
Proceedings of the ASME 2016 Dynamic Systems and Control Conference
DSCC2016

October 12-14, 2016, Minneapolis, Minnesota, USA

DSCC2016-9759

A TASK-LEVEL ITERATIVE LEARNING CONTROL ALGORITHM FOR ACCURATE
TRACKING IN MANIPULATORS WITH MODELING ERRORS AND STRINGENT

JOINT POSITION LIMITS

Pranav A. Bhounsule∗, Abhishek A. Bapat
Department of Mechanical Engineering

University of Texas San Antonio
One UTSA Circle, San Antonio, TX 78249, USA.

Email: pranav.bhounsule@utsa.edu,
abhishek.bapat1@gmail.com

Katsu Yamane
Disney Research

4720 Forbes Avenue, Lower Level, Suite 110
Pittsburgh, PA 15213, USA.

Email: kyamane@disneyresearch.com

ABSTRACT
We present an iterative learning control algorithm for accu-

rate task space tracking of kinematically redundant robots with
stringent joint position limits and kinematic modeling errors.
The iterative learning control update rule is in the task space and
consists of adding a correction to the desired end-effector pose
based on the tracking error. The new desired end-effector pose is
then fed to an inverse kinematics solver that uses the redundancy
of the robot to compute feasible joint positions. We discuss the
stability, the rate of convergence and the sensitivity to learning
gain for our algorithm using quasi-static motion examples. The
efficacy of the algorithm is demonstrated on a simulated four link
manipulator with joint position limits that learns the modeling er-
ror to draw the figure eight in 4 trials.

1 Introduction
Manipulator systems such as industrial robots are typically

used to do repetitive tasks in end-effector space or task space.
End-effector space control is typically done by computing a map-
ping from the task- to joint- space. However, finding this map-
ping in the presence of joint position limits is significantly chal-
lenging. The use of constraint optimization provides an easy and
generalizable method to find inverse kinematics solutions in the
presence of joint position limits [1, 2]. But the optimization is
sensitive to the availability of a good kinematics model. When

∗Address all correspondence to this author.

the robots parts are replaced (e.g., due to wear and tear), the
model parameters change and the inverse kinematics is not ca-
pable of providing precise end-effector control. In such cases,
the Iterative Learning Control (ILC) algorithm provides an rela-
tively easy and quick way to re-tune the robot motion [3].

Iterative Learning Control is technique that iteratively re-
fines feed-forward commands based on tracking errors in the pre-
vious trials [4]. The simplest learning update rule is

Ui+1 = Ui + γ(Yref−Yi), (1)

where i is the iteration, γ is the user defined learning parameter,
Ui is the control command at iteration i (e.g., torque, force, cur-
rent), Yi is the quantity that needs to be tracked (e.g., joint angle,
end-effector position) and is measured at each iteration using ex-
ternal sensing, and Yref is the reference motion. The goal is to ap-
ply this learning rule repeatedly such that the the tracking error,
ei = (Yref−Yi) reduces at each iteration, subsequently reaching
a value close to zero.

The most common use of ILC is in the joint space [5, 6],
where the tracking error, ei, are the positions and/or velocities
and the control command, Ui, is the torque or the voltage/current
for DC motors or the valve position for hydraulic/pneumatic ac-
tuators. However, in this paper we are interested in improving
the tracking performance in the task or the end-effector space of
redundant manipulators. Specifically, the dimension of U > di-

1 Copyright c© 2016 by ASME

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

y

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

y

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

y

θ1

θ2

θ3

θ4

(1.0,2.5)
(1.0,2.5)

(A) (B) (C)

Link 1

Link 4

FIGURE 1. (A) THE FOUR LINK MANIPULATOR WITH ANGLES SHOWN (B) THE INITIAL POSITION OF THE MANIPULATOR IS
SHOWN WITH THE END-EFFECTOR AT {1,3}. THE GOAL IS TO MOVE THE END-EFFECTOR TO THE POSITION {1,2.5}. ARIMOTO’S
ILC UPDATE BASED ON THE JACOBIAN TRANSVERSE MOVES THE JOINT 1 DOWN BUT THAT VIOLATES THE JOINT LIMIT. (C) OUR
ILC ALGORITHM WHICH IS BASED ON CONSTRAINT OPTIMIZATION IS ABLE TO FIND A MANIPULATOR POSITION THAT RESPECTS
THE JOINT POSITION LIMITS.

mension of Y, which means that the mapping from task space Y
to U is non-unique.

