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Abstract— This paper considers the problem of switching
between two periodic motions, also known as limit cycles, to
create agile running motions. For each limit cycle, we use a
control Lyapunov function to estimate the region of attraction
at the apex of the flight phase. We switch controllers at the
apex, only if the current state of the robot is within the region
of attraction of the subsequent limit cycle. If the intersection
between two limit cycles is the null set, then we construct
additional limit cycles till we are able to achieve sufficient
overlap of the region of attraction between sequential limit
cycles. Additionally, we impose an exponential convergence
condition on the control Lyapunov function that allows us to
rapidly transition between limit cycles. Using the approach we
demonstrate switching between 5 limit cycles in about 5 steps
with the speed changing from 2 m/s to 5 m/s.

I. INTRODUCTION

The ability to quickly switch between periodic motions or
limit cycles allows legged robots to demonstrate agility or
the ability to quickly change velocity or direction [1]. Very
little work has been done in synthesizing agile (non-periodic)
gaits, even though a great amount of literature exists on
the creation of periodic or steady state gaits. This work
provides a technique for constructing non-steady or agile
gaits by sequentially composing steady-state gaits, thereby
capitalizing on the extensive work done on steady state gaits.

II. BACKGROUND AND RELATED WORK

A straightforward technique to create agile gaits is to
create individual controllers for periodic motion as well as
for all possible transitions. For example, Santos and Matos
[2] tuned nonlinear oscillators to generate different gaits and
gait transitions in a quadrupedal robot. Haynes and Rizzi [3]
used a heuristic approach in which transitions were created
by sequentially changing the controllers for pairs of leg from
start to goal gait while maintaining static stability (center of
mass projection is within the support polygon of the legs).
Byl et al. [4] pre-computed transition controllers between
successive apex states and used these controllers to map out
the reachable state space. The disadvantage of the method
is that it requires additional transition controllers to switch
between limit cycles.

Transition controller can be avoided entirely if one can
find common states between two limit cycles and switch
controllers when that particular state is reached. However,
it is often very difficult to find common states between two
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Fig. 1: Relation between funnels and limit cycles: (a) Use
of funnels to sequentially compose motion [5]. (b) Running
motion is analyzed using fixed point of the limit cycle at
the Poincaré section. Switching controllers are created by
composing limit cycles using the region of attraction to create
funnels.

limit cycles. As an alternative, it is relatively easier to use the
region of attraction (range of states that converges to the limit
cycle) [6] to switch. We demonstrate the approach in Fig. 1
(a). Each of the ellipsoids are the regions of attraction of a
particular limit cycle. Initially we use the controller C1 to
get the system to move toward the fixed point corresponding
to the first limit cycle. Once the state is inside the region of
attraction of the next limit cycle, the controller C2 is switched
on and so on. This way, the system can funnel from one limit
cycle to another [5].

Funnel-based switching has been used in the past and
is also the main focus of this paper. Bhounsule et al. [7]
considered transition of a torso-actuated rimless wheel robot,
a simple one degree of freedom system. The key idea was
to use a one-step dead-beat control to switch from one fixed
point to another in a single step. The switching was done
at the mid-stance position using the measured velocity of
the leg in contact with the ground. The region of attraction
was not estimated but switching was attempted by trial and
error. Westervelt [8] considered switching of a four degree of
freedom, walking robot with knees and torso. To deal with
the high dimensionality of the system, the switching was
done by considering the zero dynamics of the system which
is of dimension 1, simplifying the search for the region of
attraction. Cao et al. [9] considered the gait transition of a
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Fig. 2: Different phases of motion for the model. The model has a prismatic actuator and hip actuator (not shown) that can
place the foot at an angle θ with respect to the vertical. The prismatic actuator can apply tensional force F “ P ` kp`0´ `q
along the stance leg.

quadruped robot by switching in the mid-flight phase using
the reduced state of the body position and velocity (that is,
legs were excluded). The region of attraction was estimated
by using forward simulation, which may be time consuming.
Tedrake and coworkers [10], [11] used sum of squares to
estimate the region of attraction and used Linear Quadratic
Controllers to stabilize gaits, but the same idea can be
extended to switch between limit cycles. Veer et. al. [12] used
an exponential control Lyapunov function (ECLF) to switch
between a continuum of limit cycles to generate variable
speed walking. In their work, the ECLF ensures exponential
local stabilization but in this work we use exponential orbital
stabilization, which leads to a much faster transition.

