Proceedings of the ASME 2017 Dynamic Systems and Control Conference

DSCC 2017
October 11-13, 2017, Tysons, Virginia, USA

DSCC2017-5285

HOW TO BEAT FLAPPY BIRD*: A MIXED-INTEGER MODEL PREDICTIVE CONTROL
APPROACH

Matthew Piper®, Pranav A. Bhounsule®] and Krystel K. Castillo-Villar?
% Robotics and Motion Laboratory
B Manufacturing Systems and Automation Laboratory
Department of Mechanical Engineering,
The University of Texas at San Antonio. 1 UTSA Circle, San Antonio, TX 78249
Email: matthewpiper@utexas.edu, pranav.bhounsule@utsa.edu, krystel.castillo@utsa.edu

ABSTRACT

Flappy Bird is a mobile game that involves tapping the
screen to navigate a bird through a gap between pairs of verti-
cal pipes. When the bird passes through the gap, the score in-
crements by one and the game ends when the bird hits the floor
or a pipe. Surprisingly, Flappy Bird is a very difficult game and
scores in single digits are not uncommon even after extensive
practice. In this paper, we create three controllers to play the
game autonomously. The controllers are: (1) a manually tuned
controller that flaps the bird based on a vertical set point condi-
tion; (2) an optimization-based controller that plans and executes
an optimal path between consecutive tubes; (3) a model-based
predictive controller (MPC). Our results showed that on aver-
age, the optimization-based controller scored highest, followed
closely by the MPC, while the manually tuned controller scored
the least. A key insight was that choosing a planning horizon
slightly beyond consecutive tubes was critical for achieving high
scores. The average computation time per iteration for the MPC
was half that of optimization-based controller but the worst case
time (maximum time) per iteration for the MPC was thrice that of
optimization-based controller. The success of the optimization-
based controller was due to the intuitive tuning of the terminal
position and velocity constraints while for the MPC the impor-
tant parameters were the prediction and control horizon. The
MPC was straightforward to tune compared to the other two con-

*THE PHRASE “HOW TO BEAT FLAPPY BIRD” IS INSPIRED FROM A
HILARIOUS YOUTUBE VIDEO [1]
 Address all correspondence to this author.

trollers. Our conclusion is that MPC provides the best compro-
mise between performance and computation speed without re-
quiring elaborate tuning.

1 INTRODUCTION

Flappy Bird was a popular mobile game released in May
2013 [2]. It consists of a bird flying horizontally at a constant
speed but falling continuously under gravity. The bird can be
made to fly upwards by repeatedly tapping on the screen. The
objective of the game is to get the bird to pass through a series
of green pipes as shown in Fig. 1. The horizontal distance be-
tween two consequent pair of pipes is fixed. Although the verti-
cal height of the gap between a pair of pipes is fixed, the gap lo-
cation changes randomly. The player scores a single point every
time she/he is able to successfully pass through the gap between
the pair of vertical pipes. The game is over if the bird hits either
pipe or the floor.

Although the game looks overly simple, it is substantially
difficult game to score high number of points. Our experience
has indicated scores in the range of 0 to 6 after sufficiently long
practice sessions. Notwithstanding, it was the most downloaded
game on iTunes by end of January 2014 and it’s developer, Dong
Nguyen, has said that he was earning $50,000 a day through
in-app advertisements and sales [2]. Finally, in February 2014,
Dong pulled the game off the iTunes store due to the addictive
nature of the game. Since then other developers have recreated
Flappy Bird and released them on the web. In this paper, we

Copyright © 2017 by ASME

| =
File Edit View Inser Tools Desktu| Windo\ Helg ¥

DEES | hRARXOBDEL-|”

colli

FIGURE 1: Flappy bird game

use an openly available MATLAB® version of the Flappy Bird,
which preserves the features and difficulty of the original game.

The main contribution of the paper is the formulation and so-
lution of the Flappy Bird game as a linear, mixed-integer model
predictive control (MPC) problem. A secondary contribution is
to compare the MPC with two controllers: a manually tuned
controller and an optimization-based controller with heuristically
tuned constraints.

