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Precise task-space tracking with manipulator-type systems requires an accurate kine-

matic model. In contrast to traditional manipulators, sometimes it is difficult to obtain

an accurate kinematic model of humanoid robots due to complex structure and link
flexibility. Also, prolonged use of the robot will lead to some parts wearing out or be-

ing replaced with a slightly different alignment, thus throwing off the initial calibration.
Therefore, there is a need to develop a control algorithm that can compensate for the

modeling errors and quickly retune itself, if needed, taking into account the controller
bandwidth limitations and high dimensionality of the system. In this paper, we develop
an iterative learning control algorithm that can work with existing inverse kinematics

solvers to refine the joint-level control commands to enable precise tracking in the task

space. We demonstrate the efficacy of the algorithm on a theme-park type humanoid
doing a drawing task, serving drink in a glass, and serving a drink placed on a tray

without spilling. The iterative learning control algorithm is able to reduce the tracking
error by at least two orders of magnitude in less than 20 trials.

Keywords: Iterative Learning Control, Task-space tracking, Humanoids, Zero-Reference

Model, Constraint Optimization

1. Introduction

Many applications of manipulator-type systems involve precise task-space control.

Examples include industrial manipulators that do welding and personal humanoid

robots that folds clothes. Industrial manipulators rely on good CAD models and
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high-gain servo controllers to accomplish precise end-effector motions. However, the

techniques that work well for industrial manipulators may not transfer to humanoid

robots for the following reasons:

(1) Humanoid robots are made light weight due to weight and size constraints

leading to flexible links. Thus, traditional CAD models which are based on

rigid body assumptions are not valid. Additional modeling terms are needed to

account for link flexibility, which can be hard.

(2) Humanoid robots tend to have small actuators for safety reasons and/or may

have a low bandwidth controller. This makes it hard to implement a precise

servo.

(3) Humanoid robots have large number of joints and long limbs, especially the

human-size robots. Thus, small parameters errors in the CAD model can lead

to big errors at the end-effectors.

(4) When the humanoid robots are used long-term (e.g., personal robots), some

parts may wear out or be replaced with a slightly different alignment. Hence

the original CAD model is not valid anymore.

Thus, for accurate task-space control of humanoid robots, one needs a method that

can compensate for the modeling errors by modifying the joint-level control com-

mands and to make up for part wear and/or replacement. We present an iterative

learning control algorithm that can address the above issues.

In this paper, we show that a combination of constrained optimization and

iterative learning control using data from motion capture (MoCap) system can

enable high fidelity task-space tracking even with strict joint limits. First, we create

a rigid body based kinematics model and fit the parameters by minimizing the error

between model predicted end-effector pose and measured pose using the MoCap

system. When we invert the obtained kinematic model for task space control, the

accuracy is limited because of unmodelled effects, specifically joint flexibility and

sensor noise, and position tracking errors due to limited control bandwidth. We

therefore employ iterative learning control to improve the tracking performance.

The iterative learning control algorithm modifies the desired end-effector motion

based on end-effector tracking errors. We show that the learning algorithm is able

to provide accurate tracking on three tasks on a theme-park type humanoid: (i)

drawing the figure eight, (ii) serving a drink without spilling, and (iii) serving a

drink placed on a tray.

2. Background and Related Work

The main issue with task-space control is the lack of accurate kinematic models

due to reasons mentioned earlier. Traditional feedback control methods such as

Proportional-Integral-Derivative Control 1 are the preferred methods to correct for

modeling errors because they have a simple structure and can be relatively easy to

hand-tune. However, they are not preferred when the plant is subject to unexpected
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disturbances. In this case, it is common to have an adaptive controller that modifies

the control parameters to make up for the varying loads 2,3. However, most feedback

control techniques rely on setting high gains which necessitates the use of high

bandwidth feedback control, typically 500 Hz or more. In our case, the control

bandwidth of 120 Hz limits us to relatively low gains.

Learning-based method have also been used to do task-space control. One ap-

proach is to directly build a inverse kinematics model using the experimental data
4,5. The biggest issue with this approach is that the inverse mapping is not unique
6. To overcome the multiple solution nature of the inverse mapping, Oyama et al.
7 used a multiple neural networks to represent the inverse kinematic solutions lo-

cally in different regions of the state space. These individual networks are called

experts. Next, another neural network, called the gating network, is used to choose

an expert to obtain the inverse kinematics solution. One of the problem with the

above method is that the construction of the gating network becomes difficult in

high dimensions.

Iterative Learning Control (ILC) can correct for modeling errors to enable high

fidelity tracking. In its simplest form, ILC modifies the control command in every

iteration in the following way: the command at trial i, is the sum of the command

in trial i − 1, and a control gain times the tracking error in trial i − 1 8. Because

the tracking errors are reduced iteratively at every trial, the control gains can be

kept small.

Traditionally, in ILC, the learning is at the joint level 9. However, it is quite

straightforward to extend ILC to task level using the appropriate mapping from

the task-space to the joint space. For example, Arimoto et al. 10,11 used the lin-

earized mapping, i.e., the Jacobian, to map the incremental change in position from

the task level to the joint level and showed the efficacy of their algorithm on a four

link manipulator in simulation. In our ILC algorithm, we use the non-linear map

from task-space to joint space and show the efficacy of the algorithm experimen-

tally on a humanoid robot. Specifically, we evaluate the non-linear map by using

an inverse kinematics solver which finds a solution within joint limits. The main

improvement over Arimoto’s algorithm is that our algorithm is able to handle joint

limits (see Bhounsule et al. 12 for more details). This paper is an extension of the

paper we previously published 13 in the following ways: we give extensive details

about the kinematic modeling including experimental results and provide an exten-

sive evaluation of the iterative learning control algorithm on a number of tasks on

the humanoid robot.

