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Abstract— The main motivation of this paper is to understand
the role of foot placement and ankle push-off control in
stabilizing bipedal gaits. We modify the simplest walker (heavy
torso, light legs) by incorporating a hip spring, a hip actuator,
and a telescopic linear actuator. We consider two stability
criteria: one-step dead-beat stabilization for full correction of
disturbance in a single step and exponential orbital stabilization
using discrete control Lyapunov function. Our findings are
as follows: (1) Both control strategies have almost similar
robustness as measured by the number of steps walked on
stochastic terrain before failure, but both strategies are more
robust for changing terrain with step down and less robust for
step up. (2) One step dead-beat stabilization is more energy-
efficient than exponential stabilization. (3) Control strategy for
step up is to decrease foot placement or maintain push-off and
for step down is to increase foot placement or decrease the push-
off. However, it is most energy-efficient to use foot placement
control for step up and push-off control for step down.

I. INTRODUCTION

Dynamic walking robots rely mainly on foot placement
control (stepping in the direction of fall) for orbital or step-
to-step stability to achieve natural-looking locomotion. How-
ever, push-off control (regulating the ankle motion before or
after foot-strike) has also emerged as a promising alternative
for balance control of dynamic locomotion. Understanding
the role of these two strategies for gait stabilization is
expected to help in the development of robust dynamic
walking robots. In this paper, we investigate the role of
foot placement control and ankle push-off control in gait
stabilization of a dynamic walking model by considering
uneven terrain and two notions of stability — one-step dead-
beat stabilization and exponential orbital stabilization.

II. BACKGROUND AND RELATED WORK

Foot placement control was used as early as the 1980’s by
Marc Raibert to regulate the forward speed of his dynami-
cally balancing hopping robots [1]. He defined the horizontal
travel distance of the robot as the CG print. The normal,
symmetric gait is created by placing the foot in the middle
of the CG print. To increase robot speed, it needs to place
its foot slightly before the middle of the CG print and vice
versa to decrease its speed. More recently, Pratt et. al. [2]
formalized foot placement control by defining the capture
point. Capture point is the location that the robot needs to
place its foot in order to come to a complete stop when
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pushed. It is straightforward to extend this idea to generate
and control steady locomotion.

Push-off control was first shown to explain the energetics
of human locomotion by Kuo [3]. He showed that ankle
push-off just before foot-strike is four times energy-efficient
than push-off after foot-strike or hip actuation. Consequently,
several dynamically balanced legged robots have used push-
off control as means to create energy-efficient walking
motions[4], [5]. Hobbelen and Wisse [6] have shown that
ankle push-off is also able to improve the robustness while
maintaining the energy-efficiency.

Goswami et al. [7] and Spong [8] have investigated the role
of ankle torque and hip torque individually in stabilizing the
compass gait model. The key idea is to use either actuator
to track a reference energy level obtained from a passive
dynamic limit cycle [9], but they have not compared the
two control strategies. Byl and Tedrake [10] compared the
performance of foot placement with push-off. They used the
value iteration algorithm to find one-step control policy that
maximizes probability of not falling on rough but ‘known’
terrain. They found that constant push-off control and ad-
justable foot placement leads to the most robust controller.
Our study differs from theirs in that we assume the terrain
profile is unknown.

More recently, a study by Kim and Collins [11] investi-
gated the role of foot placement and ankle push-off using a
three-dimensional model of human walking with single and
double support phase. They found that ankle push-off control
is twice as effective as foot placement control to recover
from disturbances for changing terrain with step up and
step down. Our study investigates the role of two strategies
with a simple sagittal model and using two different stability
criteria: one-step stabilization and exponential stabilization.
Our motivation is to check if Kim and Collins’ conclusions
hold true for different stability measures and for different
perturbations, namely step up and step down considered
separately. In doing so, we are able to find which strategy
works best for a given terrain disturbance and determine
how the stability criteria influence the robustness and energy
usage. These principles should aid in making design choices
and controller design for bipedal robots and artificial devices.

