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ABSTRACT 

 
We explored the mechanics of a simple pendulum to find          

the best method to increase the amplitude the fastest way          
possible. In our experiment, we used MATLAB to simulate the          
equations of motion and test different approaches to pumping a          
pendulum. In addition, we used LEGO MINDSTORMS       
Education EV3 Core Sets to demonstrate the theoretical        
equations with a physical pumping swing robot. Three different         
pumping methods were utilized and analyzed by the MATLAB         
simulations and one was used in the hardware section. The goal           
was to determine which method increased the amplitude of the          
swing after a specific amount of oscillations. Upon completion         
of the experiment, we confirmed that pumping a swing in a           
pattern-based motion did increase the amplitude of a pendulum.         
Our results showed that the combined pumping method        
increased the pendulum amplitude the fastest.  

NOMENCLATURE 
 
θ - Angle between the pendulum string and a line          

perpendicular to the fixed x-axis 
θ​+​ - Angle after the pump 
θ​-​ - Angle before the pump 
ℓ - Length between the fixed point of rotation and the           

robot’s center of mass  
       𝛟 - Angle between ​ℓ​ and ​a  

a - Length between the ends of the robot and the center of             
mass 

T​crouch​ - ​Period for stage 1 of standing pump cycle 
T​stand​ - ​Period for stage 2 of standing pump cycle 
g ​- Gravitational acceleration  
ω ​- Angular velocity , (θ)d

dt  

ω​+​ -​ Angular velocity after the pump 
ω​-​ -​ Angular velocity before the pump 
𝛂 - Angular acceleration, 

dt2
d θ2

  

 
INTRODUCTION 

 
A simple pendulum is one of the most well known          

mechanisms of classical physics. A body of mass hangs from a           
rope that is fixed about a point above. This simple mechanism           
has led us to the following question: What is the fastest method            
to increase the amplitude of a simple pendulum? This question          
has guided us to experiment with different pumping methods:         
standing, sitting, and combined pumping methods. Utilizing       
two large LEGO motors and a chassis to move a body of mass             
will aid in obtaining the three pumping methods physically.         
The following paragraphs will give a detailed explanation of         
each pumping method. Understanding how each pumping       
method works will allow us to accurately compare each method          
and lead us to the method that increases the amplitude the           
fastest.  

The standing pump method increases the amplitude of the         
pendulum by changing the length between the fixed point and          
the robot’s center of mass. For this method, one cycle is defined            
with the following steps: The robot begins in a crouching          
position at a small angle, 0° < |​θ​| < 10°. As it passes through the               
lowest point (​θ = 0), the robot stands up, decreasing ​ℓ           
instantaneously. When it reaches the local maximum, the robot         
increases ​ℓ instantaneously by switching to the crouching        
position. Again, as it passes through the lowest point in the           
opposite direction, the robot stands up, decreasing ​ℓ        
instantaneously until it reaches its local maximum on the         
opposite end of the pendulum. When the robot reaches the new           
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local maximum, it increases ​ℓ instantaneously by switching to         
the crouching position. This concludes one cycle. In theory,         
according to [1], repeating these steps will result in the robot           
obtaining an increase in amplitude after each cycle. A         
step-by-step diagram of the standing pump method is shown in          
figure 1. 

 
Figure 1. Standing Pump Cycle [1] 

 
The sitting pump method increases the amplitude of the         

pendulum only through rotational motion about the center of         
mass. Using the model provided by [1], the change in ​ℓ is            
ignored. For the sitting pump method, one cycle is defined with           
the following steps: The robot begins in a perpendicular         
position (𝛟 = 90°) at a small initial angle, 0° < |​θ​| < 10°. As the                
robot swings through the lowest point and reaches its local          
maximum, the robot’s orientation 𝛟 instantaneously changes to        
𝛟 = 0°. As the robot swings back in the opposite direction,            
passes through the lowest point, and arrives at the new local           
maximum, the robot’s orientation 𝛟 instantaneously changes       
back to 𝛟 = 90°. This concludes one cycle. Figure 2 shows a             
diagram of the sitting pump method. 

