
Feedback motion planning of legged robots by composing orbital
Lyapunov functions using rapidly-exploring random trees

Ali Zamani, Joseph D. Galloway II, Pranav A. Bhounsule

Abstract— We present a sampling-based framework for feed-
back motion planning of legged robots. Our framework is
based on switching between limit cycles at a fixed instance
of motion, the Poincaré section (e.g., apex or touchdown), by
finding overlaps between the regions of attraction (ROA) of
two limit cycles. First, we assume a candidate orbital Lyapunov
function (OLF) and define a ROA at the Poincaré section. Next,
we solve multiple trajectory optimization problems, one for each
sampled initial condition on the ROA to minimize an energy
metric and subject to the exponential convergence of the OLF
between two steps. The result is a table of control actions and
the corresponding initial conditions at the Poincaré section.
Then we develop a control policy for each control action as
a function of the initial condition using deep learning neural
networks. The control policy is validated by testing on initial
conditions sampled on ROA of randomly chosen limit cycles.
Finally, the rapidly-exploring random tree algorithm is adopted
to plan transitions between the limit cycles using the ROAs. The
approach is demonstrated on a hopper model to achieve velocity
and height transitions between steps.

I. INTRODUCTION

For legged robots to achieve mainstream applications,
motion planning or planning movement over multiple steps
is essential. However, the complex dynamics (e.g., unstable
modes, hybrid dynamics) and the under-actuation (more
degrees of freedom than actuators) of legged robots make
motion planning conceptually and computationally quite
challenging. In this context, one approach is to have a hier-
archical control: first, multiple low-level dynamic controllers
are developed for within-a-step balance control and then,
the low-level controllers are combined to achieve high-level
behaviors over multiple steps. Our control framework is
based on the same idea: we use an orbital Lyapunov function
(a Lyapunov function defined at the Poincaré section and is
indicative of the step-to-step or orbital stability) to achieve
stability of periodic motions and then combine these periodic
motions using rapidly-exploring random trees for planning.

II. BACKGROUND AND RELATED WORK

One of the earliest techniques for motion planning was by
Raibert and Wimberly [1] who used a computer simulation to
generate a table of control actions as a function of the robot
states. But such a table was prohibitively large for storage
and search purposes, so they approximated the table with
high order polynomials and demonstrated their approach on
a hopping robot. Similarly, Da et al. [2] used a computer

Robotics and Motion Lab., Dept. of Mechanical Engineering, The Uni-
versity of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249,
USA. Corresponding author: pranav.bhounsule@utsa.edu.
This work was supported by NSF grants 1566463 and 1816925 to PAB.

Funnel

Region of
attraction

Fixed point

Region of attraction at
the Poincare section (E)

Limit cycle

(b) Funnels(a) Periodic motion
E 1

E 2

E 3

E 3 E 2 E 1

Fixed point
E

Fig. 1: Relation between funnels and limit cycles: (a) A
steady state solution or limit cycle and the corresponding
region of attraction at the Poincaré section. (b) Feedback
motion planning by composing regions of attraction based
on common overlapping areas to funnel the systems from
one limit cycle to another. Note that the system switches
from one limit cycle to another at the Poincaré section.

simulation to create controllers as a function of robot states
and terrain height. The data was then input into a supervised
learning framework to learn a control policy, which was then
implemented on a bipedal robot. One issue with these past
works are that they do not explicitly minimize an objective
function.

Dynamic programming (DP) is a method for optimal
motion planning. The technique relies on the discretization
of the state space and defining a suitable cost function.
The prime issue with this method is that the quality of
the results depends on the fineness of discretization, but for
a fine discretization and high degrees of freedom system,
the control synthesis becomes quickly intractable due to
high computation and storage cost. The common techniques
for tackling this issue is to make simplifications to the
system. For example, Whitman [3] simplified a humanoid
robot into three simple independent models; a sagittal, a
lateral, and a frontal model. Controllers were developed for
the individual models and combined during run-time using
time as the phase variable. Mandersloot et al. [4] discretized
the system from one-step to another using the Poincaré
section and used this step-to-step discretization within the
dynamic programming framework. Because of the extensive
computations, DP is mostly an offline method.