III. MODEL

A. Model description

Fig. 1 shows a model of the simplest walker. The model
has a mass M at the hip and point mass m at each of the
feet. Each leg has length `. Gravity g points downwards. The
leg in contact with the ground is called the stance leg while



the other leg is called the swing leg. The angle made by the
stance leg with the normal to the ground is θ and the angle
made by the swing leg with the stance leg is φ. The hip
torque is T . There is a torsional spring with spring constant
K between the two legs (not shown). The rest length of the
spring is zero and corresponds to the position when both legs
are parallel. There is a linear actuator which is used to apply
an impulsive push-off, P , just before foot-stike. A complete
walking step of the model is given as follows:

mid-stance
hkkikkj

ÝÑ Single Stance

collision
hkkikkj

ÝÑ Foot-strike Ñ Single Stance
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

single step

mid-stance
hkkikkj

ÝÑ (1)

A single step consists of two phases; a single stance phase
where the swing leg rotates about the pin joint connecting to
the stance leg and a foot-strike phase where there is support
transfer and the legs change their roles. These phases are
connected through two events; a mid-stance event where the
stance leg is along gravity direction and a collision phase
where the leading leg touches the ground.

B. Equations of motion

1) Single stance phase (continuous dynamics): In this
phase of motion, the stance leg pivots and rotates about the
stationary foot; while the swing leg pivots and rotates about
the hinge connecting the two legs. We assume that the stance
leg does not slip, there is no hip hinge friction, and we ignore
foot scuffing during leg swing. We obtain Eqns. 2 and 3
defined below by taking moments about stance foot contact
point and hip hinge respectively, and non-dimensionalizing
time with

a

`{g and applying the limit, m{M Ñ 0. In
Eqn. 3, τ is the non-dimensional torque obtained by dividing
the torque, T , by Mg`. The non-dimensional spring constant
is k and is obtained by dividing K by Mg`. The equations
are;

:θ “ sinpθq, (2)
:φ “ sinpθq ` t 9θ2 ´ cospθqu sinpφq ´ kφ` τ. (3)

2) Foot-strike phase (discontinuous dynamics): In this
phase of motion, the legs exchange their roles, that is,
the current swing leg becomes the new stance leg and the
current stance leg becomes the new swing leg. There is
an instantaneous plastic collision (no slip and no bounce)
of the swing leg. The swapping of legs is expressed by
Eqns. 4 and 5. The angular rates of the legs after support
exchange are given by Eqns. 6 and 7 and are obtained by

φ
θ

M

l

m m

g T

Fig. 1. Model: The simplest walking model on level ground [3].

applying conservation of angular momentum about stance
foot contact point and hip hinge respectively, followed by
non-dimensionalizing time with

a

`{g and applying the limit,
m{M Ñ 0. In the equations below, the state variables before
and after collision are denoted using the superscript ´ and
` respectively.

θ` “ ´θ´, (4)
φ` “ ´φ´, (5)
9θ` “ 9θ´ cosφ´ ` P sinφ´, (6)
9φ` “ p1´ cosφ´qpP sinφ´ ` 9θ´ cosφ´q. (7)

3) Mid-stance event: The mid-stance event occurs when
the stance leg is normal to the ground and is given by θ “ 0.

4) Collision event: The collision event occurs when the
foot of the leading leg makes contact with the ground. We
introduce a step down of height h at the collision. This is
taken to be zero, except for testing the robustness of the
control approach. The collision event is given by, cospφ´ ´

θ´q ´ cospθ´q “ h.
5) Failure modes: There are two failure modes for the

simplest walker and lead to two conditions on the state of
the system and are checked at each integration step. Violation
of any of these conditions is interpreted as system failure.

1) Falling Backwards: Falling backwards is detected
when the angular velocity of the stance leg is positive
(note that forward velocity is indicated by a negative
angular velocity). The condition for failure is: 9θ ě 0.