3. Hardware

3.1. Humanoid robot

We use a 37 degree of freedom, hydraulically powered, fixed-base humanoid robot

shown in Fig. 1. Each joint has either a rotary potentiometer or a linear variable

differential transformer to sense the joint position. There are two levels of control.
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At the lowest level, there is a single processor per joint. The processor runs a 1 KHz

control loop that does high gain position control using individual position data from

joint sensor, velocity from differentiated and filtered position data from joint sensor

and the force sensor in the valve. The gains on the lowest level controller are pre-set

and cannot be changed at runtime. At the highest level, there is a single computer

that communicates with all the low level processors at 120 Hz, sending desired

joint position commands and receiving measured positions. The highest level serves

as our interface to the robot, i.e., the input is a position command and the joint

position is the measured variable, both of which occur at a rate of 120 Hz.

3.2. Marker-based motion capture

We use OptiTrack motion capture (MoCap) system along with their software suite

ARENA 14. We use 8 cameras to track the 3 passive retro-reflective markers attached

at each of the end-effectors: the head, and the two hands. Using the position data

from the 3 markers, the ARENA software computes the position and the orientation

of each of the end-effectors.

The motion capture system is first used to create a kinematic model of the robot

and subsequently used for iterative learning control to improve on the kinematic

model for accurate task space tracking. In all experiments, the position and the ori-

entation of the end-effectors from the MoCap system and the robot’s joint position

in potentiometer tics are recorded simultaneously at 120 Hz.

4. Kinematic model for humanoid

4.1. Joint model

We assume a linear relation between the joint position in radians or meters and the

measured joint position signal in counts from the potentiometers or linear variable

differential transformers. Our model is

qi = Ki(qi,counts − q0
i,counts), (1)

where i denotes the joint number; Ki is the gain in radians per count for revolute

joint or meters per count for prismatic joint; qi is the angle in radians (denoted

θ) or linear position in meters (denoted as s); qi,counts is the measured angle or

linear position in counts, a digital signal from 0 to 4095, as we use a 12 bit encoder;

q0
i,counts is the bias for the angle or for the position.

4.2. Kinematic model

We use the zero-reference kinematic modeling 15,16,17,18. In the zero reference mod-

eling approach the zero position (the reference configuration in which all joint posi-

tion have a value equal to zero) can be arbitrarily fixed 19, unlike the more popular

Denavit-Hartenberg modeling approach 20 where the pose depends on the robot
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geometry. Because we use the zero reference kinematic modeling approach, we need

to have a fixed zero reference configuration, and is chosen as shown in Fig. 1 (a).

Next, we choose the unit vector that defines the direction of motion of the joint

axis. By defining a point through which the axis passes, we obtain the location of

the joint axis 19.

The homogenous transformation T i defines the motion of a point on the link at-

tached to the joint i (i = 1, 2, ..., 26, A,B, ..., E) with respect to the previous joint.

We define the homogenous transformation, T i, for revolute and prismatic joints

next.

Revolute joint

T revolute
i =

[
R (I −R)rT

0 0 0 1

]
, (2)

where I is the 3×3 identity matrix; r = [xi, yi, zi] is 3×1 vector that gives location

of the revolute joint with respect to previous joint in the local reference frame; and

R is a 3×3 rotation matrix and is shown next.

R =

 u2
xvθ + cθ uxuyvθ − uzsθ uxuzvθ + uysθ

uxuyvθ + uzsθ u2
yvθ + cθ uyuzvθ − uxsθ

uxuzvθ − uysθ uyuzvθ + uxsθ u2
zvθ + cθ

 ,
where θ is the angle turned by the joint in radians; u = [ux, uy, uz] defines the

joint axis; and sθ = sin θ, cθ = cos θ, vθ = 1 − cos θ. To obtain the transformation

given by Equation (2) we do the following: first translate the point by a distance −r
to pass through the center of the revolute joint; then rotate by an angle θ using the

Rodrigues equation; and finally translate by r to restore it to the original position
21.

The transform, T revolute
i , has 5 unknowns; two in u, two in r, and one in θ. We

obtain the third component of u using the identity, u2
x + u2

y + u2
z = 1. By defini-

tion, the zero-reference model fixes one component of r. Hence, there are just two

unknowns in the position vector r.

Prismatic joint

T prismatic
i =


1 0 0 sux
0 1 0 suy
0 0 1 suz
0 0 0 1

 , (3)

where we define u as in the previous section and s defines the linear motion of the

joint in meters.

The transform, T prismatic
i , has 3 unknowns; two in u, and one in s. We obtain

the third component of u using the identity u2
x + u2

y + u2
z = 1.
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The transformation T i
e maps the i-th end-effector frame with the zero reference

pose. The zero reference pose is shown in Fig. 1 (b).

T i
e =

[
Ri

e rie
0 0 0 1

]
. (4)

Here, rie = [xie, y
i
e, z

i
e] is 3×1 vector defines the location of a marker with respect to

the previous joint in the local reference frame, and we obtain Ri
e from Euler angles

φix, φiy, φiz, using the x−y−z convention of Euler angles (also called Bryant angles).

Ri
e = Ri

xR
i
yR

i
z.

The transformation given by Equation (4) has 6 parameters in all: three for the

position (xie, y
i
e, z

i
e) and three for the orientation (φix, φiy, φiz).

