) should be bounded. This happens when the
when the eigenvalues of (I− ΓG) are less than 1.

d) Tuning the learning gain: In the previous two sec-
tions, we saw that the learning gains, Γ, affects the stability
as well as convergence. These are the only parameter that
needs to be manually tuned in the algorithm. We simplify this
by choosing the same learning parameter for all six degrees
of freedom. Thus Γ = γI , where I is 6x6 identity matrix
and 0 < γ ≤ 1. The closer this value is to 1, the faster is
the convergence. But the sensor noise limits the use of high
gains. A straightforward way to enable high values for γ is
to filter the noisy sensor data. This is discussed next.

Fig. 3. (a) Robot after completing the writing task after learning. The
figure “eight” drawn by the robot is shown inset, and (b) Robot doing the
glass task after learning.

F. Zero phase filtering

We use a zero phase filter that removes sensor noise and
provides sensor data with zero phase lag. We first filter in
the forward direction using a second order Butterworth filter
with cutoff frequency of 1 Hz. Next, we pad the forward
filtered signal with about 120 reflected data points at the
beginning and at the end. Then, we reverse the concatenated
signal and filter again with the same Butterworth filter. This
process of forward filtering followed by reverse filtering
produces a signal with zero delay. The padding of data
removes unnecessary transients in the beginning and the end
of the filtered signal. Note that the zero-phase filtering is anti-
causal and it needs the sensor values for the entire trajectory
and is done offline.

IV. EXPERIMENTAL RESULTS

We show implementation of our algorithm on the hu-
manoid robot shown in Fig. 1. In order to generate the results,
we used the following 14 actuated joints shown in Fig. 1 (a);
1 through 7 in the body, and 19 through 26 in the right hand.
The joints A through E are neither sensed or actuated but
need to move in order to allow the loop joint in the lower
body to move.

A. Task 1: Writing Task

The writing task consists drawing the lemniscate, which is
the figure eight or the ∞ symbol. We specify the lemniscate
equation in Xdes(t). We use the inverse kinematic solver (see
See III-C) to compute the joint position command θ(t)). The
joint command is then played back on the robot. The motion
of the end-effector is tracked by three markers placed on the
right hand. The kinematic model does not take into account
the actuator dynamics or the link deflection, and does not
produce error free tracking. Finally, we use the the inverse
ILC algorithm to improve the tracking performance.

The learning parameter γ was manually tuned to 0.3 by
running a few trials on the robot. While the robot is learning,
the robots draws in the air and the motion capture system

helps to measure the motion of the end-effector. The ILC
algorithm uses the tracking error to improve the performance.
The error metric (see Eqn. 5) for Trial 1 is 3 × 10−2, and
it decreases to 2× 10−5 in 18 trials. This is almost a three
orders of magnitude improvement. The rate of convergence
is shown in Fig. 4 (a).

Figure 5(a) shows errors in the position and the orientation
as a function of time for the first trial and the converged trial.
We can see that the error is reduced to almost zero by the
learning algorithm. Figure 6 (a) and (b) shows a plot of the
drawing task in the x-y (horizontal plane) and the x-z plane
(fore-aft plane). The solid black line is the reference. The
blue dash-dotted line is the robot motion during trial 1. The
red dashed lined shows the converged motion at trial 18.

After the robot has learnt the motion, we made the robot
draw the lemniscate on a piece of paper using a brush dipped
in black paint. A snapshot of the robot after completing the
task is shown in Fig. 3 (a) and the actual drawing is shown
inset.

We have also provided a video showing the learning trials
and robot doing the drawing task. One thing to note in the
video is that the robot uses some of the mid- and lower-body
joints, in addition to the right hand joints to draw. This is
because the plane of the drawing board is not completely
reachable using only the hand degrees of freedom.

B. Task 2: Glass Task

The glass task consists of moving glass in a straight line in
the fore-aft direction while maintaining a constant height and
constant orientation throughout the motion, as if the robot is
serving a drink to a person in front of it. Fig. 3 (b) shows
the task executed with the converged trial and with the glass
filled with a liquid.