In order to adapt ILC to for end-effector space control, Ari-
moto et al. [7] suggested the use of the transpose of the Jacobian
(J) of the map from joint- to task-space. We have modified their
update rule for the static case and is given below

θ
i+1 = θ

i + γJT (Yref−Yi), (2)

where θ is the joint position and Y is the end-effector position.
We claim that Arimoto’s update rule (Eqn. 2) fails to im-

prove performance in some instances when the joint position is
close to the limits. We illustrate this next using a four link ma-
nipulator example.

A four link manipulator is shown in Fig. 1 (a). Link 1 is
hinged to the ground and the far end of link 4 is the end-effector
position. Each link is of length 1 and the angles are θ1, ...θ4 as
shown. The only joint limit on the manipulator is that on link 1,
0≤ θ1 ≤ π/2. The x and y positions of the end-effector are given
by

x = c1 + c12 + c123 + c1234, (3)
y = s1 + s12 + s123 + s1234, (4)

where s1 = sin(θ1), c1 = cos(θ1), s12 = sin(θ1 + θ2), c12 =

cos(θ1 + θ2) and so on. The Jacobian is obtained by taking the
partial derivative of the position of the end-effector with respect
to joint angles, θ1,θ2,θ3,θ4. After taking the transpose we get
JT to be

−s1234− s123− s12− s1 c1234 + c123 + c12 + c1
−s1234− s123− s12 c1234 + c123 + c12
−s1234− s123 c1234 + c123
−s1234 c1234

Assume that the manipulator is in the position shown in

Fig. 1 (b). The angles are θ1 = 0, θ2 = π/2, θ3 = θ4 = 0. Note
that θ1 is at its joint limit (0 ≤ θ1 ≤ π/2). The end-effector po-
sition in this case is at Y = {x,y} = {1,3}. We want the end-
effector to move to the position Yref = {1,2.5}. Assuming γ = 1,
we can compute the Arimoto’s update from Eqn. 2

θ
i+1 =

0

π/2
0
0

+

−3 1
−3 0
−2 0
−1 0

(0
−0.5

)
=

−0.5
π/2

0
0

 . (5)

But the value of θ1 = −0.5 violates the joint limit (Note: 0 ≤
θ1 ≤ π/2). Thus Arimoto’s algorithm has failed when the ma-
nipulator’s angles are at the joint limit.

2 Copyright c© 2016 by ASME

In this paper, we present a new iterative learning scheme that
is capable of improving task-level performance using imperfect
kinematics models and with stringent joint limits. At iteration
i, we can get the measured end-effector position, Yi, from the
given joint position, θ i, and using the true kinematics model, F
to get

Yi = F(θ i). (6)

Then, our update scheme is given by

Yi+1
des = Yi

des + γ(Yref−Yi), (7)

θ
i+1 = F̂−1(Yi+1

des), (8)

where Ydes are the desired end-effector position and F̂−1 is the
inverse of the approximate kinematic model F̂. Eqn. 7 is the up-
date rule and the Eqn. 8 maps the end-effector desired position,
Ydes, to the joint space, θ i+1. In our algorithm, a constraint opti-
mization ensures that the inverse, F̂−1, is within the joint position
limits. The cost function and constraints for the optimization are
as follows

g(θ) =
ndof

∑
i=1

(θi−θ
rest
i)2, (9)

h1(θ) = xdes− xref = 0,
= c1 + c12 + c123 + c1234− xref = 0, (10)

h2(θ) = ydes− yref = 0,
= s1 + s12 + s123 + s1234− yref = 0, (11)

h3(θ) = θ −θ min ≥ 0, (12)
h4(θ) = θ −θ max ≤ 0. (13)

The first equation is the cost. The next two equations are the con-
straints on the end-effector position and the final two are the posi-
tion limits. We use the nonlinear optimization software SNOPT
(Sparse Nonlinear OPTimizer, [8]), a robust implementation of
sequential quadratic programming with constraints. The con-
stant value for the rest position, θ rest

i , biases the solution towards
it. We heuristically chose a value of 10−3 but not equal to zero
to avoid manipulator singularity. In general, we are interested in
redundant systems, so there are multiple solutions to the inverse
kinematics problem. However, by introducing a cost function
as we have done here (that is, ||θi− θ rest

i ||), we are able to find
a unique solution. A related idea is the norm optimal iterative
learning control where the squared sum of the error and control
is minimized [9].