2 BACKGROUND AND RELATED WORK

Past works on automatic control of Flappy Bird have ex-
tensively focussed on using machine learning algorithms. Shu et
al. [3] used reinforcement learning (RL) and were able to achieve
scores of around 1500 [4]. The states for learning in their formu-
lation were the x—, y— position of the bird relative to the top of
the upcoming bottom pipe and the bird velocity, and the action
was to flap or to not flap. RL optimizes state-action pairs and
transition probabilities to maximize a function.

Ebeling-Rust et al. [5] and Chen [6] used Q-learning, a vari-
ant of RL, but were only able to score around 200. We suspect
that the modest scores were because the states used for learning
were limited to the x—, y— position of the bird relative to the
upcoming pipe while ignoring the bird velocity.

Shu et al. [3] also used Support Vector Machine (SVM), a
supervised learning algorithm, to achieve scores of around 1200
[7]. One disadvantage of SVM is that it requires extensive train-
ing data generated from manually playing the game. SVM uses
the training data to create a mapping from user-defined features
to the two actions, flap or not flap. The authors used the x—, y—

position of the bird relative to the pipe, bird velocity, as well as
high order terms in the position and velocity, a total of 9 features.

All the machine learning algorithms require parameter tun-
ing, extensive learning period, and careful selection of states or
features. Because of the curse of dimensionality, either the fea-
tures have to be kept small or the grid size has to be coarse. The
greatest advantage of machine learning is that it does not need
knowledge of the physics of the system. However, the physics of
the Flappy Bird game is simple and easily available. This moti-
vates the use of model-based control algorithms. Takécs et al. [8]
used explicit model predictive control (explicit MPC) on flappy
bird but have not reported their results. Explicit MPC solves the
optimization problem offline and stores the solution. During im-
plementation, the stored policy is searched and interpolated as
needed to determine the necessary control actions.

In this paper, we use online model predictive control (MPC)
with a tunable prediction and control horizon. The problem is
formulated as a mixed-integer linear programing problem and
solved using the optimization software, Gurobi [9]. We do para-
metric studies to understand how the prediction horizon, the
control horizon, and the cost function affects the computation
speed and performance of the algorithm. We also compare the
MPC with two other controllers, a manual controller and an
optimization-based controller with heuristically tuned optimiza-
tion constraints.

3 FLAPPY BIRD MODEL

A MATLAB® version of the game was obtained from Math-
works file exchange [10]. The game is played manually by using
the spacebar key. Pressing the spacebar sets the velocity to a
fixed value in the upward direction. Otherwise, the bird is acted
upon by gravity in the downward direction that increases the ve-
locity by a fixed amount every step in the downward direction.
The dynamics of the bird can be written as follows:

Yiri =Y+ Ve (D
—2.5, =1

Virt = ¢ 2
Vi + g, 7 =0.

where k is the time index, Y} is the height of the middle of the bird
at time k (the y-axis points downward), V; is the bird’s velocity
at time k, gravity is g = 0.1356, z; is a binary decision variable,
where z; = 1 indicates bird flaps to move up and z; = O indicates
that the bird does nothing. Note that ¥} and Vj is in unit of pixels
and pixels per unit time respectively. The time step is 1 unit
so that time does not appear in any equation. Also, the bird is
moving in the horizontal direction with constant speed of 1 pixel
per unit time. We modified the downloaded game by replacing
the spacebar input with the binary decision variable, zi.

Copyright © 2017 by ASME

4 METHODS
4.1 Manual controller with heuristic tuning

File Edit View Inser Tool: Deskto| Window Help

DEEdS RARRODELA-|”

FIGURE 2: Visualization of the manual controller.

We defined a controller structure by observing our own tech-
nique while playing the game manually. Our controller struc-
ture is simple: flap the bird if it’s altitude is below a set-point (a
fixed distance above the top of the upcoming bottom pipe). The
controller logic is shown in Fig. 2 and defined by the following
pseudo-code:

if Yy <setPointY, z =1,
else, 7 =0,

where the set PointY = PipePos1 + ¢ where PipePos] is the posi-
tion of the top of the bottom pipe and the only tuning parameter
is c. We manually tuned ¢ to 10. Note that the distance between
the pipes is h = 48. That is, the optimal c is biased to be closer to
the bottom pipe. The reason for this was that the physics of the
game allows the bird to jump 2.5 pixels up but can descend only
Vi +0.1356 in a single integration step (see Eqn. 2).