We use the same value for the learning parameter, γ = 0.3,
We did learning in three scenarios and we describe them next.
For all the learning scenarios, the motion capture system
tracked a set of three markers placed on top of the glass.
The three markers were used by the motion capture software
to give the glass position and orientation for the learning
algorithm.

e) Learning from identified model: We initialize the
learning from the kinematics model we identified. Trial 1
produced an error of 2 × 10−2 (see Eqn. 5). This is under-
standable because our forward model ignores the actuator
dynamics and the link deflection. However, after using itera-
tive learning control the error norm decreased to 2×10−4 in 8
trials. This is about a two orders of magnitude improvement.
A plot of the convergence rate is shown as red dots in Fig. 4
(b).

We also attach a video of the experiment. Note that the
robot has to use joints on the mid-body and lower-body in
addition to the joints on the hands to reach out to serve the
drink.

f) Learning incorrect potentiometer calibration: We
want to see if our learning algorithm can learn from incorrect
potentiometer calibration. To simulate incorrect potentiome-
ter calibration, we change the gain and the bias by 10%

on joint 7 (bends the torso in the fore-aft direction), joint
20 (moves the right shoulder in the front back direction),
and joint 23 (right elbow joint) (see Fig. 1). We use the
earlier kinematic model, but which does not account for the
incorrect potentiometer calibration. The error in Trial 1 was
5 × 10−2 but it decreased to 7 × 10−4 in 9 trials. This is
almost two orders of magnitude improvement. A plot of the
convergence rate is shown with unfilled green diamonds in
Fig. 4(b). Also, Fig. 5 (b) shows the error in tracking for
Trial 1 and for Trial 9.

V. DISCUSSION

A. Better models give better convergence

Though ILC scheme is designed to correct for modeling
errors, better models give better convergence [18], [19]. This
is clear when we compare the two test cases in the glass
task; (1) learnt from an identified model vs. (2) learnt from
identified model but with incorrect pot calibration. In the
former case, the error in the converged trial is 2 × 10−4

which is slightly smaller than the error in the converged trial
of 7× 10−4 in the latter case.

Another place where better models lead to better conver-
gence is evidenced is when we compare the writing task
with the glass task. The error in the converged trial for
the writing task and glass task are 2 × 10−5 and 2 × 10−4

respectively. Thus in the writing task, the final convergence
is an order of magnitude better than in the glass task. This
is explained as follows: In the glass task, the robot has to
stretch its hands and body outward to reach out. The robot
is flexible and the structural loading causes link deflection
which is not accounted in our model. On the other hand,
in the writing task, the robot does not have to reach out
and the link deflection is much smaller. In other words, our
kinematic model for the writing task is much more accurate
than in the glass task. The evidence for the above explanation
can be seen by comparing the error in the z position between
the writing task shown in Fig. 5 (a) (iii) and the glass task
shown in Fig. 5 (b) (iii). It is seen that the error in the z-
direction keep increasing as the robot stretches its hand to
move the glass to serve the drink.

B. Use of existing robot model

Our method treats the inverse kinematics solver as a black-
box during the learning process. This is advantageous for
two reasons: (1) There is no need to rewrite the inverse
kinematics solver. This is specially advantageous for hu-
manoid robots that have an inverse kinematics solver already
available. (2) Even if the robot model changes a bit, for
example due to wear and tear or part replacement, there is
no need to re-calibrate the model.

C. Handling Joint Limits

From our experience, we know that humanoid robots often
operate close to the position limits. In our method, the joint
limits are handled by the constrained optimization at the
inverse kinematics solver (see Fig. 2). In all the experiments
reported here, we had multiple joints at their position limits,

but the learning proceeded seamlessly, converging to a small
tracking error. We believe that this is a significant advantage
of our method over methods that work at the velocity level
and use the Jacobian to map from task-space to joint space.