In this paper, we use funnel-based approach for switching
between limit cycles for a running model. The switching
is done at the mid-stance position as shown in Fig 1 (b).
In contrast to past approaches, we use a discrete control
Lyapunov function approach [13], [14] to: (1) estimate the
region of attraction, and (2) enable exponential convergence
to the fixed points. The latter allows for fast transitioning
between limit cycles, typically in a single step, and is the
main novelty of our approach.

III. MODEL

Figure 2 shows the model of the runner that consists of
a point mass body of mass m and massless leg with a
maximum leg length `0. Gravity points downwards and is
denoted as g. There is a prismatic actuator that can generate
an axial force (F ) and a hip actuator for foot placement
(θ). Throughout this paper, we assume that the axial force
is acting only when the leg contacts the ground and is given
by the sum of a constant force term and a spring force term,
that is, F “ P ` kp`0 ´ `q.

The states of the model are given by tx, 9x, y, 9yu where x
and y are the x- and y-position of center of mass and 9x and
9y are the respective velocities. A single step of the walker is
given below:

Flight

apex
hkkikkj

ÝÑ Flight

touchdown
hkkikkj

ÝÑ Stance Ñ

takeoff
hkkikkj

ÝÑ Flight
looooooooooooooooooooooomooooooooooooooooooooooon

one step/ period-one limit cycle

apex
hkkikkj

ÝÑ Flight (1)

The model starts at the apex where the state vector with
respect to the world frame is, t0, 9x0, y0, 0u, a column vec-
tor.The model then falls under gravity,

:x “ 0, :y “ ´g, (2)

till contact with the ground is detected by the condition
y ´ `0 cospθq “ 0, where θ is the foot placement angle
and measured relative to the vertical. Thereafter, the ground
contact interaction is smooth and given by,

m:x “

ˆ

P ` kp`0 ´ `q

˙

x

`
, (3)

m:y “

ˆ

P ` kp`0 ´ `q

˙

y

`
´mg, (4)

where x and y are taken relative to the contact point, P ą 0
is a constant thrust force, k is the spring constant, and ` “
a

x2 ` y2 is the instantaneous leg length. For the first half
of the stance phase from touchdown to mid-stance (defined
by 9y “ 01) called the compression phase, we assume that the
constant force is P “ Pc. For the second half of the stance
phase from mid-stance to take-off called the restitution phase,
we assume that the constant force is P “ Pr. The takeoff
takes place when the leg is fully extended, that is, `0´` “ 0.
Thereafter, the mass has a flight phase and ending up at the
next apex state, tx, 9x, y, 0u.

IV. METHODS

Next, we describe our methodology for creating agile
gaits. First, we create multiple limit cycles. Second, we
define a Discrete Control Lyapunov Function (DCLF) for
exponential decay of Lyapunov function between steps and
estimate the region of attraction for each limit cycle. Third,
we use the idea of funnels to transition from a start state to
an end state by sequentially composing the limit cycles.

A. Poincaré map and limit cycle

We define the Poincaré map, F, at the apex. The apex is
defined by the condition, 9y “ 0. Given the state at the apex
at step k, xk “ t 9x, yu, and the control, uk “ tθ, Pc, Pru

1Note that the event 9y “ 0 is different from the event corresponding to
full leg compression, which is given by 9̀“ 0.