4.2 Optimization-based control with heuristic tuning
of terminal constraints

In our next method, we formulate and solve the flappy bird

problem using mixed-integer linear optimization program. The

problem is defined as follows: Given the initial state Yin; and Vipi¢

and the model of the bird motion, the optimization problem is to

|4\ Flappy Bird 1.0 m} X 4 Flappy Bird 1.0 - m] X

File Edit View Inser Tool: Deskto] Windov Help

DA RNTDRL|”

File Edit View Inser Toole Deskto] Windov Help ¥

DEd|k[AXODEL "

FIGURE 3: Constraints for the optimization

minimize the number of flaps over k = 1,2, ..., n time steps, sub-
ject to path constraints (pipe locations) and heuristically tuned
end of path constraints, Y, and V,,. The mathematical details of
the optimization problem are given below:

Minimize J= y ks 3)
k=1
Subjectto Yy —Yi— Vi =0, (@)
— Vi1 + Mz <25+ M, (5)
Vi1 + Mz < =2.54+M, 6)
Vi1 +Vie =Mz < —g, (N
Vie1 =Ve—Mz < g, 3
vl <y <y?, ©)
Y1 = Yinit, (10)
Vi = Vinir, (11)
endYlow <Y, < endY high, (12)

V., <endVel if PipePos2 > PipePosl. (13)

Equations 5 - 8 are a reformulation of Eqn. 2 using the Big-
M method [11]. The Big-M method is a technique of writing
switching equations, such as Eqn. 2, into multiple equations us-
ing a large number M. The value of M is large enough (we used
M = 500) that the results of the optimization do not depend on
its specific value. That is, different M’s near our chosen value
give the same optimization results. Big-M method is used in
order to keep the constraint equations linear in the binary deci-

Copyright © 2017 by ASME

sion variable (in our case zz). By keeping the constraints lin-
ear, we are able to use computationally efficient linear mixed-
integer programming software such as MATLAB® intlinprog
and Gurobi [9]. The constraints posed by the game window (bird
should not go out of the screen) and pipe edges are enforced
at each time step using lower bound Yklb and upper bound Yk”b .
These bounds were set after taking into account bird dimensions
(see Fig. 3). This is because, although the trajectory is specified
by the mid-point of the bird, collision checking is done by using
the bounding box as shown in the figure.

The heuristically tuned variables are described next. The
time span for optimization n was tuned to 80. This window corre-
sponds to the horizontal distance between consecutive pipes. The
position variable endYlow = 0.5(PipePosl + PipePos2), con-
strains the terminal position of the bird to be halfway between
the top edge of consecutive bottom pipes (see Fig. 3). The
position variable endY high = (PipePos2 + h) — 0.5|PipePos2 —
PipePos1|, provides an upper bound on the end position. The
velocity variable endVel = 1.1 (positive velocity is downward)
and is active only if the following pipe is lower than the cur-
rent pipe as indicated by Eqn. 13 (note that positive direction is
downwards). These parameters were tuned by trial-and-error to
maximize the score.

The execution of the algorithm is as follows. The optimiza-
tion plans the control action to flap or not flap for time indices,
k=1,2,...,n (where n is fixed ahead of time). Then the bird ex-
ecutes the entire control sequence followed by the optimization
and execution for the next n time steps. The process repeats until
the bird hits the floor or a tube.

4.3 Model predictive control (MPC)

The third method used model predictive control (MPC). In
MPC, an optimization problem is formulated and solved over a
prediction horizon (say 7). Only a part of the controller policy is
implemented (say p < n) and the rest is discarded. The process
of prediction and control is repeated until a termination criteria
is achieved (e.g., end of game).

The prediction horizon was n and the control horizon was
fixed at p = 1, unless noted otherwise (see Fig. 4). The opti-
mal control problem formulation over the horizon 7 is the same
as that in Sec. 4.2 but without the heuristic constraints given by
Eqns. 11 and 12. We do not need these constraints because the
controller planning is done frequently. The only parameter in the
MPC is the prediction horizon, n. A small value of n allows quick
planning, but has higher chance of failing through constraint vi-
olation (e.g., the bird does not have enough time to avoid the
pipe). A big value of n produces better results but requires more
computations. We tune n by simply increasing its value until the
controller is able to achieve a high score. Except for the predic-
tion horizon n, an easy parameter to tune, there are no parameters
that need to be heuristically chosen.