Model predictive control (MPC) is an online optimization

technique that relies on repeatedly computing the optimal
control policy for a given planning time, then implementing
only a part of the planned control policy, followed by
replanning as new information becomes available. Park et
al. [5] considered the problem of a quadruped jumping over
randomly placed obstacles. They first created stable low-
level bounding controllers for the quadruped. Then using the
MPC framework, the robot planned apex velocity and step
length based on terrain information, which was then input
to the low-level controller. Rutschmann et al. [6] considered
MPC but in the context of tracking a foothold position while
maintaining balance on rough terrain for a hopper model.

Our method capitalizes on combining multiple steady state
gaits to create motion plans as illustrated next. Fig. 1 (a)
shows a limit cycle. Associated with the limit cycle is a fixed
point, an initial condition picked at the Poincaré section (an
instance of motion such as apex or touchdown) that maps
onto itself at the Poincaré section of the next step. Let the
pink ellipse denote the region of attraction (ROA) of the
fixed point. The ROA represents all the initial conditions at
the Poincaré section that will converge to the fixed point
after one or more steps. Fig. 1 (b) shows how multiple
limit cycles may be combined to create motion plans. For
example, the fixed point of the ROA E1 is inside the ROA
E2. Similarly, the fixed point of ROA E2 is inside the ROA of
E3. When the system is near the fixed point of E1, switching
the controller to that of E2 will cause the system to move
towards the fixed point of E2. Thus, switching the controllers
based on ROA’s is a straightforward method to create motion
plans. This technique was used by Veer et al. [7], [8], [9]
to achieve variable speed walking on a bipedal robot and
by Cao et al. [10] to achieve gait transition for a quadruped
robot. In both works, extensive numerical simulations were
used to estimate the ROA at the Poincaré section. Sampling-
based methods may be used with ROAs to achieve feedback
motion planning. For example, Tedrake [11] used a linear
quadratic regulator (LQR) to stabilize limit cycles and to
estimate the ROA of the LQR controller. For a random point
chosen on the state space, LQR-trees inspired by rapidly-
exploring random trees (RRT) were grown towards the limit
cycle. The ROAs were estimated using the sum of squares
optimization [12].

In this paper, we switch controllers at the Poincaré sec-
tion as done before. However, unlike previous works, we
use an orbital Lyapunov function [13], [14] to assume a
candidate ROA and use trajectory optimization to guarantee
exponential convergence of all initial conditions with the
ROA. Our previous paper explored composing limit cycles
using heuristics to achieve motion planning [15]. This paper
presents two improvements over our past approach: (1) use
of deep neural networks to learn control policies for fixed
points and their ROAs, and then generalize across multiple
fixed points without additional computations, and (2) adopt
the RRT algorithm to reason with ROAs to achieve feedback
motion planning.

θ

iy
i

y
+1

ẋi+1

(a) Flight (b) Compression (c) Restitution (d) Flight

ẋi

(a) (b)

F c F r

Fig. 2: Different phases of motion for the model. The model
has a prismatic actuator for generating inline force along
the stance F “ P ` kp`0 ´ `q along the stance leg and a
hip actuator for foot placement at an angle θ with respect
to the vertical. See [16] for more details including hopper
parameter values.

III. MODEL

Figure 2 shows the model of the hopper. It consists of
a point mass body of mass m and a massless leg with a
maximum leg length `0. Gravity is denoted as g and points
downwards. There is a prismatic actuator that can generate
an axial force (F) and a hip actuator for foot placement angle
(θ). The states of the model are given by tx, 9x, y, 9yu where
x and y are the x- and y-position of the center of mass and
9x and 9y are the respective velocities. The model starts at
the apex where the state vector with respect to the world
frame is t0, 9xk, yk, 0u. The model then moves under gravity
given by equations, :x “ 0 and :y “ ´g, until ground contact,
which is detected by the condition y´ `0 cospθq “ 0, where
θ is the foot placement angle and measured relative to the
vertical. Thereafter, the ground-contact interaction is given
by equations, m:x “ F x