2) Flight phase: Flight phase is detected when the vertical
ground reaction force, Ry “ cospθq ´ 9θ2 ď 0. Thus
the condition for failure is: 9θ2 ´ cospθq ě 0

IV. METHODS

A. Overview of control technique

From the single stance phase Eqns. 2 and 3, we see that:
(1) the hip torque can be used to control the swing leg and
(2) the motion of the swing leg does not affect the motion
of the stance leg. Thus, by the controllability definition [12],
although the swing leg motion, φptq, is fully controllable,
the motion of the stance leg, θptq, is not controllable within
a step. However, we can find a function, F , that maps the
mid-stance between consecutive steps and is indexed by step
number, k. Thus

9θk`1 “ F p 9θk, Pk, φ
´
k q (8)

where φ´
k is swing leg angle at foot-strike at step k and

is related to the step length, and Pk is impulsive push-off
at step k. Given the measurement at step k, 9θk, the control
variables, φ´

k and Pk, can be used to modulate 9θk`1. Thus,
the stance leg is fully controllable between steps. Based on
these observations, we use a hierarchical control approach:
the stance leg velocity is controlled between steps using
foot placement and push-off control, while the swing leg
is controlled in the step using trajectory tracking controller
based on the foot placement angle. Note that it is not possible
to find closed form solution for F . The map, F , is obtained
by numerically integrating the equations of motion.



B. Mid-stance to mid-stance map for stance leg:

In this section we present equations that can be used to
numerically solve for the mid-stance to mid-stance map, F ,
given by Eqn. 8.

We do an energy balance for the stance leg between the
mid-stance and the instant just before foot-strike and then
again from just after foot-strike to the next mid-stance to get
Eqns. 9 and 10 respectively

p 9θkq
2

2
` 1 “

p 9θ´q2

2
` cos

ˆ

φ´

2

˙

, (9)

p 9θk`1q
2

2
` 1 “

p 9θ`q2

2
` cos

ˆ

φ`

2

˙

, (10)

“
p 9θ´ cosφ´ ` P sinφ´q2

2
` cos

ˆ

φ´

2

˙

.

To get the Eqn. 10 we have used the foot-strike conditions
given by Eqns. 5 and 6. We have also assumed that controller
is not going to be aware of the step up/down disturbance, so
we set h “ 0.

C. Discrete control Lyapunov function (DCLF) and one-step
dead-beat control

We use a discrete control Lyapunov function (DCLF) to
create an exponential stabilizing controller. The key idea is
to create a control Lyapunov function at an event (e.g., mid-
stance) and use it to regulate the velocity of the stance leg
at a predefined convergence rate. More details are in [13].

First, we need a nominal limit cycle so that we are able
to construct a DCLF to stabilize it. A nominal limit cycle is
specified by setting 9θk`1 “ 9θk “ 9θ0, Pk “ P0, and φ´

k “ φ´
0

in Eqn. 8 to get

9θ0 “ F p 9θ0, P0, φ
´
0 q (11)

Second, we define the DCLF as follows

V p∆ 9θkq “ ∆ 9θ2k “ p
9θk ´ 9θ0q

2, (12)

where V p0q “ 0 and V p∆ 9θkq ą 0 at the mid-stance event,
θ “ 0. For the system to be exponentially stable, we have
the following condition

V p∆ 9θk`1q ´ V p∆ 9θkq “ ´cV p∆ 9θkq, (13)

where c is a user chosen positive constant such that, 0 ă
c ă 1 for exponential stabilization and c “ 1 for one-step
dead-beat stabilization. Using Eqn. 12 in Eqn. 13 yields

´

9θk`1 ´ 9θ0

¯2

´ p1´ cq
´

9θk ´ 9θ0

¯2

“ 0. (14)

D. Two control techniques

1) Foot-placement control with fixed push-off: We use the
foot-placement to control the stance leg velocity between
consecutive steps by fixing the impulsive push-off at P0.
Thus Eqn. 8 can be written as

9θk`1 “ F p 9θk, P0, φ
´
k q (15)

Substituting Eqn. 15 for 9θk`1 in Eqn. 14 leads to the
condition for exponential stability

´

F p 9θk, P0, φ
´
k q ´

9θ0

¯2

´ p1´ cq
´

9θk ´ 9θ0

¯2

“ 0. (16)

The stabilization problem for this case can be stated as
follows: For the limit cycle parametrized by the stance
leg nominal velocity at mid-stance, 9θ0, a fixed rate of
convergence specified by c, the stance leg velocity measured
at mid-stance 9θk, and impulsive push-off maintained at its
nominal value, P0, find the foot-placement angle φ´

k so that
the Eqn. 16 is met.