4 Flappy Bird 1.0 - m] X
File Edit View Inser Tools Deskto] Windov Help ¥
DEde k| ARODEL-| 7

FPS: 1.1
collide =/0.00

constraints

B
control horizon

prediction horizon

FIGURE 4: Visualization of MPC method

Note that the main difference between the MPC and
optimization-based controller is that the MPC plans n control
steps but executes only the first p steps while in optimization-
based control the planning and execution steps are identical, that
isn=p.

5 RESULTS

In order to compare all methods objectively we simulated
10 games, each game was initialized with a random number gen-
erator. This ensures that the same set of pipes and gaps are
present for the given simulation run. All the computer simula-
tions were done using a laptop circa 2016, Intel Core i7-6500U,
2.5 GHz CPU. A video of the three controllers in action is in
reference [12].

Table 1 shows results for the manual controller with heuris-
tic tuning of control parameters (Sec. 4.1). Since the controller
decision to flap or not flap is based on simple limit checking,
the computations for this controller are negligible. However, it
is only able to score an average score of 56.6 points per game.
While this is significantly higher than what we were able to do
by playing the game manually (roughly 0 — 6 points per game),
the next two methods show a substantial improvement.

Table 2 shows results for optimization with heuristic tuning
of constraints (Sec. 4.2). The optimization window was the dis-
tance between two consecutive pairs of pipes or n = 80 and we
had to heuristically set the terminal constraints of position and
velocity to ensure that the optimization worked well. In all the
runs, the bird went past the 500th pipe (this was our termination
criteria). Thus the average score was 500 (maximum possible

Copyright © 2017 by ASME

TABLE 1: Scores for manual controller. Average score was 56.6.
The time for computing the control command was negligible.

Run no. | Score

—_—

23
135
135
40
41
29
105
19
30

O 00 N O N B~ WM

=]
el

TABLE 2: Results for optimization with heuristic tuning of con-
straints. The average score was 500 (indicating no failure). The
average optimization time is per iteration. The maximum opti-
mization time is the longest time needed for a single optimization
across all iterations and runs.

Run no. | Score | Avg. opt. time | Max. opt. time
1 500 0.1165 0.78766
2 500 0.1143 0.6863
3 500 0.1086 0.8101
4 500 0.1024 0.5053
5 500 0.1059 0.6243
6 500 0.1040 0.5273
7 500 0.1073 1.2596
8 500 0.1001 0.5508
9 500 0.0999 0.4946
10 500 0.1026 0.5173

score as per our termination criteria), the average optimization
time per iteration was 0.1062 s and the maximum optimization
time ever needed for an iteration was 1.2596 s, about 12 times
the average optimization time. This was obtained by using the
MATLAB® command fic and toc. Figure 5 shows the optimiza-
tion time for a single run as a function of optimization index, k.

0.8

0.7 i

0.6 - q

0.5 1

Time (s)
o
D
L

0.3 i

0.2

0.1

0 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

Optimization Index

FIGURE 5: Optimization time per iteration versus optimization
index per pipe for a single simulation run (that is 500 pipes). For
each pipe, the optimization computes optimal solution for over
time index k = 1,2, ...,n.

4500
4000 [~

3500 [~

3000 - Best fit line

exp(0.004 t"2 - 0.264 t - 3.6976)\
2500

Score

2000

1500

1000

500

0
0.625 0.6875 0.750 0.8125 0.8750 0.8750 1.000 1.0625 1.125
Prediction Horizon (x Horizontal distance between pipes)

FIGURE 6: Total score versus prediction horizon for the MPC.
The prediction horizon is expressed in terms of a factor of the
horizontal distance between consecutive pipes

Note that the maximum time peaks to about 0.5 at least 4 times
in the optimization.

Next, we show results for the MPC. First, we needed to get
the optimum prediction horizon, n. We ran simulations for dif-
ferent prediction horizons, n, and plotted the scores and average
optimization times, each as a function of n as shown in Figs. 6

Copyright © 2017 by ASME

0.065

0.06 -

0.055

od

o

o
T

Best fit line
0.045 exp(0.002 "2 - 0.2192 t + 11.7953\\

o
o
=

0.035

Average Optimization Time (s)

o
o
@

0.025

0.02

0.015 I I I I I I I
0.625 0.6875 0.750 0.8125 0.8750 0.8750 1.000 1.0625 1.125

Prediction Horizon (x Horizontal distance between pipes)
FIGURE 7: Average optimization time versus prediction horizon

for the MPC.