When we apply the above inverse kinematics scheme, we
get the results shown in Fig. 1 (c) with θ1 = 0.0710, θ2 = 0.6620,

 From
Memory

Save To
Memory

Yi
des (j)

ei(j)

Grey box. Stored in memory. Offline Computation.

-+

Yi (j)Yref(j)
 Robot

Iterative Learning Control Update Rule

 Inverse
Kinematics

Yi
des (j) = Yi

des(j) + γ (j)-1 i -1e

θi(j)

(j)i -1e

Saved errors
 from i-1 trial

Cartesian
 Error

 Position
Command

FIGURE 2. BLOCK DIAGRAM OF OUR TASK-SPACE ITERA-
TIVE LEARNING CONTROL ALGORITHM.

θ3 = 0.9342, and θ4 = 0.6039. Note that the value of θ1 is within
the joint limits. This way we are able to find a solution that is
within the joint position limits.

We have successfully used the above method to do end-
effector control of a 26 degree of freedom humanoid robot [10].
But that work was limited to the application of the algorithm. In
this paper, we discuss the stability, the rate of convergence, and
the sensitivity to learning gain for our algorithm using simple
static motion examples.

The rest of the paper is organized as follows. We describe
our algorithm in detail in Sec. 2 and the performance metrics of
the algorithm. Next, we illustrate the stability property and rate
of convergence of the algorithm for various learning gains for a
two link manipulator doing a pointing task. Finally, we show
how a four link manipulator with stringent joint position limits
iteratively learns to draw the figure eight using the algorithm.

2 Iterative Learning Control Algorithm
2.1 Algorithm

Let i represent the trial number and j the time index that
goes from 1 to n j (end time). Let the reference motion in task
space be defined by Y ref(j). The input to the inverse kinematics
solver are desired poses in end-effector space, which we denote
by Yi

des(j). Let the measured position in task space be defined
by Yi(j). Let the error between actual end-effector position and
reference position be denoted by ei(j) = Yi

ref(j)−Yi(j). The
ILC algorithm is depicted in Fig. 2 and described below:

3 Copyright c© 2016 by ASME

1. Set the error e0(j) = 0 and initialize the desired position in
the task space Y0

des(j) = Y ref(j).
2. For subsequent trials, i = 1,2,3..., do:

1. Command modification in end-effector space:

Yi
des(j) = Yi−1

des(j)+ γ
iei−1(j), (14)

where γ i is a manually tuned learning parameter.
2. Command modification in joint-space: Find a joint
space update that is within the joint position limits us-
ing constraint optimization.

θ
i+1 = F̂−1(Yi+1

des)

3. Command execution on robot: The new joint posi-
tion, θ

i(j), is executed on the robot. Measure the end-
effector position, Yi(j) and save the tracking errors in
end-effector space ei(j), for j = 1,2, ...,n j).

3. Stop when the error metric ei
norm is below a threshold value

set by the control designer. The learnt joint position is then
θ

i(j) (j = 1,2, ...,n j).

The error metric at iteration i is given by

ei
norm =

1
n j

n j

∑
j=1

neff

∑
k=1

(ei
k(j))2 (15)

where ei
k(j) is the tracking error in the pose element k, at iteration

i and at time j, n j is the total data points in the trial, neff is the
number of pose elements considered. For example, for a two link
manipulator when we are interested in controlling the x- and y-
position of the end-effector, neff = 2.

Note that we assume the motion is static and hence there is
no dependence on the velocities. Also, we assume that there is
high gain position servo that can achieve the given desired joint
position, θ

i(j), on the robot.

2.2 Performance of the algorithm
We derive formulas for the convergence and stability of the

algorithm.

2.2.1 System equations: The ILC update equation
is:

Yi
des(j) = Yi−1

des(j)+ γ
iei−1(j). (16)

In this paper, we assume that the parametric uncertainty is in
the length parameters. We note that the end-effector position is

linearly dependent on the length, and hence to the parametric
uncertainty. Thus, the measured end-effector pose, Yi, is going
to be linearly proportional to the desired end-effector position,
Yi

des,

Yi(j) = Gi
jY

i
des(j) (17)

where Gi
j is a diagonal matrix of size 6 × 6 if position and ori-

entations are both considered in the formulation. Note that G is
a function of iteration number, i, time sample, j, and is a linear
function of the parametric uncertainty in the link lengths.