(where Pc and Pr are constant forces during compression
and restitution respectively (see Eqn. 4)), we compute the
state at the next step,

xk`1 “ Fpxk,ukq. (5)

There is no closed form for the map F. In this paper, it is
found numerically by integrating the equations of motion.
The ith limit cycle is found by fixing xk`1 “ xk “ xi and
searching for uk “ ui “ tθ, Pc “ 0, Pr “ 0u such that

xi “ Fpxi,uiq. (6)

The stability of the limit cycle can be found by evaluating the
largest eigenvalue of the Jacobian of F, that is, J “ BF

Bx |pxi,uiq

[6]. For the runner one eigenvalue is always 1 (a conservative
system when Pc “ Pr “ 0) [15] while the second eigenvalue
is used to evaluate the stability. An eigenvalue less than 1
indicates a stable limit cycle and unstable otherwise.

B. Discrete Control Lyapunov Function (DCLF)

We define a Lyapunov function for the ith limit cycle as
follows

V p∆xikq “ p∆xikq
TSi∆xik “ pxk ´ xiq

TSipxk ´ xiq (7)

where the positive definite matrix Si “ diagtsi1, si2u. The
resulting Lyapunov function is a 2-dimensional ellipse that
has its major and minor axes along the horizontal velocity
and height axes respectively. However, a more generic form
that is symmetric and positive definite may also be used and
it will have its major and minor axes at an angle to the
coordinate axes.

For the system to be asymptotically stable, the following
condition needs to be satisfied

V p∆xik`1q ´ V p∆xikq ă 0 (8)

However, asymptotic convergence can be slow. To con-
verge faster, we use an exponentially decaying condition on
the Lyapunov function

V p∆xik`1q ´ V p∆xikq ď ´αV p∆xikq, (9)

where 0 ă α ă 1 is the rate of decay of the Lyapunov
function between steps. Thus, the condition for exponential
stability can be written as shown in Eqn. 10.

C. Region Of Attraction (ROA)

The Region Of Attraction (ROA), R, of the controller is
the set of all initial conditions xk that would converge to the
corresponding limit cycle, xi. In our case, we are interested
in all xk for which we can find uk such that Eqn. 10 is
satisfied. To find the ROA, Ri for a given limit cycle we
need to find level set, pxk ´ xiq

TSipxk ´ xiq “ c such that
Eqn. 10 is satisfied. We restrict ourselves to c ď 1.

First, we find Si “ diagtsi1, si2u such that level pxk ´
xiq

TSipxk´xiq “ 1 intersects the state constraint y “ `0 (a
conservative estimate that prevents the leg from stubbing the
ground at the Poincaré section, the flight phase apex position,
assuming the leg is vertical and at its nominal length `0).

Second, we find maximum value of c such that pxk ´
xiq

TSipxk´xiq ď c and exponential stabilization conditions
given by Eqn. 10 are satisfied. This is done numerically as
follows: (1) fix c to a small value and compute xk’s on the
level set, (2) check if a uk exists such that Eqn. 10 holds
using nonlinear optimization, (3) increase c and repeat, (4)
stop when at least one xk is infeasible or when c “ 1.

D. Minimizing Energy Cost

When finding a controller for each state within the ROA,
we minimize the Mechanical Cost Of Transport (MCOT)
defined as energy used per unit weight per unit distance
travelled

Enet “ Eθ ` EPc
` EPr

“

ż

step

ˆ

|kp`0 ´ `q 9̀| ` |Pc 9̀| ` |Pr 9̀|

˙

dt

MCOT “
Enet
mgD

(11)

where Eθ, EPc
, and EPr

are mechanical work done by spring
force due to foot placement, constant compression force, and
restitution force respectively, |x| is the absolute value of x, D
is the horizontal distance travelled between two consecutive
apex positions, and 9̀ “

x 9x`y 9y
` . The absolute value is a non-

smooth function so we smooth it using square root smoothing
[16]. That is, |x| “

?
x2 ` ε2 where ε is a small number (we

assumed ε “ 0.01). The optimization problem is to minimize
MCOT (Eqn. 11) subject to the exponential DCLF condition
(Eqn. 10) for the given initial condition x0.

E. Transitioning using funnels

The key idea behind transitioning between limit cycles
with stability guarantees is shown in Fig. 1 and inspired by
[5]. We choose limit cycles such that the fixed point of one
limit cycle is in the region of attraction of the next limit
cycle. When the system state is in the region of attraction of
the next limit cycle, the corresponding controller is switched
on. The algorithm is given in Algo.1.