4 Flappy Bird 1.0 = o X

File Edit View Inser Tool: Deskto] Windoy Help

Qdde | RARKOBEL-|”

55 time steps

Ll

horizontal distance
between pipes

90 time steps

FIGURE 8: Visualization of optimal prediction horizon of 90 (~
1.125 horizontal distance between consecutive pipes) that gives
high scores with moderate optimization time.

and 7. It can be seen that as the prediction horizon increases, the
score as well as average optimization time increases. We found
that a prediction horizon of 90 or 1.125 times the horizontal dis-
tance between consecutive pipes gives high scores and we used
this value to test the MPC. Since the distance between pipes is
80, the optimum of 90 indicates that the bird needs to plan the
control policy slightly beyond 1 pipe to be successful. Thus,

TABLE 3: Results for the MPC with prediction horizon of 90
and control horizon of 1. The average score was 418.6 (maxi-
mum was capped at 500). The average optimization time below
is per iteration. The maximum optimization time is the longest
time needed for the MPC to compute a control policy at a given
iteration observed across all iterations and runs.

Run no. | Score | Avg. opt. time | Max. opt time
1 500 0.0671 3.591
2 500 0.0641 3.059
3 500 0.0640 2.8842
4 500 0.0596 2.9635
5 80 0.0550 0.9668
6 500 0.0613 2.9596
7 500 0.0573 3.0536
8 500 0.0680 3.8055
9 500 0.0567 1.9173
10 106 0.0616 1.7036

when the bird is 10 time indices away from the upcoming pipe,
it is able to see and plan for two pipes as shown in Fig. 8. A
planning horizon less than 80 means that the bird cannot ‘see’
the beginning of the following pipe before it reaches the current
pipe. This is an issue if the gap between next pair of pipes is too
high or too low, which will not leave enough time for the bird to
change its altitude. Since the distance between the trailing edge
of the current pipe and the leading edge of the next pipe is 55, a
planning window less than this distance will lead to poor results
as seen in Fig. 7.

Table 3 shows the optimization results for 10 simulations
runs with prediction horizon of 90 and control horizon of 1. The
average score of 418.6 was better than the manual controller but
was slightly worse than the score of 500 (perfect score) obtained
using optimization with heuristically tuned constraints. The av-
erage time for the MPC was 0.0623 but the maximum time at a
particular iteration was 3.8055, about 60 times the average time.

Table 4 compares different control horizons, p, for the same
prediction horizon, n = 90. It can be seen that while the average
time remains almost the same the average score increases with a
decrease in p.

Figure 9 shows how solutions change when the inactive con-
straints (ceiling and floor) are changed by a few pixels. Small
changes in inactive constraints lead to different solutions with
the same cost. This indicates that there are multiple solutions to
the optimization problem.

Copyright © 2017 by ASME

(a) Original constraints

0 == — T—— —— —h al

20 [

40

60 [

& s8of
3 (I L
e
S 100
2 I
120 (I
140
160 1
180 L 1 L L 1 L 1 i
0 50 100 150 200 250 300 350 400
x-direction
(b) Modification of inactive constraint bounds
0 T T T T T T
AT
ceiling lowered by 5 pixels
40
60 |-
§ 8of
2 (I I I
<
S 100
S
120
140
floor|elevated by 5 pixel
160 oor y 5 pixels
180 L L L L L L
0 50 100 150 200 250 300 350 400
x-direction
(c) Another maodification of inactive constraint bounds
0 T T T T T T T
A |
ceiling lowered by 15 pixels
40
60 -
§ sor
2 I I I
<4
S 100
EN
120

140 [

160 floor ted by 5 pjxels
180 L L L L L L L
0 50 100 150 200 250 300 350 400
x-direction

FIGURE 9: the MPC produces different solutions but with the
same cost for slight changes in inactive constraints.

TABLE 4: the MPC with different control horizon but same pre-
diction horizon of 90. The scores are averaged over 10 simulation
runs.