 
Figure 2. Sitting Pump Cycle [1]  

 
The combined pumping method increases the amplitude of        

the pendulum by both the change in ​ℓ and the rotational motion            
provided by the sitting pump method. In the combined pump          
method, one cycle is defined with the following steps: The          
robot begins in a perpendicular position (𝛟 = 90°) at a small            
initial angle, 0° < |​θ​| < 10°. As the robot reaches the lowest             
point, 𝛟 instantaneously changes to 𝛟 = 0° and ​ℓ decreases.           
When it reaches the local maximum, 𝛟 instantaneously changes         
to 𝛟 = 90° and ​ℓ increases. As the robot passes through the             
lowest point on the return swing, again, 𝛟 instantaneously         
changes to 𝛟 = 0° and ​ℓ decreases. Finally, when it reaches the             
new local maximum, 𝛟 instantaneously changes to 𝛟 = 90° and           
ℓ increases. In theory, according to [1], repeating these steps          
will result in the robot obtaining an increase in amplitude after           
each cycle. Figure 3 shows the step-by-step process for the          
combined pump method.  

 
Figure 3. Combined Pump Cycle [1]  

 

SIMULATION 
 
The project was divided into a simulation section and a          

hardware section. We began the simulation portion of the         
project by downloading a MATLAB script file of a simple          
pendulum simulation found on MathWorks [4]. We heavily        
edited it so we could demonstrate each pumping method.  
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Figure 4. MATLAB Simulation Screenshot 

 
Standing pump simulation 

One cycle was defined to be a full swing. The four stages of              
the standing pump method described in the introduction were         
used in the simulation. The robot gains energy when it stands           
up at the bottom of the swing, increasing the potential and           
kinetic energies. The robot loses potential energy when it squats          
down at the ends of the swing, but the amount is insignificant            
compared to the energy gained from the pump. The differential          
equation solver, ode45, was used to integrate the equation of          
motion for each stage to get the angular velocities and angles.  

 
 sin(θ)/ℓ

dt2
d θ2

=  − g (1) 
 

       Equation of Motion for a Simple Pendulum 
 

      The location of the fixed point of rotation, the initial angle 
and velocity, and the length of the pendulum were all 
predetermined at the beginning of the simulation. We defined 
the robot to be standing when the pendulum length was 77 cm 
and crouched when the pendulum length 65 cm. Every odd 
stage began by defining the length to be 77 cm while every 
even stage began by defining the length to be 65 cm. The ode45 
generated a vector consisting of angles and angular velocities. 
Using these values, the coordinates of the robot for each instant 
is determined with the following equations. 
 

x-coordinate = ​ℓ*​sin( )θ (2) 
y-coordinate = -​ℓ*​sin( )θ (3) 
 

       Equations to determine location of robot 
 

The increased velocity due to the pump is determined by          
multiplying the velocity before the pump with a ratio of the           
crouch length over the standing length, squared.  
 

 

     ω​+​ = ​ω​-​ * (​ℓ​crouch​/​ℓ​stand​)​2 (4) 
 

Equation to determine increased velocity after pump 
 
The increased velocity is added to the initial velocity of the           
next stage. This allows the simulation to increase its amplitude. 
 
Sitting pump simulation 

In the standing pump simulation, one cycle consisted of two           
stages. Unlike the standing pump, the length of the pendulum          
was consistent for each stage. This is because the change in ​ℓ is             
ignored for this model. The length used was 77 cm. The           
coordinates for the robot’s location for each instant is         
determined using the same equations for the standing pump         
method. The robot puts energy into the system when it rotates           
to change its orientation, increasing the kinetic energy. 

 
 

θ​+​ = -(​a​2​)*(𝛟​+​ - 𝛟​-​)​/​(​ℓ​2​ + a​2​) + ​θ​- (5)  
 

  Equation to determine new position after pump 
 

The new position is added to the initial position value of the 
next stage. This allows the simulation to increase its amplitude.  

 
Combined pump simulation 

​In the combined pump simulation, one cycle consisted of          
four stages. This model combined the rate of changes in the           
standing pump as well as the body orientations in the standing           
pump. The coordinates for the robot’s location for each instant          
is determined using the same equations for the standing pump          
method. The equations (4) and (5) are used in the combined           
model to determine the positions and velocities for each stage.  