2.2.2 Convergence analysis: To do convergence
analysis, we need to relate the errors between successive trials.
This is done as follows.

ei(j) = Y ref(j)−Yi(j)

= Y ref(j)−Gi
jY

i
des(j)

= Y ref(j)−Gi
jY

i−1
des(j)−Gi

jγ
iei−1(j)

= Y ref(j)−Yi−1(j)−Gi
jγ

iei−1(j)

= ei−1(j)−Gi
jγ

iei−1(j)

= (I−Gi
jγ

i)ei−1(j) (18)

The condition for convergence is that the |ei−1(j)|< |ei(j)|. This
condition is met when the magnitude of all eigenvalues of (I−
Gi

jγ
i) are less than 1.

2.2.3 Stability analysis: We simplify the ILC update
equation as follows:

Yi
des(j) = Yi−1

des(j)+ γ
i(Y ref(j)−Yi−1(j))

= Yi−1
des(j)+ γ

iY ref(j)− γ
iGi

jY
i−1
des(j)

= (I− γ
iGi

j)Y
i−1
des(j)+ γ

iY ref(j) (19)

The condition for stable learning is that the control command,
Yi

des(j) should be bounded. This happens when the magnitude
of all eigenvalues of (I− γ iGi

j) are less than 1.

2.2.4 Implementation of the algorithm: Assuming
the learning gain γ is a diagonal matrix of appropriate size, we
note that the learning is stable and converges if all the eigenval-
ues of (I− γ iGi

j) are less than 1 (see Eqn. 18 and 19). Thus the
learning gain, γ i, is chosen at each iteration to meet the above
condition. A convenient way to do this is as follows: after im-
plementing the control on the system we first evaluate Gi

j using

4 Copyright c© 2016 by ASME

−0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

x (m)

y
(m

)

(1.414,0)
reference

1
=

1
m 2 =

1 m

θ1= 0.785

θ2= -1.571

(A) (B)

(C) (D)

−0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

x (m)

y
(m

)

(1.520,-0.247)

(1.455,0.009)

(1.412,-0.007)
Iteration 3 converged

Iteration 1

Iteration 2=
0.

9
m

1

2 =
1.25 m

θ1 = 1.056

θ2= -1.740

ˆ

ˆ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

Ei
ge

nv
al

ue

Learning gain, γ

Magnitude of Eigenvalue > 1 (unstable, does not converge)

Each lines
corresponds
to one eigenvalue

0 0.25 0.5 0.75 1 1.25 1.5
0

5

10

15

20

25

30

35

40

Learning gain,

Ite
ra

tio
n

N
um

be
 w

he
n

le
ar

ni
ng

 c
on

ve
rg

ed

γ

Gain for fastest
 convergence

FIGURE 3. (A) OUR INACCURATE MODEL CONSISTS OF TWO LINKS OF LENGTH 1M EACH. (B) HOWEVER, THE ACTUAL SYSTEM
HAS LINKS OF LENGTH 0.9 M AND 1.25 M AS SHOWN. OUR GOAL IS TO MAKE THE END-EFFECTOR GO TO THE POSITION YREF =

1.414 AND YREF = 0. WE USE THE INACCURATE MODEL FOR INVERSE KINEMATICS AND LEARN USING THE ACTUAL SYSTEM.
USING A LEARNING GAIN γ = 1 AND USING THE MODEL IN (A), THE LEARNING CONVERGES IN THREE ITERATIONS. THE ANGLES
θ1 AND θ2 IN (B) CORRESPOND TO THE CONVERGED TRIAL. (C) NUMBER OF ITERATIONS TO CONVERGENCE VS LEARNING GAIN
FOR THE EXAMPLE SHOWN IN (B). (D) THE EIGENVALUES VS LEARNING GAIN. WHEN BOTH EIGENVALUES ARE LESS THAN 1,
WE GET A STABLE LEARNING. THE LEARNING IS UNSTABLE IF EITHER EIGENVALUE (SHOWN BY RED LINES) IS GREATER THAN
1.

Eqn. 17, then we choose γ i based on the maximum value of Gi
j,

that is, γ i = 1
max Gi

j
, and use this value for the ILC update.