2) Push-off control with fixed foot placement: We use the
impulsive push-off to control the stance leg velocity between
consecutive steps by fixing the foot-placement at φ´

0 . Thus
Eqn. 8 can be written as

9θk`1 “ F p 9θk, Pk, φ
´
0 q (17)

Substituting Eqn. 17 for 9θk`1 in Eqn. 14 leads to the
condition for exponential stability as

´

F p 9θk, Pk, φ
´
0 q ´

9θ0

¯2

´ p1´ cq
´

9θk ´ 9θ0

¯2

“ 0. (18)

The stabilization problem for this case can be stated as
follows: For the limit cycle parametrized by the stance leg
nominal velocity at mid-stance, 9θ0, a fixed rate of conver-
gence specified by c, the stance leg velocity measured at
mid-stance 9θk, and foot-placement angle maintained at its
nominal value φ´

0 , find the control action Pk so that the
Eqn. 18 is met.

E. Hip torque control for foot placement

We need to define a controller for the hip torque based
on the computed swing leg angle at foot-strike. We use 2
third-order, time-based trajectories for the swing leg; one
for the instant from mid-stance to foot-strike and another
one from instant after foot-strike to the next mid-stance.
Each of the third order polynomials has four coefficients
that are computed based on the initial and final values of the
position and velocity which are completely known. One also
needs the time from mid-stance to instant just before foot-
strike (Tmid-fs) and from instant after foot-strike to mid-stance
(Tfs-mid). These can be computed as follows

Tmid-fs “

ż θ“0

θ“
φ´

2

dθ
b

p 9θkq2 ` 2p1´ cospθqq

Tfs-mid “

ż θ“
φ´

2

0

dθ
b

p 9θ`q2 ` 2pcospφ
´

2 q ´ cospθqq

The time-based trajectory is supplemented with a propor-
tional derivative controller to ensure good tracking perfor-
mance.



step number
0 5 10 15 20 25 30 35 40 45 50

N
or

m
 o

f n
on

-d
im

en
tio

na
l m

id
-s

ta
nc

e 
ve

lo
ci

ty
,

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

c=1
c=0.5
c=0.25

θ̇ k|
|

Nominal mid-stance velocity

Perturbed mid-stance velocity

Fig. 2. Rate of stabilization: The convergence is exponential for 0 ă c ă 1
and “one-step dead-beat” for c “ 1.

V. RESULTS

A. Nominal limit cycle

We choose average human walking kinematics to create
the nominal limit cycle. The non-dimensional average human
speed is 0.41, step length is 0.73, and consequently the
step time is 1.78 [14]. The spring constant k is chosen to
be 2.11 in order to correspond to average human swing
frequency. Next, we find the impulsive push-off and fixed
point that give a passive leg swing. The nominal limit
cycle values are: mid-stance robot state, tθ0, 9θ0, φ0, 9φ0u “
t0,´0.3686, 0.0063,´1.2495u, impulsive push-off, P0 “

0.22, and foot placement angle, φ´
0 “ ´0.7802.

B. Rate of convergence

To demonstrate the rate of convergence we perturb the
mid-stance speed, 9θk “ ´0.7. Then we run the one-step
dead-beat controller, c “ 1, and DCLF controller for c “
0.25 and c “ 0.5. Figure 2 shows a plot of the mid-stance
velocity as a function of the steps. As expected, the one-
step dead-beat controller is able to regulate the velocity in
a single step while the DCLF controller shows exponential
convergence to the nominal limit cycle.