Control | Avg. | Avg. opt.

horizon | score time

10 174.8 | 0.0623
4 341.3 | 0.0664
1 418.6 | 0.0615

Our original cost function minimized of the number of hops
(see J in Eqn. 3). We modified the cost to be the sum of the
number of hops (zz) and the vertical height of the bird (¥;) to see
if it has any effect on scores and optimization time. Since Y; is
increasing downwards, the new cost biases the solution to choose
a path that is closer to the lower constraint, Yk”’ . The rationale in
choosing the lower bound is due to the way in which decision
variable z; affects the velocity term in Eq. 2; a flapping action
(zx = 1) causes the bird to move upwards with velocity of 2.5,
while no flapping (z; = 0) will increase the velocity towards the
lower tube by relatively small amount given by g = 0.1356. The
new cost can be written as follows

n
Minimize Jpew = Y (2k — WY) (14)
k=1

where w was a suitable normalizing weight that accounts for dif-
ferent scales of z; and Y. We chose w = 1074,

Table 5 compares our original cost J with new cost Jpe,, for
a non-optimal prediction horizon of 70. It can be seen that the
average score for the new cost is about 3 times higher than the
original cost. However, the increase in score comes at the cost
of increasing the maximum optimization times by three orders
of magnitude on average. The increase in computation time is
because there are more combinations of variables due to the new
cost function, thus the branch and bound method in the mixed-
integer algorithm needs to evaluate solutions on more branches.

6 DISCUSSION

We compared three control algorithms for the popular
Flappy Bird game: (1) A manual controller that turns flapping
ON if the bird is below a user tuned threshold height which
scored an average of 56.6 points; (2) an optimization-based con-
troller that automatically plans between consecutive pipes, but is
heuristically tuned to have appropriate terminal conditions (po-
sition and velocity) which scored a perfect 500 (10 trials, each
capped at 500 pipes); (3) an MPC controller with an optimized

Copyright © 2017 by ASME

TABLE 5: Comparing original cost (number of hops) to new cost
(sum of hops and deviation from reference trajectory) for a pre-
diction horizon of 70. The average score for J and Jyey is 74.2
and 225.8 respectively.

Seed | Score | Max opt. | Score | Max opt.
J time Jnew time

1 106 | 0.51535 250 | 46.2670
2 89 1.1611 500 | 56.3510
3 16 0.13513 16 1.9357
4 7 0.46548 43 29.7770
5 44 0.48417 | 494 | 24.2550
6 213 | 0.49736 | 500 | 48.6140
7 19 0.13135 108 15.5830
8 22 0.49177 105 15.3490
9 13 0.12185 230 18.6690
10 213 1.0791 12 2.3694

prediction horizon which an average score of 418.6 (10 trials,
each capped at 500 pipes). The maximum scores ever recorded
with these three controllers, with game initialized using the same
random number, in the order they are described are 23, 6473, and
3961 (see video [12]). Average computation time per iteration
for the optimization-based controller and the MPC were compa-
rable, but the maximum computation ever observed in the MPC
was about 3 times that of the optimization-based controller.

These results indicate that the optimization-based controller
with heuristic constraint tuning outperforms the MPC with re-
spect to highest score achieved, average score achieved for same
initial conditions and terrain, and in terms of computation times.
However, this was only possible because of heuristic tuning of
the terminal constraints (see Eqns. 12 and 13). We found that a
slight change in these constraints led to significant degradation
of performance. These constraints were arrived upon by human
intuition and by trial-and-error. This makes it hard to generalize
this approach. On the other hand, the MPC has only two free
parameters, the prediction and control horizon, and are relatively
easy to tune (see Fig. 7). Thus, the MPC is straight-forward to
tune and easy to generalize.

Past approaches have used machine learning to play the
game. One choice has been reinforcement learning which works
well only after large number of learning trials. Another methods
has been support vector machine, a supervisory learning method,
which relies on training data from humans to enable learning.
One issue with the latter approach is that good training data is

hard to acquire because humans are not able to play this game
that well. Learning is normally used when models are not avail-
able. However, for Flappy Bird, the model is simply that of an
object falling under gravity but with a velocity reset when the
bird is made to flap. When models are available, model-based
control can provide quick and superior performance as we have
shown here.