3 Example 1: Two link manipulator doing a pointing
task

We illustrate the performance of the algorithm with respect
to rate of convergence and stability on a two link manipulator
doing a pointing task. There are no joint position limits in this
problem but the four link manipulator presented later has joint
position limits.

3.1 The control problem

Figure 3 (a) shows our model of the manipulator. Link 1 is
hinged to the ground while the link 2 is attached to link 1. The
two links of the manipulator have length ˆ̀1 = 1 m and ˆ̀2 = 1 m.
Fig. 3 (b) shows the actual manipulator. Note that the two links
of the manipulators have different link lengths `1 = 0.9 m and
`2 = 1.25 m. Thus our model which assumes a link length of 1m
is incorrect.

We illustrate our learning algorithm with a simple point-
ing task. The goal is to point the end of link 2 in Fig. 3 (b) to
xref = 1.414 m and yref = 0. Our goal is to use the nominal model
shown in Fig. 3 (a) but learn the desired position for the inverse
kinematics from the actual model shown in Fig. 3 (b).

5 Copyright c© 2016 by ASME

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Trial 1

Trial 1

Trial 2 (converged)

Trial 4 (converged)

(A) (B)

(C) (D)

−2

0

2

lin
k

1
−2

0

2

lin
k

2

−1

0

1
lin

k
3

−0.5

0

0.5

lin
k

4

−0.02

0

0.02

er
ro

r x

0 10 20 30 40 50 60
−0.01

0

0.01

er
ro

r y

Time

−2
0
2

lin
k

1

−2
0
2

lin
k

2

−2
0
2

lin
k

3

−1
0
1

lin
k

4

−5
0
5

x 10−3

er
ro

r x

0 10 20 30 40 50 60
−0.02

0
0.02

er
ro

r y

Time

FIGURE 4. TOP ROW: LEARNING WITH JOINT LIMIT NOT ENFORCED. (A) FOUR LINK MANIPULATOR LEARNS MODELING ER-
ROR IN JUST TWO TRIALS WHEN JOINT POSITION LIMITS ARE NOT ENFORCED. (B) JOINT COMMANDS VS .TIME FOR THE FIRST
TRIAL (DASHED) AND CONVERGED TRIAL (SOLID LINE). THE GREY BANDS SHOW THE JOINT POSITION LIMITS THAT ARE NOT
ENFORCED IN THIS EXAMPLE. BOTTOM ROW: LEARNING WITH JOINT LIMIT ENFORCED. (C) FOUR LINK MANIPULATOR LEARNS
MODELING ERROR IN 4 TRIALS WHEN JOINT POSITION LIMITS ARE ENFORCED. (D) JOINT COMMANDS VS. TIME FOR THE FIRST
TRIAL (DASHED) AND CONVERGED TRIAL (SOLID LINE). THE GREY BANDS SHOW THE JOINT POSITION LIMITS THAT ARE EN-
FORCED IN THIS EXAMPLE.

3.2 Forward and inverse kinematics model

The forward kinematics model is

xdes = ˆ̀1c1 + ˆ̀2c12, ydes = ˆ̀1s1 + ˆ̀2s12. (20)

The inverse model can be computed by solving for θ1 and

θ2 from Eqn. 20.

θ2 = cos−1
(

x2
des + y2

des− ˆ̀2
1− ˆ̀2

2

2 ˆ̀1 ˆ̀2

)
, (21)

θ1 = cos−1
(

xdes(ˆ̀1 + ˆ̀2c2)+ ydes ˆ̀2s2
ˆ̀2
1− ˆ̀2

2 +2 ˆ̀1 ˆ̀2c2

)
. (22)

Note that we have assumed θ1 and θ2 to be positive in the inverse
kinematics solution. If we allow negative values as well, the in-
verse becomes multi-valued. The true system has the same form
as above but with lengths given by `1 and `2.