HARDWARE 
 
Using the MATLAB simulation and equations provided by        

[1], the next challenge was to create a standing pump cycle           
using hardware. The swinging robot was built using 4 LEGO          
MINDSTORMS Education EV3 Core Sets. Using these sets        
allowed us to create an apparatus with ease by editing the robot            
through addition and subtraction of small LEGO pieces. Also,         
the sets allowed access to sensors and motors that could be           
programmed with computer software provided by LEGO. The        
following figures show the robot we used to create a physical           
standing pump cycle. 
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Figure 5. Front View of Robot 

 

 
Figure 6. Side View of Robot 

 

 
Figure 7. Back View of Robot 

 

 
Figure 8. Suspension Setup of Robot 

 
With the setup of this robot, it was found that using 2 large              

LEGO motors, along with the tension provided by 2 rubber          
bands, was effective in moving the robot’s center of mass          
completely vertical. Also, it aided in obtaining a sufficient ratio          
between the crouching position (​ℓ​crouch​) ​and standing position        
(​ℓ​stand​). Furthermore, the LEGO MINDSTORMS Software      
helped control the 2 motors with sufficient accuracy and         
precision. With the software, the robot was able to produce a           
standing pump method by utilizing the period of a simple          
pendulum and dividing it into 4 stages. 

The period of a simple pendulum was utilized in calculating           
the theoretical time the robot took from being in a crouched           
position to the lowest point and in the standing position from           
the lowest point to a local maximum. By dividing the entire           
period by 4 sub-periods, the robot could recreate a standing          
pump motion by programming the 2 motors to alternate         
counterclockwise and clockwise at the given sub-periods. Since        
the entire period is defined by starting from one position and           
ending in the same position, ​T​crouch ​and ​T​stand were defined as a            
fourth of the entire period and each utilized twice for one           
complete period.  

π  T = 2 √ ℓ
g    (6) 

 
Period of a simple pendulum equation 

 
Using this simple equation, T was divided into 2 equations.          

Each equation describes the approximate time the robot endures         
in both the crouching and standing position. Considering that         
the standing pump method changes ​ℓ ​at the lowest point of the            
pendulum path ( ​θ ​= 0°), ​T​crouch ​was applied during which the            
robot moved from the local maximum displacement on both         
sides where ​ω ​= 0°/sec towards the lowest point of the           
pendulum. Furthermore, ​T​stand ​was utilized during which the        
robot moved from the lowest point of the pendulum path to the            
local maximum on both sides of the pendulum. 

 

crouch  T = 2
π√ g

ℓcrouch  (7) 
 

stand  T = 2
π√ g

ℓstand (8) 
 

Period of a Standing Pump Pendulum Equations 
 

With the setup of the robot, we decided that the best way to             
test the theoretical equations provided by [1] and the simulation          
created in MATLAB was to divide the experiment into 3 parts.           
First, testing the robot with a random pump pattern with no           
initial angle. It was agreed upon to use a random pump to show             
that randomly changing ​ℓ ​would not conserve the angular         
momentum of the swinging robot entirely. Secondly, the robot         
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was to perform a standing pump method with no initial angle (​θ            
= 0°). Performing the standing pump method would allow to          
compare a pattern-based pump method to a random pump         
method to show if there was an increase in amplitude in both            
systems over the same amount of time (30 seconds). Lastly, the           
robot was setup to perform a standing pump method with a           
starting angle (0° < |​θ​| < 10°). This last part would show that             
starting with an initial angle would increase the amplitude in a           
shorter amount of time than a standing pump cycle with ​θ ​= 0°             
initially. A video of the robot doing a standing pump is in the             
reference [5]. 

RESULTS 

By subtracting the amplitude of the pendulum after one          
oscillation from the initial angle, we can determine the         
amplitude increase produced by each pumping method. After        
one oscillation with an initial angle of π/60, the standing pump           
method achieved an amplitude increase of 0.2036, the sitting         
pump method reached an amplitude increase of 0.0483, and the          
combined pump method achieved an amplitude increase of        
0.2941. After one oscillation with an initial angle of π/40, the           
standing pump method achieved an amplitude increase of        
0.3066, the sitting pump method achieved an amplitude        
increase of 0.0483, and the combined pump method reached an          
amplitude increase of 0.3938.  

The swinging robot that we built using LEGO        
MINDSTORMS showed that the methods used for pumping a         
simple pendulum heavily depended on the position of the center          
of mass at a given stage during one complete period of the            
swing. This dependency was determined experimentally using       
the MATLAB simulation and the conservation of angular        
momentum given by equation (9). 