V. RESULTS

In all the following results we assume that mass is m “ 80
kg, nominal leg length is `0 “ 1 m, gravity g “ 10 m{s2,
and spring constant k “ 32000 N{m. For all simulations,
we choose the exponential decay rate α “ 0.9 (see Eqn. 10).

A. Example 1: Exponential Stabilization

To illustrate the exponential stabilization of the controller
we proceed as follows. First, we found foot placement θ
needed to achieve a fixed point of x˚ “ t5.0, 1.3u. The
corresponding value is θ˚ “ 0.3465 rad. The maximum
eigenvalue was 1.33 indicating an unstable gait. We found
the positive definite matrix for the Lyapunov function to
be S˚ “ diagt1, 11.1u as described in Sec. IV-C. To
test the controller, we started with an initial condition at
step 0, x0 “ t4.20, 1.48u, that is different from the fixed
point. The value of the Lyapunov function for the initial
condition is V p∆x0q “ p∆x˚0 q

TS˚i ∆x˚0 “ 1. Subsequently,



V p∆xik`1q ´ p1´ αqV p∆xikq ď 0

ùñpxk`1 ´ xiq
TSipxk`1 ´ xiq ´ p1´ αqpxk ´ xiq

TSipxk ´ xiq ď 0,

ùñ

ˆ

Fpxk,ukq ´ xi

˙T

Si

ˆ

Fpxk,ukq ´ xi

˙

´ p1´ αqpxk ´ xiq
TSipxk ´ xiq ď 0. (10)

Algorithm 1 Transition(initial state xinit, goal state xgoal)

Input: initial state xinit, goal state xgoal.
Output: Set of control actions for each step, uk, where step

index is k “ 1, 2, ..., n.
1: Compute sufficiently large number of limit cycles (say
m) and their associated controller (u) between init
and goal state such that their ROA’s (R) overlap (See
Secs. IV-A and IV-C).

2: SORT(Rp), p “ 1, 2, ...,m either in increasing or
decreasing order of speed of fixed point.

3: Initialize step number k Ð 0 and state x0 Ð xinit
4: while |xk`1 ´ xgoal| ě δ do {δ is a small number}
5: FIND(xj) all the fixed points xj where j “ 1, 2, ..., N

such that xk P Rj using Eqn. 7. {NOTE: xj is a subset
of the m limit cycles computed earlier.}

6: Choose fixed point xj that is closest to the goal state
(say x̄j) and set the corresponding controller uk “ ūj .

7: Apply the control uk and compute the state at the next
apex, xk`1.

8: k Ð k ` 1
9: end while

the controller ensures exponential decay of the Lyapunov
function, V p∆x1q “ 0.1 and V p∆x2q “ 0.01.

B. Example 2: Robustness to height variation

Figure 3 and Tab. I demonstrate robustness of the DCLF.
First, we found foot placement θ needed to achieve a fixed
point of x˚ “ t 9x˚, y˚u “ t2.0, 1.3u. The corresponding
value is θ˚ “ 0.1603. To test the controller, we introduced
a ditch of height 0.2 m. Subsequently, the state of the
system at the apex (step 0) is x0 “ t1.957, 1.5085u. Fig. 3
shows the evolution of the state at subsequent steps. The
black dashed line indicates the constant total energy line
(TE˚ “ mgy˚ ` 0.5m 9x˚2) passing through the fixed point
(black cross). Initially at step 0 the TE is greater than TE˚,
thus energy needs to be dissipated. DCLF achieves this by
using a non-zero force in compression phase (Pc) (see Tab. I,
row 1). Thereafter, on step 1, the TE reaches the constant TE
line passing through the fixed point as shown in Fig. 3. The
controller then adjusts only foot placement to further reduce
the Lyapunov function (see Tab. I, row 1).