Like Equation (4), the transformation Tr that maps the robot reference frame

to the camera reference frame in the zero reference pose is

T r =

[
Rr rr

0 0 0 1

]
. (5)

From Fig. 1 (b), we see that the humanoid has a closed loop structure from the

waist down (grey thick lines that constitute robot legs) and a tree structure from

the waist up (thin multi-color lines that constitute the robot torso, the head, and

the hands). We break the loop joint at joint 4. Now we have four serial chains: three

from each of the end-effectors (the head, the left hand, and the right hand) to joint

1, and one from joint 4 to joint 3. Next, we show how to combine these serial chains

to give the kinematic model and the end-effector pose.

If T i
c is the transformation that maps the motion of the i-th end-effector with

respect to camera frame then

T head
c =T rT 1T 2TATBT 4T 5T 6T 7T 8T 9T 10T

head
e , (6)

T left-hand
c =T rT 1T 2TATBT 4T 5T 6T 7T 11T 12T 13T 14T 15T 16T 17T 18T

left-hand
e ,

(7)

T right-hand
c =T rT 1T 2TATBT 4T 5T 6T 7T 19T 20T 21T 22T 23T 24T 25T 26T

right-hand
e .

(8)

Finally, to ensure that the loop joint constraint closes at joint 3, we define the

transformation T loop
r as

T loop
r =T 4TCTDTET 3. (9)

The transformation T loop
r gives the position and the orientation of the end of the

loop joint, that is, at joint 3. For the loop to close, we need to satisfy 5 constraints

(1 less than a maximum of 6, because of the single degree of freedom at joint 3).

The 5 constraints are enforced by choosing appropriate values for the 5 angles at

joints, A, B, C, D, and E. These 5 angles are neither sensed nor actuated on the

robot.

We use the kinematics modeling utility in the rigid body dynamics simulator

SDFast 22 to model the robot kinematics.
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4.3. Initial model parameters

The initial model parameter estimation is done as follows. We first set the robot in

the zero-reference pose as shown in the schematic diagram in Fig. 1 (a). The positive

direction for the joint axis corresponds to the direction that the joint should move

for the raw joint position measurement system to give an increasing value. Setting

up the joint axis direction this way ensures that the gains (Ki’s) are positive. We

measure link lengths using a ruler. We obtain the bias terms, q0
i,counts from the

measured position in counts in the reference pose. A rough estimate of the gain

Ki, for each joint, is obtained as follows. We move the joint whose gain we want to

estimate by a random amount. We measure the change in the angle in radians using

a protractor, and also in tics using the potentiometer on the joint. We can estimate

Ki by dividing the change in angle in radians to the change in angle in tics.

4.4. Parameter Identification

For kinematic modeling, we need a rich data set. We drive each joint using a si-

nusoidal trajectory that covers the full range of joint motion. The frequencies of

individual joints are chosen to be non-multiples of each other. This ensures that

we were not getting repeating motion. The total data collection time is about 30

minutes. However, for analysis purposes, we down-sample the data by a factor of

240 to get about 750 unique poses. A kinematic model is specified and parameters

are fit using non-linear least squares. The model has limited accuracy due to un-

modeled effects such as sensor noise and link deflection due to load. Thus, when

the kinematic model is inverted for task-space control there are errors. We therefore

use an iterative learning control algorithm to modify the control command based on

error between the predicted end-effector position and orientation using the inverse

kinematics model and the measurements from the motion capture system to enable

accurate task space tracking (see Sec. 5.2).

The parameter identification step improves on the initial estimates obtained

earlier using the data collected from MoCap. This is done by updating the model

parameters based on minimization of the squared prediction error using the param-

eter optimization software called SNOPT 23, a non-linear constraint optimization

software based on sequential quadratic programming.

Our parameter optimization problem is as follows: For a given set of poses

specified by the joint position data in counts, we find parameters for the model

given by Equation (1) and Equations (6) to (9), that best explains the measured

end-effector position and orientation data from all three end-effectors, and across

all the poses.

We use the a single cost function consisting of sum of end-effector position and
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orientation error

Cost =

∑Nhead
i=1 (∆r2

i + wi∆θ
2
i )

Nhead︸ ︷︷ ︸
Cost-head

+

∑Nleft-hand
i=1 (∆r2

i + wi∆θ
2
i )

Nleft-hand︸ ︷︷ ︸
Cost-left-hand

...

+

∑Nright-hand
i=1 (∆r2

i + wi∆θ
2
i )

Nright-hand︸ ︷︷ ︸
Cost-right-hand

, (10)

(∆ri)
2 = (∆xi)

2 + (∆yi)
2 + (∆zi)

2, (11)

(∆θi)
2 = (∆θxi )2 + (∆θyi )2 + (∆θzi )2, (12)

where ∆xi = xmodel
i − xexpt

i denotes the difference between values from the

kinematic model (obtained from appropriate transform in Equation (6), Equation

(7) or Equation (8)) and the measurement for the x-coordinate of one of the end-

effector for the ith pose and so on. Similarly, ∆θxi = θx,model
i − θx,expt

i denotes the

difference between values from the kinematic model and the measurement for the

Euler angle corresponding to rotation along x axis for the ith pose and so on. Nhead,

Nleft-hand, Nright-hand denote the number of observations for the head, the left-hand,

and the right-hand respectively. The weight, wi denotes a weight on the angular

position with respect to the linear position and was set to 1 for the parameter

identification.

We now describe the optimization parameters. We have a total of 178 parameters

given in the list below. Item 1 gives the parameters for the joint model (see Equation

(1)) and the rest of the items are for the kinematic model (see Equation (2) to

Equation (9)).