C. Robustness

1) Simulation details: In order to assess robustness of
our controller, we compute the average number of steps
that the robot can withstand using either controllers, foot-
placement control with fixed push-off and push-off control
with fixed foot placement, without falling down on uneven
terrain chosen from a random distribution with a deviation of
σ. Note that σ can be interpreted as a maximum step down
(`σ) or step up (´σ ) normalized by the leg length. We
create 10 terrains with 400 steps, selected from a random
distribution with standard deviation of σ. For each terrain,
we do forward simulations of the system for three values
of c. We evaluate the average number of steps to failure;
control inputs φ´ and P ; and average Cost of Transport
(COT) defined as the energy used per unit weight per unit
distance travelled.
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Fig. 3. Robustness to step-down and step-up disturbance: (a) Average steps
to failure using foot placement control with push-off held constant, and (b)
Average steps to failure using push-off control with foot placement held
constant.

2) Average number of steps to failure: Figure 3 shows
the average number of steps walked before failure as a
function of deviation in terrain height σ for three values
of c. The top plot corresponds to foot placement control,
φ´, with constant push-off, P0 (see Sec. IV-D.1), while the
bottom plot corresponds to push-off control, P , with foot
placement held constant, φ´

0 (see Sec. IV-D.2). Since we
limited the steps to 400 in the simulation, walking for 400
steps corresponds to maximum robustness. As σ increases
from 0 to 0.05 (step down) or decreases from 0 to ´0.05
(step up), the average steps to failure decreases as expected.
The plots indicate the robustness is same for different c
values for step down but marginally better for higher c values
for step up. The similar robustness for different c values is
because we did not enforce actuator limits. We expect that
when actuator limits are enforced, more aggressive control
(higher c values) will show lower robustness. The average
steps profile is not symmetric about the y-axis; the drop in
average steps walked is more gradual for step-down and more
dramatic for step-up. This is due to the asymmetry in the hip
controller: during step down the model has enough time to
complete the step as planned but during step up the robot
takes a shorter step because the robot takes a premature step
increasing the chance of failure.

3) Control strategy: Figure 4 depicts the control strategy
used for the robustness test shown in Fig. 3. The top plot
shows the swing-leg angle at foot-strike for foot placement
control strategy with push-off held constant to its nominal
value while the bottom plot shows the impulsive push-off for
push-off control strategy with swing-leg at foot-strike held
constant at its nominal value.

We explain these plots by looking at the response for c “
1 or one-step dead-beat control (black diamond). For foot
placement control, the swing leg angle changes from smaller
than nominal to larger than nominal as the terrain height
changes from step up to step down. This can be understood
as follows. The model’s energy is lower than nominal for
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step up and higher than nominal for step down. To regulate
the energy for a fixed push-off, the swing leg angle needs to
monotonically increase. Indeed, energy loss at foot-strike is
directly proportional to foot placement angle [15]. However,
for push-off control for c “ 1, the push-off is almost constant
for step up and it dcreases monotonically for step down.
Since push-off work is directly proportional to added energy,
a decrease in the push-off allows the robot to maintain its
speed while walking down. Thus we would expect the push-
off to increase for step up but it remains constant. This is
because the step up introduces an unexpected disturbance
and the model takes a short step which has the effect of
supplying energy to the system (note that foot placement
angle is directly proportional to the energy loss).

The plots for c “ 0.25 and c “ 0.5 can be understood from
the plot for c “ 1. For example, consider the foot placement
control for step down (top-right figure). The swing-leg angle
is almost constant for c “ 0.5 (blue squares) and decreasing
for c “ 0.25) (red circles). These values of c require the robot
to dissipate the excess energy gained through step down more
gradually than c “ 1. The result for c “ 0.5 is that the model
needs to just maintain its nominal swing leg angle and for
c “ 0.25 the model needs to decrease the swing leg angle in
order to dissipate the energy more slowly to satisfy the rate
of convergence given by c “ 0.25.

4) Energy usage: Figure 5 shows the average Cost Of
Transport defined as the energy used per unit weight per unit
distance travelled. The left side plots show the COT due to
hip work while the right side plots show the COT due to
push-off work. We used the absolute value of mechanical
work for the energies for the hip and ankle COT. Since the
hip is massive and legs are light it is not meaningful to sum
up the COT of hip and push-off work. The top plots are for
foot placement control and the bottom plots are for push-off
control.