` and m:y “ F y
` ´mg, where x and

y are taken relative to the contact point, F “ P`kp`0´`q is
the force on the stance leg, P ą 0 is a constant force, k is a
constant, and ` “

a

x2 ` y2 is the instantaneous leg length.
For the first half of the stance phase from touchdown to mid-
stance (defined by 9y “ 0 1) called the compression phase,
we assume that the constant force is P “ Pc. For the second
half of the stance phase from mid-stance to take-off called
the restitution phase, we assume that the constant force is
P “ Pr. We assume there is no foot slipping during ground
interaction. The model takes off from the ground when the
leg is fully extended, that is, `0 ´ ` “ 0. Thereafter, the
mass has a flight phase to end at the next apex with respect
to world frame, txk`1, 9xk`1, y, 0u.

IV. PRELIMINARIES

A. Poincaré map and limit cycle

We define the Poincaré map, F, at the apex. The apex
is defined by the condition, 9y “ 0. Given the state at the
apex at step k, xk “ t 9x, yu, and the control actions, uk “

tθ, Pc, Pru we compute the state at the next step,

xk`1 “ Fpxk,ukq. (1)

1Note that the event 9y “ 0 is different from the event corresponding to
full leg compression, which is given by 9̀ “ 0.

(a)

(1) Deep learning

(2) Motion planning

(b)
Start

Goal

Fig. 3: Our control framework: (a) generate controllers to
create regions of attraction for multiple fixed points using
trajectory optimization; (b) use deep learning to develop
control policies for other fixed points (grey ellipses) to fill the
state space and then use overlaps between ROAs for motion
planning from start point to goal point.

There is no closed form for the map F. We use numerical
integration to obtain the map. The ith limit cycle is found
by fixing xk`1 “ xk “ xi and searching for uk “ ui “

tθ, Pc “ 0, Pr “ 0u such that

xi “ Fpxi,uiq. (2)

B. Orbital Lyapunov Function (OLF)
We define a Lyapunov function for the ith limit cycle at

the Poincaré section (F) as follows

V p∆xi
kq “ p∆xi

kq
TS∆xi

k “ pxk ´ xiq
TSpxk ´ xiq (3)

where the positive definite matrix S “ diagt 1
s21
, 1
s22
u. The

resulting Lyapunov function is a 2-dimensional ellipse that
has its major and minor axes along the horizontal apex
velocity and apex height axes respectively. We use the
diagonal Lyapunov function in this paper because we want
to maximize the velocity and height switch, but other non-
diagonal or non-quadratic functions could be used, provided
that the Lyapunov function is positive definite. We impose an
exponentially decaying condition on the Lyapunov function

V p∆xi
k`1q ´ V p∆xi

kq ď ´αV p∆xi
kq, (4)

where 0 ă α ď 1 is the rate of decay of the Lyapunov
function between steps.

C. Region Of Attraction (ROA)
The Region Of Attraction (ROA), R, of the controller is

the set of all initial conditions xk that would converge to the
corresponding limit cycle xi over one or more steps. The
region of attraction is defined by the level set c from the
equation pxk ´ xiq

TSpxk ´ xiq ´ c “. In general, the value
of c is constrained by actuator limits or kinematic limits. We
choose the constant c “ 1 (a design choice) to ensure that
the biggest switch in velocity is 2c “ 2 m/s.

V. METHODS

A. Trajectory optimization for a given initial condition
For a given initial condition xk ‰ xi at the Poincaré sec-

tion, we solve the following trajectory optimization problem

minimize
uk

MCOT (5)

subject to: xk`1 “ Fpxk,ukq (6)

V p∆xi
k`1q ´ p1´ αqV p∆xi

kq ď 0 (7)

where MCOT is the Mechanical Cost Of Transport and is
defined as the energy used in a step (Estep) per unit weight
(mg) per unit distance traveled in one step (D)