What are the key features/terrain information the controller
should use to maximize scores? The manually tuned controller
based its control on the vertical distance from the bottom pipe
but it scored a measly 56 on average. The learning-based con-
trollers in [5, 6] used the x- and y-position relative to the up-
coming pipe leading to scores of around 200 points (we are as-
suming their game had similar difficulty as ours). Besides the
x- and y-position, [3] considered velocity of the bird which in-
creased their scores to 1600. The curse of dimensionality pre-
vented these studies from looking beyond a single pipe. In both
of our optimization-based controllers, we found that planning
slightly beyond the upcoming pipe increases the scores further
(our highest score was 6473). The reason is that planning slightly
beyond the upcoming pipe allows the bird to set up good initial
conditions to successfully navigate the next gap. This is usually
important when there is a dramatic drop or elevation in the height
of the gap between consecutive pipes.

The biggest disadvantage of the two optimization methods is
the long computation time. For any online optimization method
to succeed, the worst case time should be less than the control
bandwidth. Our best computationally efficient controller is the
optimization with heuristic constraints and had a worst case time
of 1.29 sec which is about 77 times the control bandwidth of
1/60 sec or 0.017 sec. If we had strictly enforced the 1/60 sec
time limit in our optimizations then we would have gotten far in-
ferior performance. This problem can be alleviated by improving
the optimization algorithm, supplying better initial conditions,
and/or using a faster computer for the online optimization.

7 CONCLUSION AND FUTURE WORK

Although Flappy Bird is a difficult game to beat (implies
score well) when played manually, it is certainly possible to beat
it using tools in control theory. Our main conclusion is that a
controller that plans slightly beyond the upcoming pipe performs
best on the Flappy Bird game. Furthermore, the MPC provides
an easy to tune and highly generalizable method.

The Flappy Bird game is a great platform to benchmark and
test new control and learning algorithms. Some suggested fu-
ture work is to use heuristic algorithms like genetic algorithm
and simulated annealing. Also, including the following features
are vital to have high performance: position of bird relative to
the pipe, relative location of consecutive pipes, and velocity of
the bird. To increase the difficulty of the game, the gap between
the vertical pipes and the distance between subsequent pipes can

Copyright © 2017 by ASME

be made to vary spatially as well as temporally as the game pro-
ceeds.

MULTIMEDIA

1. A video of the three controllers is available on YouTube

[12].

2. MATLAB code is available on github [13].

REFERENCES

(1]

(2]

(3]

(4]

(5]
(6]
(7]

(8]

(9]

(10]

(1]

[12]

(13]

How to beat flappy bird (best method). https://
youtu.be/gD-nzHy2DdU. Accessed: April 12, 2017.
Flappy bird. https://en.wikipedia.org/wiki/
Flappy_Bird. Accessed: April 10, 2017.

Shu, Y., Sun, L., Yan, M., and Zhu, Z., 2014. Obstacles
avoidance with machine learning control methods in flappy
birds setting. Department of Mechanical Engineering, Stan-
ford University.

Reinforcement learning controlled flappy bird.
https://youtu.be/UwfnUNhkcCg. Accessed:
April 22, 2017.

Ebeling-Rump, M., Kao, M., and Hervieux-Moore, Z. Ap-
plying g-learning to flappy bird.

Chen, K., 2015. Deep reinforcement learning for flappy
bird.

Svm controlled flappy bird.
https://youtu.be/cYFeI9eFaBY. Accessed:
April 22,2017.

Takéacs, B., Holaza, J., gtevek, J., and Kvasnica, M., 2015.
“Export of explicit model predictive control to python”. In
Process Control (PC), 2015 20th International Conference
on, IEEE, pp. 78-83.

Gurobi optimization. http://www.gurobi.com/.
Accessed: April 10, 2017.

Zhang, M., Accessed: April 7,
2017. Roteaugen/flappybird-for-matlab.
http://www.mathworks.com/
matlabcentral/fileexchange/
45795-roteaugen—-flappybird-for-matlab.
How, R. J., Accessed: April 10, 2017. A mixed-integer
programming for controls [powerpoint slides]. http://
acl.mit.edu/milp/MILP_for_Control.pdf.
How to beat flappy bird: A mixed-integer model predictive
control approach.
https://youtu.be/P5YftCPE4rw. Accessed:
April 22, 2017.

Automatic control of flappy bird, matlab code.
https://github.com/pabd7/
FlappyBirdController. Accessed: June 20,
2017.

Copyright © 2017 by ASME