The COT for the hip work (left side plots) increases as σ

deviates from 0. Note that the COT for hip work for σ “ 0
is zero because the nominal limit cycle has a passive leg
swing. The increase in COT with σ on the top plot for foot
placement is obvious; the swing-leg angle needs to change
for foot placement control, thus torque needs to be supplied
and work needs to be done. The increase in COT with σ on
the bottom plot for push-off control for constant swing-leg
angle is slightly more subtle. When the model is subjected
to varying terrain heights, the speed changes but so does the
time to foot-strike. The hip torque then needs to do work
to move the leg faster or slower as needed even though the
final swing-leg angle is the same, thus requiring more work.

The COT for push-off work (right side plots) shows that in
general, push-off COT decreases for step down and increases
for step up with some exceptions. For c “ 0.25, step down,
foot placement control (top plot, right side, red circles),
the COT for push-off increases. As noted earlier, this is to
regulate the energy decay at a slower rate than the natural
decay rate. A similar trend and reasoning apply for c “ 0.25,
step up, push-off control (bottom plot, right side, red circles).

VI. DISCUSSION, CONCLUSION, AND FUTURE WORK

We have presented an analysis of two disparate control
strategies, foot placement and ankle push-off, to regulate
robot velocity between steps. We compared one-step dead-
beat stabilization with exponential stabilization. The ap-
proach was tested by doing a forward simulation with the
terrain height changing monotonically, i.e., either step up or
step down. Our findings are as follows:

1) Average number of steps to failure is the same for both
control strategies and stabilization protocols. This is
because of lack of actuator limits.

2) In general, average number of steps walked for step
down disturbance is more than that for step up. This is
because in our simulation, step up leads to premature
stepping, thus throwing off the planned foot placement
location.

3) Control strategy for fast convergence to the nominal
for step down is to increase the foot placement angle
or to decrease ankle push-off, while for step up is to
decrease foot placement or maintain same ankle push-
off.

4) For both control strategies, the mechanical energy
usage (as measured by COT) for ankle push-off and
foot placement is almost the same, except for c “ 0.25
where hip COT for push-off control is half of that of
foot placement control for step down. However, ankle
COT for step down is less than step up while hip COT
for step up is less than step down. Thus energy-wise,
foot placement control is ideal for step up and ankle
push-off for step down.

5) Overall, one-step dead-beat stabilization is more
energy-efficient in terms of hip work and ankle work
than exponential stabilization.

We found that ankle push-off and foot placement have
similar robustness as measured by the steps to failure on
changing terrain. This is in contrast to the work by Kim
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and Collins [11] who found that push-off is at least twice
as effective as foot placement. We suspect that this is in
part due to the fact that we have no actuator limits in
our simulation allowing the robot to do drastic corrections
to regulate walking. Similarly we found that the energy
usage is similar for both control strategies except for slow
convergence to the nominal limit cycle. However, it is more
economical to use ankle push-off for step down and foot
placement for step up.

We also compared full stabilization of disturbances in a
single step, also called one-step dead-beat control (c “ 1),
with exponential stabilization of disturbances (0 ă c ă 1),
and found that although both have similar robustness as
measured by average steps to failure, full correction of
disturbances is more energy-efficient. The latter is due to the
fact that although fast convergence to the nominal limit cycle
is more expensive in the short-term (due to faster control
actions), it has long-term advantages of being on the energy-
efficient nominal limit cycle.

This work has several limitations which we discuss next.
The simulation model has no actuator limits. Adding actuator
limits will reduce the robustness of the controller. It will
also favor the control strategy which has less stringent
limitations. For example, if push-off has stringent limits then
foot placement will be more robust. The model does not
have many features of human-like walking kinematics and
dynamics. For example, the legs are massless, which prevents
us from comparing the work done by the hip motor and
the ankle motor. A massy leg would make this comparison
meaningful and would help in making design choices on how
to size actuators. We have not explored the simultaneous use
of push-off control and foot placement control. Based on the
current work, we hypothesize that combining push-off and
foot placement control will be most effective when the terrain
consists of both, step up and step down. Our future work will
address these limitations as well as looking at combination of
the two control strategies, comparing robustness and energy
usage for different walking speeds, and looking at terrain

with combination of step up and down.
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