(1) We have 2 parameters, Ki and q0
i,counts, for each joint. As there are 26 joints,

we have a total of 52 joint level parameters.

(2) We specify the position and the orientation of the i-th rigid body formed by the

markers with respect to the end-effector using the transformation T i
e and given

by Equation (4). This transformation has 6 parameters; three for the position

and three for the orientation. For the three end-effectors, there are a total of 18

parameters

(3) We specify the position and the orientation of the robot’s reference frame with

respect to the camera frame using the transformation T r and given by Equation

(5). This transformation has 6 parameters; three for position and three for

orientation.

(4) The tree structure from joint 5 or Torso Twist and up (thin multi-colored lines

in Fig. 1 (b)) has 20 revolute joints and 2 sliding joints. Each revolute joint adds

4 parameters (one less than the usual 5 for revolute joints because we know the

joint position in radians from the joint model, see Equation (2)); and each

sliding joint adds 2 parameters (one less than the normal 3 for prismatic joints

because we know the joint position in meters from joint model, see Equation
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(3)). Thus we have a total of 92 (20×4+2×6) parameters for the tree structure.

(5) The closed loop structure in the lower body (shown as thick grey line in Fig. 1)

has 9 revolute joints but only 4 revolute joints are sensed and actuated. In each

actuated joint, there are 2 numbers that describe the joint axis. Since there are

4 actuated joints, there are a total of 8 parameters. The only length parameters

in the loop structure are the height and width of the loop. Thus, the loop

structure has a total of 10 parameters.

4.5. Results for kinematic modeling

Next, we present results for the parameter identification problem described in

Sec. 4.4. Table 1 gives the root mean square error for the position and the ori-

entation for the head, the left hand, and the right hand. The average position

accuracy is 1 cm and the average orientation accuracy is 1.84 degrees. For a 1.8 m

tall robot, an accuracy of 1 cm corresponds to a percentage error of only 0.6 %,

which is reasonably small, but not small enough for accurate task space tracking,

as we will see in the next section.

The residual errors for the head are lower than the left hand and the right

hand, indicating a better fit for the head. Both hands have similar residual errors.

We believe that the higher residual error in the hands as compared to the head

is because of two reasons: link deflection due to gravity loading and sensor noise.

Since the hands have a bigger mass and larger moment arm than the head, the

hands would have a bigger end-effector deflection than the head. Also, since the

hands have more degrees of freedom and therefore, more joint sensors, the effect of

sensor noise is more dominant for the hand than the head. We could have improved

the fit further by adding a model that accounts for link deflection due to gravity

loading 24, and a model accounting for sensor accuracy 25. However, we decided to

forego this because we can easily improve the tracking accuracy for joint and task

space control by using learning or feedback control algorithms.

Fig. 2 shows a histogram of the position and the orientation error. The errors are

normally distributed with a mean of zero, except for the position error in gravity

direction, ∆zi, which has a mean around 0.5 cm. We speculate that this error bias

is due to gravity loading which we have not accounted for in our model.

Consistency check: We do three more non-linear least squares calculations for

individual end-effectors separately using the individual cost terms defined in the

Equation (13). We compare these fits with each other and with the least squares

fit for all the end-effectors taken together described by all terms in the Equation

(13). To check the consistency we compare some of the common parameters in the

four optimizations, namely the pin alignment and the link lengths in the lower body.

The maximum variation between the four optimizations for the pin axis is 4 degrees

and for the link length is 4 cm, primarily because of parameter redundancy (e.g.,

the height of the closed loop and the height of the mid-body). However, since the
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variation we obtain across different optimizations are within 2%, we conclude that

the solutions are consistent.

5. Task-level control

We use the inverse of the identified kinematic model for task-level control but found

it not accurate enough for precise tracking. We therefore used an iterative learning

control algorithm to improve the tracking performance and described in this section.

5.1. Inverse Kinematics

We need an inverse kinematics solver to map the desired end-effector motion to

joint space for the low level position servo. Sometimes it is possible to find a closed

form inverse kinematics solution (e.g., 26), but this is not always the case. In such

instances, a numerical optimization provides a straight-forward and generalizable

method of finding an inverse kinematics solution, especially for redundant robots

such as humanoids 27. Specifically, by choosing a suitable cost function one can bias

the solution to use certain joints over the other ones.

We use the optimization software SNOPT 23 again, to develop an inverse kine-

matics solver. The problem here is to find the joint angles as a function of time,

θ(t), to minimize the cost function g, subject to end-effector constraints h1, the

lower joint limits h2, and upper joint limits h3. We define these functions next:

g(θ(t)) =

ndof∑
i=1

wi

(
θi(t)− θref

i (t)
)2

+

n̂eff∑
j=1

Wj

(
Xj,des − fj(θ(t))

)2

, (13)

h1(θ(t)) = Xi,des(t)− fi(θ(t)) ≤ |ε|, where i = 1, 2, ..., neff, (14)

h2(θ(t)) = θ(t)− θmin ≥ 0, (15)

h3(θ(t)) = θ(t)− θmax ≤ 0. (16)

Here f is identified kinematic model, Xi,des is the ith desired pose element for the

inverse kinematics, ndof is the degrees of freedom that are used for the end-effector

control, n̂eff are the end-effector pose elements with a soft constraint, neff are end-

effector pose elements with hard constraints. We assume ε = 10−3.

The following are free parameters which the motion designer can tune in order

to bias the motion.

(1) The reference angles for the joints, θref
i (t). We choose θref

i (t) = θref
i (constant

values), which is the joint angles corresponding to the robot pose shown in

Fig. 1.