D. Limitations of our method

Our method has all the limitations of ILC: it is an offline
method; it needs manual tuning to work well; and it can
only improve a single trajectory at a time. In addition, our
method needs an inverse kinematics solver that is able to find
solutions within joint limits. This can be computationally
expensive and can lead to issues if the manipulator is in
singular configuration.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present an Iterative Learning Control al-
gorithm for high-fidelity tracking of end-effector motions for
high degree of freedom manipulator system in the presence
of modeling errors. We create the given end-effector motion
using an inverse kinematics solver based on constrained
optimization. The cost function in the optimization provides
flexibility to select a motion style by appropriate choice of
reference pose and joint weights. To enable high-fidelity
tracking in the presence of modeling errors, we iteratively
modifying the end-effector reference motions using the track-
ing errors. These are then mapped back into joint space using
the inverse kinematics solver. We demonstrate the efficacy of
our algorithm on a high degree of freedom humanoid robot
that iteratively learns writing the figure eight in 18 trials and
learns to move a glass in a perfectly level manner in 9 trials.

Future work will be directed towards incorporating veloc-
ity limits (note that in the current work we only implement
position limits), which will help to extend this work to fast
motions.

REFERENCES

[1] K.J. Astrom, and T. Hagglund, PID Controller: Theory, Design, and
Tuning, International Society for measurement and Control Seattle,
WA, 1995

[2] T.B.Cunha, C. Semini, E. Guglielmino, V.J. De Negri, Y.Yang, and
D.G. Caldwell Gain scheduling control for the hydraulic actuation
of the HyQ robot leg. Proceedings of the International Congress of
Mechanical Engineering, Gramado, Brazil. 2009.

[3] D. Sun, and J.K. Mills, High-accuracy trajectory tracking of industrial
robot manipulator using adaptive-learning schemes, American Control
Conference, 1999,

[4] A. Guez and Z. Ahmad. Solution to the inverse kinematics problem in
robotics by neural networks. In Neural Networks, IEEE International
Conference on, pages 617–624. 1988.

[5] R. Köker, C. Öz, T. Çakar and H. Ekiz. A study of neural network
based inverse kinematics solution for a three-joint robot. Robotics and
Autonomous Systems, 49(3):227–234, 2004.

[6] M. I. Jordan and D. E. Rumelhart. Forward models: Supervised
learning with a distal teacher. Cognitive science, 16(3):307–354, 1992.

[7] E. Oyama, N. Y. Chong, A. Agah, and T. Maeda. Inverse kinematics
learning by modular architecture neural networks with performance
prediction networks. In Robotics and Automation, IEEE International
Conference on, volume 1, pages 1006–1012. IEEE, 2001.

[8] S.Arimoto, S.Kawamura, and F.Miyazaki. Bettering operation of
robots by learning. Journal of Robotic 1(2):123-140, 1984.

[9] P. A. Bhounsule, K. Yamane and A. A. Bapat A task-level it-
erative learning control algorithm for redundant manipulators with
joint position limits IEEE–International Conference on Robotics and
Automation (submitted) , 2016

[10] D. Bristow, M. Tharayil, and A. G. Alleyne, A survey of iterative
learning control Control Systems, IEEE, 26(3):96–114, 2006.

[11] S. Arimoto, M. Sekimoto and S. Kawamura. Iterative learning of
specified motions in task-space for redundant multi-joint hand-arm
robots. In Robotics and Automation, IEEE International Conference
on, pages 2867–2873. IEEE, 2007.

[12] S. Arimoto, M. Sekimoto, and S. Kawamura. Task-space iterative
learning for redundant robotic systems: existence of a task-space
control and convergence of learning. SICE Journal of Control,
Measurement, and System Integration, 1:312–319, 2008.

[13] OptiTrack - ARENA - Body motion capture software for 3D char-
acter animation and more. http://www.naturalpoint.com/
optitrack/products/arena/, [Online; accessed 26 November
2013].