6 Copyright c© 2016 by ASME

TABLE 1. DATA FOR TWO LINK MANIPULATOR DOING
POINTING TASK. THE ACTUAL LENGTH IS `1 = 0.9 AND `2 = 1.2
BUT THE INACCURATE MODEL HAS ˆ̀= 0.9 AND ˆ̀= 1.2. WE
WANT THE END-EFFECTOR TO END ON THE POSITION XREF =

1.414 AND YREF = 0. THE LEARNING GAIN, γ = 1, FOR THIS
EXPERIMENT. WE STOP THE LEARNING WHEN THE ERROR
NORM (LAST COLUMN) IS LESS THAN 0.01. SEE SECTION 3
FOR DETAILS.

i xi
des yi

des θ i
1 θ i

2 xi yi ei
norm

1 1.414 0.000 0.785 -1.571 1.520 -0.247 0.354

2 1.308 0.247 1.029 -1.685 1.455 0.009 0.050

3 1.268 0.238 1.056 -1.740 1.412 -0.007 0.009

3.3 ILC initialization and evaluation
The model is initialized using the inverse kinematics solu-

tion using the approximate model f̂ . The initial angles from the
inverse kinematics solutions above gives, θ1 = π/4 = 0.785 and
θ2 =−π/2 =−1.571. This puts the end of link 2 in the position
(1.520,-0.247) as shown in Fig. 3 (b) (Iteration 1).

The goal of the iterative learning is to learn the desired po-
sition on the approximate model to get to the correct reference
position. We show the performance of learning with the gain
γ = 1 in Fig. 3 (b). The learning converges in three trials. Ta-
ble 1 illustrates the learning process. The desired positions are
changed in every trial based on measurement error. In this case,
we stopped the learning when the error norm reached a value of
0.01 or lower.

3.4 How learning gain γ affects convergence
The learning gain γ is a design parameter that needs to be

chosen. To understand the effect of learning gain on conver-
gence, we did the learning for a gain in the range (0,2]. We stop
the learning if it takes more than 40 iterations. Fig. 3 (c) shows
the iterations for convergence vs learning gain. The convergence
is in 3 trials at a gain of 1.

3.5 Stability
Figure 3 (d) shows a plot of the two eigenvalues versus gain.

For 0 < γ < 1.8, the biggest eigenvalue is smaller than 1 and the
ILC scheme is stable. For γ > 1.8 the magnitude of the biggest
eigenvalue is greater than 1 and ILC scheme becomes unstable.
Further, we noticed that the convergence for 0 < γ < 0.9 (both
eigenvalues are real and positive) is monotonic and for 0.9 < γ <
1.8 (at least one eigenvalue is real and negative) the convergence
was oscillatory.

4 Example 2: Four Link Manipulator drawing the Lis-
sojous figure
We consider a four link manipulator in 2-D space drawing

the Lissojous curve. Again, we will have a model with incorrect
values for the link lengths. We will consider the case with and
without joint position limits to demonstrate how our algorithm
works.

4.1 The control problem
Figure 4 (a) and (c) shows our model of the manipulator.

Link 1 is hinged to the ground while the link 2 is attached to
link 1, and so on. The four links of the manipulator have lengths
ˆ̀1 = 1.25 m, ˆ̀2 = 0.88 m, ˆ̀3 = 1.15m, and ˆ̀4 = 0.92 m.

However, our model assumes that all links are of equal
length `1 = `2 = `3 = `4 = 1 m. The joint position limits are
as follows:

−π/2≤ θ1 ≤ π/2, −π/2≤ θ2 ≤ π/2,
−π/5≤ θ3 ≤ π/5, −π/10≤ θ4 ≤ π/10 (23)

Our goal is to draw the Lissojous figure [7] which is given
by the following equation.

α = 2π

{
6
(j

60

)5
−15

(j
60

)4
+10

(j
60

)3}
; 0≤ j ≤ 60;

xref = sin(2α); yref = sin
(

α +
π

2

)
; (24)

4.2 Forward and inverse kinematics model
The forward kinematics model is given by

xdes = ˆ̀1c1 + ˆ̀2c12 + ˆ̀3c123 + ˆ̀4c1234

ydes = ˆ̀1s1 + ˆ̀2s12 + ˆ̀3s123 + ˆ̀4s1234
(25)

The true system has the same form as above but with lengths
given by `1, `2, `3, and `4. The inverse kinematics solution
methodology was given in Sec. 1.

4.3 Evaluation of the ILC algorithm
We tried two cases. First, without joint position limits and

second with joint position limits as given in Eqn. 23.

Joint position limits not enforced: Figure 4 (a) and (b) shows
results without joint position limits enforced. We used a learn-
ing gain of γ = 1 (we discuss this more in the next section). In
particular, Fig. 4 (a) shows the performance for trial 1 and con-
verged trial 2. Figure 4 (b) shows the joint position for the first
and converged trial. The grey area shows the joint position limits
for reference but not enforced here.