The random pumping approach (with no initial angle, 0° <          
|​θ​| < 10°) to increase the amplitude was ineffective. As ​ℓ           
randomly changed due to the motion of the center of mass, the            
pendulum as a whole showed no significant increase in         
amplitude over 30 seconds. Initially, the robot increased |​θ​| by          
approximately 2-5° by pumping since ​θ = 0°. The maximum          
amplitudes are shown in figures 9 and 10.  

 

 
Figure 9. Maximum Amplitude for Standing Random 

Pump Method (Right side) 

 

 
Figure 10. Maximum Amplitude for Standing Random 

Pump Method (left side) 
  
With ​θ ​= 0° initially, the angular velocity ​ω increased a           

small amount according to the equation below provided by [1]: 

ℓ​2​stand​*ω​stand​ - ℓ​2​crouch​*ω​crouch​ = ℓsin(θ)dt− ∫
t0 + Δt

t0
g         ​(9) 

 
           Integrating Equation (1) over [t​0​ and t​0​+Δt]  
 
The momentum in the system is perfectly conserved if the          

integral goes to 0. In the robot’s case, ​θ → ​0° will nullify the              
entire integral because sin(​θ​) is not a function in time in the            
equation. In other words, the robot’s amplitude will only         
increase when the impulse integral is equal to 0, making the           
entire equation conservative.  

The robot, for the first 3-5 seconds of random pumping,          
obtained a conservative system in momentum since the value of          
θ ​was small enough to neglect. However, it was observed ​that           
the robot’s small amplitude initiated by the first 3-5 seconds          
damped over time due to the erratic motion of the center of            
mass of the pendulum’s cycle. 

Next, the robot experimented with the standing pump        
method with 2 cases: (1) Starting with no initial angle ​θ ​= 0°             
and (2) starting with an initial angle 0° < |​θ​| < 10°. It was              
recorded that in both cases, the robot did increase its amplitude           
over a duration of 30 seconds. In case 1, the robot took a longer              
amount of time to gain a maximum amplitude than it did when            
starting with an initial angle. Using these 2 cases and          
comparing them to the random pump cycle showed that the          
standing pump method was a more efficient and effective way          
to increase the amplitude of a swing. On the other hand, when            
comparing case (1) with case (2), the experiment showed that          
starting with an initial angle in the crouched position (​ℓ =           
ℓ​crouch​), was the most preferred of the standing pump methods          
to maximize amplitude in a small amount of time. The figures           
show the maximum amplitude obtained using the standing        
pump method with an initial angle ​θ​. 
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Figure 11. Maximum Amplitude for Standing Pump 

Method (right side) 
 

 
Figure 12. Maximum Amplitude for Standing Pump 

Method (left side) 
 
Lastly, it was recorded that the standing pump method did          

indeed increase the amplitude, however, once the robot reached         
a maximum amplitude, the angular momentum of the system         
began to become non-conservative. The dampening of the        
pendulum’s amplitude was caused by energy absorption by        
small twisting of the robot’s suspension setup, large values for          
θ and primarily due to the non-instantaneous change in ​ℓ as the            
robot passes through the lowest point of the cycle and local           
maximum when ​ω​ is equal to 0. 

DISCUSSION 

SIMULATION 
The goal of this project was to determine which strategy           

produced the largest amplitude after one oscillation. The results         
showed that the combined pump method produced the largest         
amplitude after one oscillation, the standing pump produced the         
second largest amplitude after one oscillation, and the sitting         
pump produced the smallest amplitude after one oscillation. 

To better understand why the combined pumping method         
increased its amplitude the fastest, we analyzed the equations         
each method used. For the standing pump method, the equation          
to determine the new velocity after the pump is equal to the            
velocity before the pump times a ratio of the crouched length           
over the standing length squared, making amplitude increase        
geometrically. For the sitting pump method, the equation to         
determine the new position after the pump is equal to the old            
position plus a constant, making the amplitude increase        

arithmetically. It is clear that the combined pumping method         
increases the amplitude the fastest because its amplitude uses         
equations from the standing and sitting methods, increasing the         
amplitude geometrically and arithmetically. 

After running the simulation several times at different initial          
angles, we determined the initial angles that demonstrated our         
methods well were between 𝜋/60 and 𝜋/40. Angles that were          
larger sent the robot into a perpetual 360° swing, which did not            
demonstrate our concept very well. The angles that were         
smaller showed an increase in amplitude, but it took several          
cycles and the increase was not clearly visible.  