(2) The joint weights, wi. We intuitively chose a weight of 1 for the joints for the

hand degrees of freedom and choose a weight of 10 for the joints in the mid- and

lower-body. This choice of this particular weight distribution has the effect of

finding solutions that involve bigger excursions of the hand degrees of freedom

than the body degrees of freedom, similar to what humans would do when doing
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tasks using their hands. Alternately, the weights can be chosen using inverse

optimization using motion capture data (e.g., See Liu et al. 28).

(3) The end-effector weights, Wj . These weights are only used in the tray task for

the orientation of left hand. They were tuned to 10.

5.2. Iterative Learning Control (ILC) Algorithm

The joint angle solution θ(t) leads to poor performance when we implement it on

the robot because of the imperfect kinematic model. So, we implement an itera-

tive learning control to improve the tracking performance of the inverse kinematics

solution. We describe the algorithm next.

Let i represent the trial number and j the time index that goes from 1 to nj
(end time). Let the reference motion in task-space be defined by Xref(j). Here we

have concatenated the position and the orientation in the vector X. The input to

the inverse kinematics solver are the desired poses in end-effector space, which we

denote by Xi
des(j). Let the measured position in task-space be defined by Xi

act(j).

Let the error between actual end-effector position and reference position be denoted

by ei(j) = Xi
ref(j)−Xact(j). Our ILC algorithm is shown in Fig. 3 and described

below:

(1) Set the error e0(j) = 0 and initialize the desired position in the task-space

X0
des(j) = Xref(j).

(2) For subsequent trials do:

• Command modification in end-effector space: Update the feed-forward po-

sition command using the tracking error at trial i, Xi
des(j) = Xi−1

des (j) +

Γei−1(j). The manually tuned learning gain, Γ, is a 6x6 matrix of the form;

Γ = diag{γ1, γ2, ...γ6}. Further, for ILC to converge we need 0 < γi ≤ 1.

• Command initialization in joint-space: For the desired position in task-

space Xi
des(j), use the inverse kinematics solver to find a desired joint

command θi(j).

• Command execution on robot: Send the feed-forward commands θi(j) (j =

1, 2, ..., nj) to the low level controller. Save the resulting tracking errors in

the end-effector space, ei(j) (j = 1, 2, ..., nj).

(3) Stop when the error metric einorm does not improve between trials. The learnt

feed-forward command is then θi(j) (j = 1, 2, ..., nj).

The error metric to check convergence is given as follows

einorm =
1

nj

nj∑
j=1

neff∑
k=1

(eik(j))2, (17)

where eik(j) is the tracking error in the pose element k, at iteration i and at time

j, neff = 6 and nj is the total data points in the trial.
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Tuning the learning gain: The free parameters in the ILC algorithm are the

learning gains, Γ. The choice of this parameter affects the learning rate, convergence,

and stability (see Bhounsule et al. 12 for conditions on the learning gain). We

simplify the choice, by using the same learning parameter for all six degrees of

freedom. Thus Γ = γI, where I is 6x6 identity matrix and 0 < γ ≤ 1.

Zero phase filtering: We use a zero phase filter to remove sensor noise and to

provide a zero phase lag 29. The zero phase filtering is done as follows. We first

filter in the forward direction using a second order Butterworth filter with cutoff

frequency of 1 Hz. Next, we pad the forward filtered signal with about 120 reflected

data points at the beginning and at the end. Then, we reverse the concatenated

signal and filter again with the same Butterworth filter. This process of forward

filtering followed by reverse filtering produces a signal with zero delay. The padding

of data removes unnecessary transients in the beginning and the end of the filtered

signal. Note that the zero-phase filtering is anti-causal and it needs the sensor values

for the entire trajectory and is done offline.

5.3. Results for task-level iterative learning control

We demonstrate the implementation of our algorithm on the humanoid robot on

three control tasks (see Fig. 4): (1) drawing the figure eight (writing task), (2) using

one hand to serve a glass of drink (glass task), and (3) serving a drink atop a tray

using both hands (tray task). For the writing and glass task, the joints 1 through 7

in the body, and 19 through 26 in the right hand were used. For the tray tasks, all

joints except the joints controlling the head (joints 8, 9, and 10) were used. Note

that the joints A through E are neither sensed or actuated but need to move in

order to allow the loop joint in the lower body to move. Also see Fig. 1 (b) and (c)

for the experimental set up and placement of markers for learning.

Task 1: Writing Task: The writing task consists drawing the lemniscate, which

is the figure eight or the ∞ symbol. We specify the lemniscate equation in Xdes(t).

We use the inverse kinematic solver (see See 5.1) to compute the joint position

command θ(t)). Here neff = 6 corresponding to the position and orientation of the

right hand and n̂eff = 0. The joint command is then played back on the robot. The

motion of the end-effector is tracked by three markers placed on the right hand.

The kinematic model does not take into account the actuator dynamics or the link

deflection, and does not produce error free tracking. Finally, we use the the inverse

ILC algorithm to improve the tracking performance.

The learning parameter γ was manually tuned to 0.3 by running a few trials on

the robot. While the robot is learning, the robots draws in the air and the motion

capture system helps to measure the motion of the end-effector. The ILC algorithm

uses the tracking error to improve the performance. The error metric (see Eqn. 17)

for Trial 1 is 3 × 10−2, and it decreases to 2 × 10−5 in 18 trials. This is almost a
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three orders of magnitude improvement. The rate of convergence is shown in Fig. 5

(a).