7 Copyright c© 2016 by ASME

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Learning parameter,

Ite
ra

tio
ns

γ

Learning with joint limits
Fastest convergence: 4 iterations
at a learning gain of 0.9

Learning with no joint limits
Fastest convergence: 2 iterations
at a learning gain of 1

FIGURE 5. RATE OF LEARNING WITH (RED DOTS) AND
WITHOUT (BLUE CROSSES) JOINT POSITION LIMITS FOR THE
FOUR LINK MANIPULATOR. THE SOLUTION DIVERGES FOR
γ > 1.

Joint position limits enforced: Figure 4 (c) and (d) shows re-
sults with joint position limits enforced. We used a learning gain
of γ = 0.9 (we discuss this more in the next section). In partic-
ular, Fig. 4 (a) shows the performance for trial 1 and converged
trial 4. Figure 4 (c) shows the joint position for the first and con-
verged trial, trial 4. The grey area shows the joint position limits
for reference. The optimization ensures that the joint position
limits are enforced. We stopped the algorithm when the error
was below 0.05. We also tried Arimoto’s algorithm (discussed
in Sec. 1) but it was not able to converge for any γ in the range
(0,2]. Note that the final converged error in x- and y- position
show kinks at the instance when the joint limits are hit.

4.4 How learning gain γ affects convergence
Figure 5 shows the convergence as a function of learning

gain γ with and without joint position limits enforced. The fastest
convergence for case with no joint position limits is for γ = 1 and
convergence is in 2 trials. For the case with enforced joint posi-
tion limits, the fastest convergence is at γ = 0.9 and convergence
is in 4 trials.

5 Conclusion and future work
We presented an iterative learning control algorithm for ac-

curate tracking in task space for redundant manipulators. The
learning algorithm adjusts the desired end-effector position in an
iterative fashion. The new desired position is used to update joint
position using a non-linear inverse that respects joint position
limits. We show the efficacy of the algorithm on a four-link ma-
nipulator with stringent joint position limits drawing the figure

eight.
Future work will explore the iterative learning algorithm for

dynamic (fast) motion for redundant manipulators.

REFERENCES
[1] Baerlocher, P., and Boulic, R., 2004. “An inverse kine-

matics architecture enforcing an arbitrary number of strict
priority levels”. The visual computer, 20(6), pp. 402–417.

[2] Wang, L.-C. T., and Chen, C. C., 1991. “A combined op-
timization method for solving the inverse kinematics prob-
lems of mechanical manipulators”. Robotics and Automa-
tion, IEEE Transactions on, 7(4), pp. 489–499.

[3] Tayebi, A., 2004. “Adaptive iterative learning control for
robot manipulators”. Automatica, 40(7), pp. 1195–1203.

[4] Bristow, D., Tharayil, M., Alleyne, A. G., et al., 2006.
“A survey of iterative learning control”. Control Systems,
IEEE, 26(3), pp. 96–114.

[5] Guglielmo, K., and Sadegh, N., 1996. “Theory and im-
plementation of a repetitive robot controller with cartesian
trajectory description”. Journal of Dynamic Systems, Mea-
surement, and Control, 118(1), pp. 15–21.

[6] Kuc, T.-y., Nam, K., and Lee, J. S., 1991. “An iterative
learning control of robot manipulators”. Robotics and Au-
tomation, IEEE Transactions on, 7(6), pp. 835–842.

[7] Arimoto, S., Sekimoto, M., and Kawamura, S., 2007. “It-
erative learning of specified motions in task-space for re-
dundant multi-joint hand-arm robots”. In Robotics and Au-
tomation, 2007 IEEE International Conference on, IEEE,
pp. 2867–2873.

[8] Gill, P., Murray, W., and Saunders, M., 2002. “SNOPT: An
SQP algorithm for large-scale constrained optimization”.
SIAM Journal on Optimization, 12(4), pp. 979–1006.

[9] Owens, D. H., 2016. “Norm optimal iterative learning con-
trol”. In Iterative Learning Control. Springer, pp. 233–276.

[10] Bhounsule, P., and Yamane, K., 2015. “Iterative learning of
inverse kinematics with applications to humanoid robots”.
In International Conference on Humanoid Robots, Seoul,
South Korea.

8 Copyright c© 2016 by ASME