MCOT “
Estep

mgD

Estep “ Ek ` EPc
` EPr

“

ż

step

ˆ

|kp`0 ´ `q 9̀| ` |Pc
9̀| ` |Pr

9̀|

˙

dt. (8)

where Ek, EPc , and EPr are mechanical work done by the
axial actuator to simulate a springy leg, constant compression
force, and restitution force respectively, |x| is the absolute
value of x, and 9̀ “

x 9x`y 9y
` . In order to use gradient-

based optimization methods, we smooth the absolute value
(it has a kink at x=0) using square root smoothing [17].
That is, |x| “

?
x2 ` ε2 where ε is a small number (we

use ε “ 0.01). We solve the optimization problem defined
by Eqns. 5-7 using single shooting method [18], [19]. One
caveat in the optimization problem formulation is that there
is no formal guarantee that the optimization problem will
converge to a feasible solution, but our experience has been
that when the control actions (e.g., foot placement, brake
force, thrust force) have a fairly independent effect on the
system state, which is a measure of the controllability of
the system in sense, the optimization problem generally
converges to a feasible solution without any issues.

B. Overview of the feedback motion planning approach

1) Trajectory optimizations for sampled initial conditions
within the ROA for multiple limit cycles: First, we solve the
trajectory optimization problem defined in Sec. V-A for a
given limit cycle xi and for multiple initial conditions chosen
within the ROA pxk´xiq

TSpxk´xiq´1 ă 0. We also store
the fixed point of the limit cycle xi, the initial conditions
xk, and the corresponding control actions uk. This process
is repeated to generate control actions for ROAs for multiple
limit cycles as shown in Fig. 3 (a).

2) Filling state space with regions of attraction and as-
sociated stabilizing controllers followed by feedback motion
planning using rapidly-exploring random trees: We use the
stored data to find a control policy for each control action
as a function of the fixed point and initial conditions, uj “
fjpxi,xkq where j “ 1, 2, 3 correspond to the three control
actions for the hopper. We use deep neural networks to
estimate the functions fj . Our previous work informs the
choice of neural networks for the fj (see [14]). We can use
the functions fj to predict the control actions for a randomly
chosen fixed point at the Poincaré section. The resulting
function fj is validated for ROAs of multiple fixed points as
shown by grey ellipses in Fig. 3 (b). Next, we plan transitions
using rapidly-exploring random trees (RRT). The key idea is
to switch at the Poincaré section (i.e., at the apex for the
hopper model) by reasoning with the overlap between the
ROA of two limit cycles.

We present the modified RRT algorithm [20] in Algo. 1
and a pictorial depiction is in Fig. 4. We restrict the algorithm
to the hopper model and to the region of attraction described

Algorithm 1 GENERATE RRT(xinit,xgoal, δ 9x, δy,NP)

1: T.init(xinit);
2: for p “ 1 to NP do
3: xrand Ð RANDOM STATE();
4: xnear Ð NEAREST NEIGHBOR(xrand, T);

{NOTE: xnear “ xk}
5: xfixedÐ NEW FIXED POINT(xnear,xrand, δ 9x, δy);

{NOTE: xfixed “ xi}
6: unear Ð SELECT INPUT(xfixed,xnear)

{NOTE: unear “ uk, SELECT INPUT isfj ,
uj “ fjpxfixed,xnearq, j “ 1, 2, 3.}

7: xnew Ð SIMULATION(model,xnear,unear)
{NOTE: xnew “ xk`1}

8: T.add vertex(xnew);
9: T.add edge(xnear,xnew);

10: if |xnew ´ xgoal| ă minpδ 9x, δyq then
11: break;
12: end if
13: end for

(a)

φ

xrand

xnear

xfixed

xnew

φ

xrand

xnear

xfixed

φ

xrand

xnear

(b) (c)

Fig. 4: Pictorial depiction of the RRT algorithm

by the major and minor axes on the x and y directions, but is
easy to adapt to other cases. The inputs to the models are: the
initial state xinit, the goal state xgoal, the major and minor
axes of the ellipse as given by δ 9x “ s1