Fig. 6(a) shows errors in the position and the orientation as a function of time

for the first trial and the converged trial. We can see that the error is reduced to

almost zero by the learning algorithm. Fig. 7 (a) and (b) shows a plot of the drawing

task in the x-y (horizontal plane) and the x-z plane (fore-aft plane). The solid black

line is the reference. The dash-dotted line is the robot motion during trial 1. The

dashed lined shows the converged motion at trial 18.

After the robot has learnt the motion, we made the robot draw the lemniscate

on a piece of paper using a brush dipped in black paint. A snapshot of the robot

after completing the task is shown in Fig. 4 (a) and the actual drawing is shown

inset.

Task 2: Glass Task The glass task consists of moving glass in a straight line in

the fore-aft direction while maintaining a constant height and constant orientation

throughout the motion, as if the robot is serving a drink to a person in front of it.

Fig. 4 (b) shows the task executed with the converged trial and with the glass filled

with a liquid.

We use the same value for the learning parameter, γ = 0.3. Also, neff = 6

corresponding to the position and orientation of the right hand and n̂eff = 0. We

did learning in three scenarios and we describe them next. For all the learning

scenarios, the motion capture system tracked a set of three markers placed on top

of the glass. The three markers were used by the motion capture software to give

the glass position and orientation for the learning algorithm.

Learning from identified model: We initialize the learning from the kinematics

model we identified. Trial 1 produced an error of 2×10−2 (see Eqn. 17). This is un-

derstandable because our forward model ignores the actuator dynamics and the link

deflection. However, after using iterative learning control the error norm decreased

to 2 × 10−4 in 8 trials. This is about a two orders of magnitude improvement. A

plot of the convergence rate is shown as filled circles in Fig. 5 (b).

Learning incorrect potentiometer calibration: In order to test if our learning

algorithm can learn from incorrect potentiometer calibration, we change the gain

and the bias by 10% on joint 7 (bends the torso in the fore-aft direction), joint 20

(moves the right shoulder in the front back direction), and joint 23 (right elbow

joint) (see Fig. 1). We use the earlier kinematic model that does not account for

the incorrect potentiometer calibration. The error in Trial 1 was 5 × 10−2 but it

decreased to 7× 10−4 in 9 trials. This is almost two orders of magnitude improve-

ment. A plot of the convergence rate is shown with diamond shape in Fig. 5(b).

Also, Fig. 6 (b) shows the error in tracking for Trial 1 and for Trial 9.
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Learning when some joints are unresponsive: One situation that can come

when such robots are deployed is that one or more joints might be unresponsive in

the event of a controller failure. In such cases, it is desirable to be able to temporarily

accommodate the failure. The ILC framework can be used for temporary fault

accommodation by exploiting the system kinematic redundancy.

To simulate a fault, we made the controller on two joints unresponsive. The two

joints we made unresponsive were the joint Pelvis joint (bends the mid body in

the fore-aft direction) and Torso Forebend (bends the upper body in the fore-aft

direction) (see Fig. 1). The system first runs the converged command from the first

case presented in this section (Trial 1 shown by the cross in Fig. 5(b)). This gives a

rather large error (about 4× 10−2) in the task space. We set new joint limits in the

inverse kinematics solver and use the ILC algorithm to improve the tracking errors

in task space. In 9 trials, the ILC algorithm converges and produces the net error

of 6 × 10−5. This is almost two orders of magnitude improvement. The crosses in

Fig. 5(b) shows the convergence rate.

Fig. 8 shows the joint command sent to the robot for all the 14 joints for this

experiment. The dashed lines is the initial command that assumes all joints are

working fine. The solid lines is the learnt command. Note that the Elbow joint

mostly compensates for the unresponsive Pelvis and Torso Forebend joints.

Task 3: Tray Task The tray task consists of the robot moving a tray with both

hands in a straight line in the fore-aft direction while maintaining a constant height

and constant orientation of the tray throughout the motion. Fig. 4 (c) shows the

task executed with the learnt command and with a filled glass placed on the tray.

There were practical issues in getting the tray task to work. The robot is designed

such that the robot hands can get within about 75 cm from each other. Thus the

robot needs a suitably wide tray. The ideal way to move an object with both hands

is to maintain the position of both hands with respect to each other and a constant

orientation of the hands. This ensures that the tray moves level with respect to the

world frame. However, the robot joints limits are quite severe that we could not find

inverse kinematics solution that will give a big range of motion for the tray while

respecting position and orientation for both hands. We modified the tray supports

in such a way that the robot makes line contact with the tray on the left hand and

point contact with the tray on the right hands (see 4 (c)). This way we do not need

to do orientation control on the right hand. This eases the hard constraint on the

right hand letting us do a large range of motion.

For this task, we are interested in maintaining the orientation and position of

the left hand and the position of the right hand. Thus neff = 9 which are the hard

constraints in Eqn. 14. We try to maintain a suitable orientation of the right hand

using soft constraint, thus n̂eff = 3. We tuned the weight Wj = 10 in Eqn. 13. The

rest pose given by θrest
i is shown in Fig. 1 (c). The learning parameter γ was set

at 0.3 for all end-effector elements. The positions were measured in meters and the

orientations were measured in terms of quaternions. While the robot is learning, the
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tray is not placed on the hands. The tracking errors are used by the ILC algorithm

to improve the performance.

The error metric (see Eqn. 17) for Trial 1 was 2× 10−2 and 2× 10−3 for the left

hand and right hand respectively. This decreased to 3× 10−4 and 3× 10−5 for the

left hand and right respectively in 14 trials. This is almost three orders of magnitude

improvement for each hand individually. The rate of convergence is shown in Fig. 5

(c).