[14] P. A Bhounsule and K. Yamane. Full-Pose Calibration of a High
Degree of Freedom Humanoid Robot using Marker-Based Motion
Capture System. Industrial Robot: An International Journal 2015
(submitted).

[15] L. T. Wang and C. C. Chen, A combined optimization method for
solving the inverse kinematics problems of mechanical manipulators
IEEE Transaction on Robotics, vol=7, no=4, pp. 489–499, 1991.

[16] P. E. Gill, W. Murray and M. A. Saunders. Snopt: An SQP algorithm
for large-scale constrained optimization. SIAM journal on optimiza-
tion, 12(4):979–1006, 2002.

[17] K. C. Liu, and A. Hertzmann, and Z. Popović Learning physics-based
motion style with nonlinear inverse optimization ACM Transactions
on Graphics (TOG), 24(3):1071–1081, 2005.

[18] P. A. Bhounsule, and K. Yamane. Iterative Learning Control for High-
Fidelity Tracking of Fast Motions on Entertainment Humanoid Robots.
IEEE-RAS International Conference on Humanoid Robots, Atlanta,
GA, USA, 2013.

[19] C. G. Atkeson and J. McIntyre. Robot trajectory learning through
practice. In IEEE International Conference on Robotics and Automa-
tion, volume 3, pp. 1737–1742, 1986.

0 2 4 6 8 10 12 14 16 18
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iteration Number

Av
er

ag
e

Sq
ua

re
 E

rro
r,
e

i no
rm Learning from bad

potentiometer calibration

 Learning from
identi�ed model

0 1 2 3 4 5 6 7 8 9
0

0.01

0.02

0.03

0.04

0.05

0.06

Iteration Number

Av
er

ag
e

Sq
ua

re
 E

rro
r,
e

i no
rm

(a) (b)

Fig. 4. Convergence of errors as a function of iteration number for (a) the writing task and (b) the glass task

−6

−4

−2

0

2

er
ro

r x
 (c

m
)

−15

−10

−5

0

5

er
ro

r y
 (c

m
)

0 5 10 15
−10

−5

0

5

er
ro

r z
 (c

m
)

time (s)

−15

−10

−5

0

5

−15

−10

−5

0

5

0 5 10 15−20

−10

0

10

er
ro

r a
ng

le
z

(d
eg

re
es

)

time (s)

er
ro

r a
ng

le
y

(d
eg

re
es

)
er

ro
r a

ng
le

z
(d

eg
re

es
)

Trial 1
Trial 18

(i) (iv)

(ii)

(iii)

(v)

(vi)

(a) (b)

−5

0

5

10

−4

−3

−2

−1

0

0 2 4 6 8 10
0

5

10

15

−5

0

5

10

−30

−20

−10

0

10

0 2 4 6 8 10
−8

−6

−4

−2

0

er
ro

r x
 (c

m
)

er
ro

r y
 (c

m
)

er
ro

r z
 (c

m
)

time (s)

er
ro

r a
ng

le
z

(d
eg

re
es

)

time (s)

er
ro

r a
ng

le
y

(d
eg

re
es

)
er

ro
r a

ng
le

z
(d

eg
re

es
)

Trial 1
Trial 9

(i) (iv)

(ii)

(iii)

(v)

(vi)

Fig. 5. Position and Orientation Errors for (a) the writing task and (b) the glass task (learning incorrect potentiometer calibration). (i,ii,iii) Errors in the
position in the x, y, z directions in cm. and (iv,v,vi) Errors in the angle in the x, y, z direction in degrees. x is in the fore-aft direction, y is in the robot’s
left-right direction and z is in the up-down direction.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

x (m)

y
(m

)

0

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

x (m)

z
(m

)

(a) (b)Reference
Trial 1
Trial 18

Fig. 6. (a) Plot in the x-y plane (z axis lines up with gravity). (b) Plot in the x-z plane (fore-aft plane of robot). The blue dash-dot lines and red dashed
lines are the marker position measured by the motion capture system.