HARDWARE 
After observing the robot perform a random pumping        

motion, it was determined that the motion was not an effective           
way to pump a swing. Considering that the robot did not repeat            
a pattern based pumping method, it was clear that angular          
momentum was not conserved since the location of the center          
of mass relative to the fixed point of rotation did not change at             
either of the critical point of the pendulum: The lowest point of            
the path and local maximum on left and right side of the            
pendulum. Instead, the mass body changed in between these         
critical points, resulting in either no increase or dampening in          
amplitude. 

As the random pumping did not produce a significant result          
in terms of increasing of amplitude, the standing pump with no           
initial angle did. After the first 3-5 seconds of pumping, the           
robot started to show a slow increase in amplitude. Although          
the robot acquired a sufficient amplitude after 30 seconds of          
pumping, it was evident that if the robot had started with an            
initial angle ​θ​, the robot would start with a greater value of ​ω​,             
hence, increasing the amplitude in a shorter amount of time          
than starting with no initial angle. 

Starting with an initial angle gave the pendulum system an          
initial gravitational potential energy that would transform to        
kinetic energy as the mass body is released. When the center of            
mass passes through the lowest point of the path and change ​ℓ​,            
it would produce an initial “boost” as [1] states. Initializing the           
standing pump method as such would in turn increase the          
amplitude faster. Although the amplitude of the robot increased         
the fastest out of all three methods tested, the system began to            
dampen the amplitude as previously stated in the results section          
due to non-instantaneous change in ​ℓ ​and large values for ​θ​. As            
the robotic implementation experiment was successful in       
showing how standing pump can effectively increase the        
amplitude of a pendulum, there were faults in the experiment as           
well. 

Using the LEGO MINDSTORMS EV3 software was       
convenient to use for this experiment since it allowed ease of           
programming. The software was interactive and aided in        
reducing the time and money constraints to adjust the motion of           
the robot if needed. However, the 2 large motors came at a            
disadvantage when trying to increase the speed of the motors.          
Since the motors had a capped running torque of 20 N/cm, the            
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robot could change ​ℓ ​as fast as the MATLAB simulation. If the            
robot were to use servo motors with a higher torque and speed,            
the robot could have possibly gained a greater amplitude by          
changing ​ℓ ​faster, closely replicating an instantaneous change to         
conserve angular momentum. Furthermore, if the robot were to         
use a gyro sensor that could accurately measure the change in           
θ​, the lab could have recorded tangible values for ​θ and ​ω at             
each time instance. If this experiment were to be repeated in           
implementing a robotic swing, using stronger, faster and more         
accurate motors and possibly using a motion capture system         
and/or gyro sensor could further show the differences and         
similarities in each pumping method through accurate and        
precise analyzation for both motion of the robot and numerical          
values for each parameter presented throughout this paper.  

CONCLUSION AND FUTURE WORK 
The simulations demonstrated the three pumping methods       

well, and the robotic swing that was built to perform the           
MATLAB simulated pumping methods was overall a success.        
The robot showed that a pattern-based pumping method is ideal          
in order to increase the amplitude of a pendulum. In addition,           
the robot revealed that starting with an initial angle, ​θ​, did           
increase the amplitude much faster than starting at the lowest          
point of the pendulum’s path (​θ ​= 0°). On the other hand,            
utilizing the relatively low torque/speed motors was a major         
draw back. If the robot had changed ​ℓ ​faster, it could have            
possibly gained a greater amplitude with higher values of ​θ​.  

The current simulations show a point mass rotating about a           
fixed point, but future work could incorporate a simulation         
using a two-dimensional representation of the robot we built         
with LEGO MINDSTORMS. Future researchers could also       
explore creating simulations that demonstrate methods that       
dampen amplitudes the fastest.  

To extend the robotic implementation section of this        
experiment, the robot should perform not only the standing         
pump method, but also the sitting and combined pump method.          
In doing so could aid in accurately drawing a conclusion to the            
question: Which pumping method increases the amplitude of a         
swing the fastest? Lastly, to improve the entirety of the robot           
experiment, applying a gyroscopic sensor to measure ​θ and ​ω          
at given time intervals and/or capturing the motion of the robot           
during pumping methods could result in obtaining raw visual         
and numerical data. Acquiring graphical and numerical data        
could strengthen the answer(s) to this and further research         
experiments regarding the motion of a simple pendulum. 
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