Fig. 6(c) shows errors in the position and orientation as a function of time for

the first trial and the converged trial for the right and left hand. We can see that the

error is reduced to almost zero by the learning algorithm. Note that the orientation

error for the right is non-zero because we did not learn this error. We enforced the

right hand orientation as a soft constraint in the inverse kinematics.

After the robot has learnt the motion, we checked if the ILC algorithm indeed

works by placing a tray with a glass filled with liquid. A snapshot of the robot after

completing the task is shown in Fig. 4 (c).

6. Discussion

We have provided a comprehensive technique for accurate task space tracking for

a humanoid robot with serial and parallel linkage using a motion capture (MoCap)

system. We started with an approximate kinematic model and identified its param-

eters using non-linear least squares using a constraint optimization software. The

average error in the position and orientation was 1 cm and 1.84 degrees respectively.

The limited accuracy was because of joint flexibility and sensor noise which was not

factored in our rigid body kinematics model. Thus, using the kinematics model, we

were unable to get accurate task space tracking.

We then improved on the tracking by incorporating an iterative learning control

algorithm that corrected the joint command based on errors in end-effector tracking.

We tested the algorithms on a drawing task, a serving a drink task, both involving

one hand and serving a drink using a tray using both hands. In each of these cases,

the task space error was reduced by at least two to three orders of magnitude in a

maximum of 18 trials.

Practical kinematic calibration for humanoid robots: Humanoid robots, un-

like traditional industrial manipulators, might need periodic calibration for the fol-

lowing reasons: (1) Some humanoids (e.g., the robot used in this research) are

retrofitted with replacement parts during their life cycle; (2) To keep cost low, hu-

manoids are often fitted with cheap sensors (e.g., potentiometers) which need fre-

quent calibration; (3) Some humanoids have special transmissions such as pulleys,

cables, and tendons which need to be frequently calibrated; and (4) Sometimes CAD

models of humanoids may not be available. Hence a quick and accurate technique

for calibration is needed.

The marker-based motion capture system allows us to collect rich data from
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multiple end-effectors simultaneously. In our study, the motion capture time lasted

for 30 minutes for a 26 degree of freedom humanoid. Starting from a crude model of

the robot which was estimated using a protractor and a ruler, our non-linear least

squares optimization program was able to fit 178 parameters in about 1 hour on a

standard desktop computer (circa 2010). Our fit accuracy was 1 cm for the position,

which is within 0.6% when compared with the robot height, and 1.84 degrees for

the orientation, averaged across all the end-effectors. Thus kinematic calibration

procedure we propose is fast, accurate and can be automated if desired.

Better models give better convergence: Though ILC scheme is designed to

correct for modeling errors, better models give better convergence 30. This is clear

when we compare the two test cases in the glass task; (1) learnt from an identified

model vs. (2) learnt from identified model but with incorrect pot calibration. In the

former case, the error in the converged trial is 2 × 10−4 which is smaller than the

error in the converged trial of 7× 10−4 in the latter case.

Another place where better models lead to better convergence is evidenced is

when we compare the writing task with the glass task. The error in the converged

trial for the writing task and glass task are 2 × 10−5 and 2 × 10−4 respectively.

Thus in the writing task, the final convergence is an order of magnitude better

than in the glass task. This is explained as follows: In the glass task, the robot

has to stretch its hands and body outward to reach out. The robot is flexible and

the structural loading causes link deflection which is not accounted in our model.

On the other hand, in the writing task, the robot does not have to reach out and

the link deflection is much smaller. In other words, our kinematic model for the

writing task is much more accurate than in the glass task. The evidence for the

above explanation can be seen by comparing the error in the z position between the

writing task shown in Fig. 6 (a) (iii) and the glass task shown in Fig. 6 (b) (iii).

It is seen that the error in the z-direction keep increasing as the robot stretches its

hand to move the glass to serve the drink.

Use of existing robot model: Our method treats the inverse kinematics solver

as a black-box during the learning process. This is advantageous for two reasons:

(1) There is no need to rewrite the inverse kinematics solver. This is specially

advantageous for humanoid robots that have an inverse kinematics solver already

available. (2) Even if the robot model changes a bit, for example due to wear and

tear or part replacement, there is no need to re-calibrate the model.

Handling Joint Limits: From our experience, we know that humanoid robots

often operate close to the position limits. In our method, the joint limits are handled

by the constrained optimization at the inverse kinematics solver (see Fig. 3). In all

the experiments reported here, we had multiple joints at their position limits, but

the learning proceeded seamlessly, converging to a small tracking error. We believe

that this is a significant advantage of our method over others that work at the
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velocity level and use the Jacobian to map from task-space to joint space.

Joint limits: Another way of doing the learning is to do the update in the joint

space 10,11

θides(j) = θi−1
des (j) + γĴ−1ei−1(j), (18)

The disadvantage of the above update rule is that if one is close to the joint limit

than the projection via the Jacobian Ĵ−1 may not give an improvement at all. This

might cause the ILC algorithm to not converge, or even worst, to become unstable.

Please see Bhounsule et al. 12 showing comparizon of our method with that of

Arimoto 10,11. Our method does not suffer from this because we use a nonlinear

inverse that find solutions within the joint limits.

Fault accommodation: Fault diagnosis and isolation is critical to reduce down-

time and also for timely intervention. Once the fault is detected, the ILC algorithm

we present here can be used to accommodate failures by exploiting the robot kine-

matic redundancy. We have presented one such scenario in this paper: the robot

serves the glass without spilling even though two of its joints are unresponsive. A

future direction would be to exploit the structural redundancy (redundant hard-

ware, e.g., two motors on one joint) and the functional redundancy (hardware that

performs different functions, e.g., estimate position using inertial measurement unit

if the potentiometer breaks) 31 to develop work-arounds when joints on the robot

become unresponsive.