C. Example 3: Transitioning between limit cycles with and
without actuator bounds

Figure 4 illustrates how to switch between limit cycles
using funnels. The model starts at the fixed point t2, 1.2u
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Fig. 3: Example 2, robustness to step down. A step down
leads to increase in apex height because the height is
measured relative to the ground. The black cross indicates
the fixed point. The dashed line indicates the constant total
energy, sum of kinetic and potential energies, that passes
through the fixed point. The blue region indicates the ROA.
The red dots indicate the system state at each step. The
figure demonstrates how DCLF is able to tackle an external
disturbance.

and needs to end at the fixed point t5, 2u. We create limit
cycles for these two fixed points and estimate their ROA. We
also create additional limit cycles and estimate their ROA.
We need a total of 3 more limit cycles such that fixed point
of one limit cycle is in the ROA of the subsequent limit
cycle so that transitions are possible. Table II shows the 5
limit cycles, the foot placement angle, associated energy, and
mechanical cost of transport.

We considered two cases: (a) no actuator bounds and
(b) with actuator bound of 12mg in the prismatic actuator.
Figure 4 shows the evolution of the state at the apex between
successive steps while Tab. III shows in addition, the control
strategy and energy usage. We can see that for steps 0-2 the
state, control, and energy are identical (compare rows 1, 2,
and 3 in Tab. III (a) with those in (b)). Thereafter, the actuator
limit kicks in and the convergence for (b) (with actuator
limits) is slower than (a) (no actuator limits). Overall, it takes
only 7 steps for (a) but 9 steps for (b) to be sufficiently close
to the fixed point of the target limit cycle. It is interesting to
note that for both cases only the restitution force is applied
(i.e., Pr ą 0) in the first 4 steps to enable fast transition
between limit cycles, as this has the effect of adding energy



TABLE I: Transition for example 2: Robustness to height change. The fixed point of the target limit cycle is t2, 1.3u. The
nominal foot placement angle is 0.1603 rad. A ditch of height 0.2 m is introduced due to which the system starts with the
initial condition, x0 “ t1.957, 1.5085u. The mechanical work done by the actuator due to spring force for the limit cycle is
Eiθ “ 795.4332 J and MCOTi “ 0.7533.

k i xk θ Pc Pr Eθ ´ E
i
θ EPc EPr MCOT

0 1 t1.957, 1.5085u 0.14823 941.2727 0 54.4924 153.3961 0 0.89718
1 1 t1.8279, 1.3412u 0.13238 0 0 49.7985 0 0 0.81926
2 1 t1.9578, 1.3166u
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Fig. 4: Transitioning between limit cycles for example 3 for (a) no actuator limits, (b) with actuator limits. The black cross
indicates the fixed point. The shaded region indicates the ellipsoid estimating the ROA for each limit cycle. The red dots
indicate the system state at each step. An animation is in the reference [17]

and speeding up the runner. The MCOT does not change
appreciably in the entire transition.

VI. DISCUSSION

We have presented a method for switching between limit
cycles based on two key ideas: (1) use the region of attrac-
tion at the Poincaré section to create funnels, and (2) use
exponentially stabilizing discrete control Lyapunov function
for fast switching between limit cycles. We demonstrate the
approach on a model of running with an axial actuator to
control the ground interaction forces and a hip actuator to
control the foot placement position. We show that a fairly
wide range of initial perturbations can converge to within
1% of the fixed point in a maximum of 2 steps. We also
demonstrate the runner can transition from the limit cycle
with a speed of 2 m{s to 5 m{s (a change of 150%) in
about 5 steps even with actuator limits.

The use of three control actions (Pc, Pr, θ) substantially
increases the region of attraction of the model (e.g., the
ellipsoid shown in Fig. 3). When the two constant forces
are assumed to be zero (i.e., Pc “ Pr “ 0) the region of
attraction shrinks to a curve (e.g., the total energy dashed
line shown in Fig. 3). This special case in which energy is
conserved between steps is called the Spring Loaded Inverted
Pendulum (SLIP) model of running [18].