?
c and δy “ s2

?
c,

and maximum number of nodes allowed Np. The tree is
denoted by T . At item number 3, we generate a random
state xrand using the function RANDOM STATE(). At item
number 4, we use the function NEAREST NEIGHBOR()
to search for the nearest state xnear on the existing tree
using the Euclidean distance. We compute the direction from
the nearest point on the tree to the random point as φ “
tan´1ppyrand´ynearq{p 9xrand´ 9xnearqq (see Fig. 4 (a)). Next
at item number 5, the function NEW FIXED POINT() is
used to choose a fixed point xfixed “ xnear`∆xnear where
∆xnear “ tδ 9x cospφq, δy sinpφqu (see Fig. 4 (b)). Next
at item number 6, we use the SELECT INPUT() function,
which is the same as the neural networks identified in Sec. V-
B.2 to choose control actions unear. Next at item number
7, we use the function SIMULATION(), which is a forward
simulation of the model, to grow the tree to the point xnew

(see Fig. 4 (c)). At item numbers 8 and 9, we add xnew as a
vertex and connect it to xnear to form an edge on the tree T.
We terminate the algorithm if the xgoal is within the region of
attraction of xnew as shown at item number 10. In summary,
the key modifications to the original RRT algorithm are: (1)
at item number 5 where the randomly chosen direction is
used to choose a fixed point, and (2) at item number 7 where
forward simulation is used to update xnew. Unlike the static

RRT, popular for path planning without dynamics, we do
feedback motion planning because xnew is obtained from
xnear (feedback) and using the system dynamics. Once the
tree T is built, we search it backwards from the goal to the
start to find a feasible path.

VI. RESULTS

We present results for the hopper model described in
Sec. III. As mentioned earlier, the Poincaré section is at the
apex. There are two state variables at the apex xk “ t 9x, yu
and three control actions uk “ tθ, Pc, Pru. The parameters
for the orbital Lyapunov function are s1 “ 1 and s2 “ 0.3,
and the rate of convergence α “ 0.9.

A. Trajectory optimizations for ROAs of multiple limit cycles

We choose the following 7 limit cycles characterized by
fixed points xis; t2, 1.3u, t2, 1.6u, t3, 1.5u, t4, 1.4u, t4, 1.6u,
t5, 1.4u, and t5, 1.6u. We chose 105 initial conditions in
the ROA for each limit cycle, totaling 105 ˆ 7 “ 735
points. For each point, we solve the optimization problem
specified in Sec. V-A. We use the non-linear optimization
software SNOPT [21] and single shooting method using
ode113 in MATLAB. On average each optimization took
about 15 seconds on a laptop (circa 2012). Clearly, the
optimization speed is too slow for real-time implementation.
This necessitates offline computation of the control policy as
given next.

B. Training the control policy

We use the data from the 7 limit cycles to train three neural
networks, each corresponding to a control action (θ, Pc, and
Pr). Each neural network has 12 hidden layers and is trained
using Levenberg-Marquardt algorithm with mean squared
error as the performance criterion. The inputs to the neural
networks are the limit cycles t 9xi, yiu (i “ 1, 2, 3, ..., 7),
the k perturbed initial conditions at the Poincaré section
t 9xk, yku, and the corresponding control actions uk, where
k “ 1, 2, 3, ..., 735. For more details on the specifics of the
control policy, see [14]. Note that we could have also used
a single neural network to map the three control actions
(outputs) to the two states (inputs).

C. Testing the control policy

We describe how we test the control policy using the
forward simulation. We choose a random limit cycle xi and
451 random initial conditions xk within the ROA for that
limit cycle. Then, using the control law found earlier, we
simulate the system for a single step starting from each initial
condition. Figure 5 shows the results for 3 limit cycles as
a histogram of the percentage of points (total of 451) that
lie within the various level sets of the orbital Lyapunov
function after one step. Note that only (a) is within our
training range but (b) and (c) are outside the training range,
yet the test shows that all initial conditions are reduced to
within V pxkq ă 0.3. We also check that none of the initial
conditions lead to an increase in V at the subsequent steps.
This verifies (using limited samples) that the chosen control
policy is able to perform satisfactorily.