Limitations of our method: Our method has all the limitations of ILC: it is

an offline method; it needs manual tuning to work well; and it can only improve

a single trajectory at a time. In addition, our method needs an inverse kinematics

solver that is able to find solutions within joint limits. This can be computationally

expensive and can lead to issues if the manipulator is in singular configuration.

Appendix A. Multimedia Extension

A video of the robot doing the three tasks is available as a multimedia extension:

https://www.disneyresearch.com/publication/accurate-task-space-tracking/

References

1. K. J. Astrom, Pid controllers: theory, design and tuning, Instrument society of Amer-
ica, 1995.

2. T. B. Cunha, C. Semini, E. Guglielmino, V. J. De Negri, Y. Yang, and D. G. Caldwell,
Gain scheduling control for the hydraulic actuation of the hyq robot leg, in Proc. of
COBEM, 2009.

3. D. Sun and J. K. Mills, High-accuracy trajectory tracking of industrial robot ma-
nipulator using adaptive-learning scheme, in American Control Conference, vol. 3,
pp. 1935–1939, IEEE, 1999.



May 31, 2017 21:44 WSPC/INSTRUCTION FILE ilc˙humanoid˙final

18 Bhounsule and Yamane

4. A. Guez and Z. Ahmad, Solution to the inverse kinematics problem in robotics by
neural networks, in IEEE International Conference on Neural Networks, pp. 617–624,
IEEE, 1988.
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Fig. 1. (a) The kinematic model of the humanoid robot in the zero reference pose has 26 degrees
of freedom. In the reference pose all the joint angles zero. The names of these joints are; 1) Body

Forebend (BF), 2) Body Sway (BS), 3) Body Twist (BT), 4) Pelvis (P), 5) Torso Twist (TT), 6)

Torso Sway (TS), 7) Torso Forebend (TF), 8) Head Turn (HT), 9) Head Nod (HN), 10) Head
TiLT (HTLT), 11) Left Shoulder Shrug (LSS), 12) Left Arm Forebend (LAF), 13) Left Arm Out

(LAO), 14) Left Arm Swing (LAS), 15) Left Elbow (LE), 16) Left Wrist Twist (LWT), 17) Left

Wrist In Out (LWIO), 18) Left Wrist Forward Back, (LWFB), 19) Right Shoulder Shrug (RSS),
20) Right Arm Forebend (RAF), 21) Right Arm Out (RAO), 22) Right Arm Swing (RAS), 23)

Right Elbow (RE), 24) Right Wrist Twist (RWT), 25) Right Wrist In Out (RWIO), 26) Right

Wrist Forward Back (RWFB). The joints named A, B, C, D, E are neither actuated nor sensed.
Gross robot specifications are: height = 1.8 m (5’11”), body width = 0.28 m (9”), and length of

hand = 0.67 m (2’2”). (b) A photo of the humanoid robot that we used in this study. The above

pose is our reference pose for the inverse kinematics (see Sec 5.1) for the writing and glass task.
A plastic glass is glued to the right hand of the robot and is shown inset. We put three markers

on the top of the glass which we track using our motion capture system. (c) The rest pose for the
tray task. There are three markers on top of glasses attached to the hands. We use the glasses to

elevate the markers so that they are in clear view of the motion capture system.
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Table 1. Fit accuracy: Root mean square error for the position and the orientation for the head,

the left hand and the right hand. See Section 4.4 for details.

Name Head Left Right Average Root

Hand Hand Mean Square Error

∆x in cm 0.47 0.71 0.74 0.64

∆y in cm 0.28 0.42 0.56 0.42

∆z in cm 0.57 0.76 0.64 0.66

∆r in cm 0.80 1.12 1.12 1.00

∆θx in degrees 0.67 0.97 1.15 0.93

∆θy in degrees 0.8 1.22 1.56 1.19

∆θz in degrees 1.03 1.07 0.97 1.02

∆θ in degrees 1.47 1.89 2.17 1.84
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Fig. 2. Distribution for the fit accuracy for the left hand: Histogram of the position error

are on the left-side and the orientation error are on the right-side. There are about 750 data points

per histogram.
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Fig. 3. Block diagram of our end-effector space iterative learning control algorithm. We filter the

cartesian space errors ei−1(j) using a zero phase filter before applying the iterative learning update
rule. The super-script i denotes the trial number and j denotes a time instance.
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Fig. 4. (a) Robot doing the writing task. The figure ”eight” drawn by the robot is shown inset. (b)

Robot doing the glass task. The robot serving the drink without spilling. The learning was done
with no liquid in the glass (c) The robot doing the tray task with a drink placed on the tray. The

learning was done without the tray.
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Fig. 5. Convergence of errors as a function of iteration number for (a) the writing task, and (b)
the glass task, (c) the tray task
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Fig. 6. Position and Orientation Errors for (a) the writing task and (b) the glass task (learning
incorrect potentiometer calibration) (c) Tray task, left hand, and (d) Tray task, right hand. (i,ii,iii)

Errors in the position in the x, y, z directions in cms and (iv,v,vi) Errors in the angle in degrees
in the x, y, z direction. x is in the fore-aft direction, y is in the robot left-right direction and z is

in the up-down direction. We do not learn orientation error in the left hand. This is enforced as a
soft constraint in the inverse kinematics.
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Fig. 7. (a) Plot in the x-y plane (z axis lines up with gravity). (b) Plot in the x-z plane (fore-aft
plane of robot). The dash-dot lines and dashed lines are the marker position measured by the

motion capture system.
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