The use of a discrete control Lyapunov function (DCLF)

with exponential stabilization accelerates the convergence
to the fixed point, thus enabling fast switching between
limit cycles. This is a distinct advantage over controllers
that impart asymptotic convergence, which is slower [19].
Another approach is to use a one-step dead-beat control (full
correction of disturbance in a single step) as it gives the
fastest switching between limit cycles. However, we have
found that DCLF can handle a larger range of modeling
errors than a one-step dead-beat control and is thus preferred,
especially when implementing on hardware [13].

Finally, we discuss limitations of our work. To enable
transition, we need to have sufficient overlap between the
region of attraction of sequential limit cycles. However,
if the region of attraction is small then one would need
to use a large number of limit cycles to transition thus
increasing the computational complexity. The use of the
nonlinear optimization to compute transition controllers is
computationally expensive and online optimization might
be challenging in practice especially for higher degrees of
freedom robots. Alternately, the controllers can be saved as
a look up table.

VII. CONCLUSIONS

In this paper we have demonstrated that steady state gaits
can be sequentially composed to create non-steady or agile
gaits. This is achieved by funneling the robot from the start



TABLE II: Limit cycles for example 3, transition controllers

limit cycle, # i xi maximum eigenvalue θ tsi1, si2u Eiθ MCOT
1 t2, 1.2u 1.5958 0.16328 t1, 25u 588.9249 0.6394
2 t2.7, 1.4u 1.7246 0.20813 t1, 6.25u 1040.5214 0.6564
3 t3.4, 1.6u 1.8223 0.25237 t1, 2.7778u 1504.095 0.6446
4 t4.2, 1.8u 1.8846 0.30156 t1, 1.5625u 2003.4739 0.6187
5 t5, 2u 1.9269 0.34897 t1, 1u 2533.3107 0.5987

TABLE III: Transition for example 3: The source state is t2, 1.2u and target state is t5, 2u.

(a) No actuator limits

step #, k limit cycle, # i xk θ Pc Pr Eθ ´ E
i
θ EPc EPr MCOT

0 2 t2, 1.2u 0.10619 0 2561.2099 ´516.3278 0 327.0972 0.6985
1 3 t2.5369, 1.4871u 0.14125 0 1960.9835 ´409.3977 0 362.1299 0.73876
2 4 t3.239, 1.737u 0.19017 0 2033.0225 ´385.6915 0 456.4176 0.71919
3 5 t4.0495, 2.0121u 0.24826 0 1895.4544 ´279.4241 0 502.4145 0.69664
4 5 t4.8733, 2.2726u 0.32461 363.5763 0 325.6946 108.6778 0 0.66728
5 5 t4.9688, 2.0898u 0.34128 137.2408 0 176.4281 39.9361 0 0.63788
6 5 t4.9912, 2.0287u 0.34654 45.8814 0 129.3415 13.2341 0 0.62852

(b) With actuator limits.

step #, k limit cycle, # i xk θ Pc Pr Eθ ´ E
i
θ EPc EPr MCOT

0 2 t2, 1.2u 0.10619 0 2561.21 ´516.3278 0 327.0972 0.6985
1 3 t2.5369, 1.4871u 0.14125 0 1960.9766 ´409.3978 0 362.1286 0.73876
2 4 t3.239, 1.737u 0.19017 0 2033.0298 ´385.6945 0 456.4188 0.71919
3 5 t4.0495, 2.0121u 0.25399 0 1017.2232 ´252.895 0 271.3035 0.68289
4 5 t4.7062, 2.0638u 0.31812 0 0 91.0704 0 0 0.64186
5 5 t4.9116, 1.965u 0.34044 0 286.4697 ´3.8926 0 80.539 0.62526
6 5 t4.9883, 2.0277u 0.34996 0 0 171.1558 0 0 0.63364
7 5 t4.9607, 2.0414u 0.34373 19.6883 0 154.9589 5.7058 0 0.63215
8 5 t4.9949, 2.0173u 0.34752 27.9249 0 120.6562 8.0413 0 0.62679

state to goal state by using the region of attraction of suc-
cessive, overlapping steady state limit cycles. Furthermore,
a discrete control Lyapunov function with exponential decay
is an effective method of enabling quick transition between
limit cycles.
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