(a) (b) (c)

Lyapunov function after 1 step (V) Lyapunov function after 1 step (V) Lyapunov function after 1 step (V)

84

15

1 0

88

12
0 0

68

22

8
2

In
iti

al
 c

on
di

tio
n

at
 s

te
p

0
(%

)

0-0.1 0.1-0.2 0.2-0.3 0.3-
0

20

40

60

80

100

0-0.1 0.1-0.2 0.2-0.3 0.3-
0

20

40

60

80

100

0-0.1 0.1-0.2 0.2-0.3 0.3-
0

20

40

60

80

100

Fig. 5: Testing the neural networks on 451 initial conditions inside the region of attraction for randomly chosen limit cycles.
The histogram shows the percentage of the initial conditions that are within the ellipse after one step V pxkq “ c, (a)
t3.5, 1.3u (b) t2, 1.7u, (c) t7, 1.3u.

D. Feedback motion planning

We present the results for the feedback motion planning
using the RRT discussed in Algo. 1. We considered two
scenarios: changing only the velocity as shown in Fig. 6
and changing the velocity and the height as shown in Fig. 7.
Animation video is in reference [22]. We discuss these next.

First, we consider the problems of keeping the start and
goal apex heights constant, but changing the start and goal
apex horizontal velocities as shown in Fig. 6. The cross
denotes the start state and the solid circle indicates the goal
state. The algorithm terminates when V pxkq ă 0.1 for the
fixed point at the goal state. Both these scenarios take 5 steps
for the transition. The corresponding control actions uk are
shown in Fig. 6 (c) and (d) with forces Pr and Pc multiplied
by 0.001. To increase the velocity, the restitution force Pr

is non-zero while the compression force Pc is zero. This is
expected because to increase the velocity, energy needs to be
supplied to the system, which comes from providing a non-
zero restitution force. The roles of the forces are swapped for
decreasing the velocity as expected by following the reverse
logic. The foot placement angle shows a steady increase
for increasing apex forward velocity (c). This can have the
effect of increasing the apex height, while reducing the apex
forward velocity without changing the total energy of the
system [23]. However, from (a) it can be seen that the apex
height is decreasing. This suggests that the foot placement
angle control is compensating for the increased restitution
force, which may increase both the apex horizontal velocity
as well as the apex height. A decreased foot placement angle
in (d) can now be reasoned by reversing the logic.

Second, we consider the problems of changing both the
start and goal apex heights and horizontal velocities. In
Fig. 7 (a), the objective is to increase the apex horizontal
velocity and apex height while in Fig. 7 (b), the objective is
to decrease the apex horizontal velocity and increase apex
height. The first objective is achieved in 5 steps, while the
second in 6 steps as shown. The trends in forces are similar
to those in Fig. 6 and follow similar logic as before. The
increase in foot placement angle in (c) provides a means to
increase the apex height, but the decrease in foot placement
angle in (d) is a mechanism to compensate for the increased

compressive force Pc as noted earlier too.

VII. DISCUSSION

We have presented a framework for feedback motion
planning of legged robots by composing periodic gaits using
regions of attraction and rapidly-exploring random trees.
The efficacy of the approach was demonstrated using a
hopper model in tasks involving increasing/decreasing the
apex horizontal velocity and apex height.

The key benefit of our sampling-based approach for mo-
tion control is that we start by assuming a Lyapunov function
and region of attraction and then find a control policy that
validates our assumption. This is in sharp contrast to existing
approaches that start with a control policy, usually a linear
one (e.g., linear quadratic regulator [11]), and then estimate
the largest region of attraction. Depending on the assumed
control policy and the nonlinearity in the dynamics, the exist-
ing methods may lead to a small region of attraction, which
may significantly affect the motion planning. Furthermore,
we are also able to ensure quick transitions by enforcing an
exponential convergence condition on the orbital Lyapunov
function.

Existing approaches of using a moving Poincaré section
and estimating the region of attraction along the trajectory
[24] solve a trajectory tracking problem. In contrast, we are
able to convert the traditional trajectory tracking problem into
a regulation problem by doing step-to-step control using the
Poincaré section. The latter is computationally cheaper and
simpler than the former.

The average time taken by the trajectory optimization is
15 seconds per initial condition. This is too slow for online
optimization. However, by using offline optimization for the
control actions over multiple regions of attraction followed
by regression to find a control policy, we are able to create
a compact policy that is easy to store and use on hardware.

Our method has several limitations. First, our sampling-
based method is computationally expensive and relies on
extensive offline optimizations followed by regression to find
the control policy. This is especially an issue for complex
legged models (e.g., humanoids). Second, our method relies
on a number of heuristics such as the choice of Lyapunov

1.5 2 2.5 3 3.5 4 4.5 5 5.5
Ap

ex
 h

ei
gh

t,

 (
m

)
1

1.5

2

1 2
3

4
5

1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

12
3

4

5

Step number
1 2 3 4 5

C
on

tro
l a

ct
io

n,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step number
1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

u
y k

Apex horizontal velocity, (m/s)ẋk

k

Start Goal Start

Goal

{2,1.3} {5,1.3} {2,1.3} {5,1.3}

(a) (b)

(c) (d)
Apex horizontal velocity, (m/s)ẋk

θ
Pc
Pr

0.001

0.001

θ
Pc
Pr

0.001

0.001

Fig. 6: Results for feedback motion planning: (a,c) increasing apex horizontal velocity and (b,d) decreasing apex horizontal
velocity, both for constant start and goal apex heights. Note that the angle is in radians and force is in N.

Start
Goal

Start

Goal
{2,1.3}

{4,1.6}
{2,1.6} {5,1.3}

(a) (b)

(c) (d)

Step number Step number

Ap
ex

 h
ei

gh
t,

 (

m
)

C
on

tro
l a

ct
io

n,
 u

y k
k

Apex horizontal velocity, (m/s)ẋk Apex horizontal velocity, (m/s)ẋk

θ
Pc
Pr

0.001

0.001

θ
Pc
Pr

0.001

0.001

1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

1 2

3
4

5

1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

12
34 5

6

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 7: Results for feedback motion planning: (a,c) increasing apex horizontal velocity and apex height, and (b,d) decreasing
apex horizontal velocity and increasing apex heights. Note that the angle is in radians and force is in N.

function, Poincaré section, control actions, and fitting func-
tion for the control law. Third, the presence of actuator limits
and kinematic limits may lead to difficulties in guaranteeing
the validity of the assumed region of attraction. Finally, since
we use a single Poincaré section at mid flight, perturbations
after mid flight may lead to failure before they can be
corrected for in the mid flight of the subsequent step.

VIII. CONCLUSION AND FUTURE WORK

We conclude that feedback motion planning of legged
robots that compose regions of attraction at distinct phases

in motion (e.g., apex) while using tools from sampling-
based motion planning algorithms is a promising approach.
However, the approach depends on a number of heuristics
that need to be further explored.

We suggest the following extensions: (1) choose more
complex Lyapunov functions depending on the task objec-
tives (e.g., non-diagonal quadratic functions and polytopes);
(2) use optimal variants of sampling-based planners (e.g.,
RRT-star); and (3) explore the space of different control
actions, Poincaré section, and robot models (e.g., biped,
quadruped),

REFERENCES

[1] M. H. Raibert and F. C. Wimberly, “Tabular control of balance in
a dynamic legged system,” IEEE Transactions on systems, man, and
Cybernetics, no. 2, pp. 334–339, 1984.

[2] X. Da, R. Hartley, and J. W. Grizzle, “Supervised learning for stabiliz-
ing underactuated bipedal robot locomotion, with outdoor experiments
on the wave field,” in Robotics and Automation (ICRA), 2017 IEEE
International Conference on. IEEE, 2017, pp. 3476–3483.

[3] E. C. Whitman, “Coordination of multiple dynamic programming
policies for control of bipedalwalking,” Ph.D. dissertation, Carnegie
Mellon University, 2013.

[4] T. Mandersloot, M. Wisse, and C. G. Atkeson, “Controlling velocity
in bipedal walking: A dynamic programming approach,” in Humanoid
Robots, 2006 6th IEEE-RAS International Conference on. IEEE,
2006, pp. 124–130.

[5] H.-W. Park, P. M. Wensing, S. Kim et al., “Online planning for
autonomous running jumps over obstacles in high-speed quadrupeds,”
2015.

[6] M. Rutschmann, B. Satzinger, M. Byl, and K. Byl, “Nonlinear model
predictive control for rough-terrain robot hopping,” in Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on. IEEE, 2012, pp. 1859–1864.

[7] S. Veer and I. Poulakakis, “Ultimate boundedness for switched sys-
tems with multiple equilibria under disturbances,” arXiv preprint
arXiv:1809.02750, 2018.

[8] S. Veer, M. Motahar, and I. Poulakakis, “Generation of and Switching
among Limit-Cycle Bipedal Walking Gaits,” in Proceedings of the
56th IEEE Conference on Decision and Control, Melbourne, Australia,
2017.

[9] S. Veer and I. Poulakakis, “Safe adaptive switching among dynamical
movement primitives: Application to 3d limit-cycle walkers,” arXiv
preprint arXiv:1810.00527, 2018.

[10] Q. Cao, A. T. Van Rijn, and I. Poulakakis, “On the control of gait
transitions in quadrupedal running,” in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015,
pp. 5136–5141.

[11] R. Tedrake, “LQR-Trees: Feedback motion planning on sparse ran-
domized trees,” in Proceedings of Robotics Science and Systems (RSS),
Zaragoza, Spain, 2009.

[12] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing
sostools: A general purpose sum of squares programming solver,” in
Decision and Control, 2002, Proceedings of the 41st IEEE Conference
on, vol. 1. IEEE, 2002, pp. 741–746.

[13] P. A. Bhounsule and A. Zamani, “A discrete control lyapunov function
for exponential orbital stabilization of the simplest walker,” Journal
of Mechanisms and Robotics, vol. 9, no. 5, p. 051011, 2017.

[14] P. A. Bhounsule, A. Zamani, J. Krause, S. Farra, and J. Pusey, “Control
policies for a large region of attraction for dynamically balancing
legged robots: a sampling-based approach,” Robotica (submitted),
2019.

[15] P. A. Bhounsule, A. Zamani, and J. Pusey, “Switching between
limit cycles in a model of running using exponentially stabilizing
discrete control lyapunov function,” in 2018 Annual American Control
Conference (ACC). IEEE, 2018, pp. 3714–3719.

[16] A. Zamani and P. Bhounsule, “Control synergies for rapid stabilization
and enlarged region of attraction for a model of hopping,” Biomimetics,
vol. 3, no. 3, p. 25, 2018.

[17] M. Srinivasan, “Why walk and run: energetic costs and energetic
optimality in simple mechanics-based models of a bipedal animal,”
Ph.D. dissertation, Cornell University, 2006.

[18] J. T. Betts, Practical methods for optimal control and estimation using
nonlinear programming. Siam, 2010, vol. 19.

[19] F. Alambeigi, S. Sefati, and M. Armand, “A convex optimization
framework for constrained concurrent motion control of a hybrid
redundant surgical system,” in 2018 Annual American Control Con-
ference (ACC). IEEE, 2018, pp. 1158–1165.

[20] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[21] P. Gill, W. Murray, and M. Saunders, “SNOPT: An SQP algorithm for
large-scale constrained optimization,” SIAM Journal on Optimization,
vol. 12, no. 4, pp. 979–1006, 2002.

[22] P. A. Bhounsule, “Feedback motion planning using rapidly-exploring
random trees,” https://youtu.be/Ie-WGqAl6-4, September 2018.

[23] J. K. Hodgins and M. Raibert, “Adjusting step length for rough terrain
locomotion,” IEEE Transactions on Robotics and Automation, vol. 7,
no. 3, pp. 289–298, 1991.

[24] I. R. Manchester, “Transverse dynamics and regions of stability for
nonlinear hybrid limit cycles,” IFAC Proceedings Volumes, vol. 44,
no. 1, pp. 6285–6290, 2011.

