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1.1 Abstract

Passive dynamic walking robots are machines that use only their natural dynamics – mass distribution
and geometry – to move downhill. Since these robots use no external actuators, they are highly energy-
e�cient. But the most striking aspect is that their motion looks natural and graceful resembling that of
a human. These passive dynamic slope walkers have provided inspiration for minimally powered dynamic
walkers. The minimally powered walkers use their actuators to guide and shape the natural dynamics thereby
retaining the energy e�ciency and fluidity of the fully passive walkers.

We first introduce concepts such as Poincare map, Limit cycle, Eigenvalue-based stability which are key
in analyzing passive dynamic walking-based robots. We illustrate these concepts by analyzing the simplest
2D dynamic walking model going downhill without any control. The results indicate that there are stable
motions of the simplest 2D walker. Next, we present how minimal control can be used to create almost
passive walking robots on level ground. Some of the control methods discussed are: virtual gravity control
that mimics gravity encountered on a downhill ramp, tracking the mechanical energy of passive dynamic
walkers, on-o↵ or bang-bang control to supply energy lost during foot-strike, low-gain position control using
set points to guide the swing leg, and a discrete, event-based, intermittent controller to modulate desired
outputs over one or multiple steps. We give a commentary on current state-of-art of powered passive dynamic
robots with respect to energy-e�ciency, stability, robustness, versatility, mechanical design, estimation, and
robot complexity. We conclude that although passive dynamic robots are energy e�cient, they have shown
limited proficiency on metrics of stability, robustness, and versatility. Thus, the grand challenge in this area
is to create machines that are adept at the afore-mentioned metrics without compromising on the energy-
e�ciency.
Keywords: Passive Dynamic Walking, Compass gait, Poincaré maps, Limit cycle, Natural Dynamics, Cost
of Transport.
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1.2 Introduction

How much control is needed to create walking gaits for legged robots? The passive dynamic walk-
ing paradigm suggests that movement in a legged robot requires no control because walking can emerge
purely from the mechanics of the legs. Passive dynamic walking robots are machines that use their natural
dynamics, i.e., their mass distribution and geometry, to move downhill with no actuation or control.

The concept of passive dynamic walking is about a century old as evidenced by a number of patents on
downhill walking toys (Fallis 1888 [19], Bechstein 1912 [3], Mahan 1909 [36], and Wilson 1938 [49]). The
Wilson Walker is shown in Fig. 1.1 (a). It has two legs, each of which connects to a body by a hinge joint.
When launched correctly, the toy is able to walk stably down a slight incline. Specifically, the side-ways
rocking of the body lifts a foot o↵ the ground. The o↵-ground foot then swings forward to complete a step.
The same sequence is repeated with the other foot, thus enabling steady downhill locomotion.

Figure 1.1: (a) The Wilson walker, (b) A copy of McGeer’s passive dynamic walker built at Cornell Univer-
sity, (c) A 3D passive dynamic walker with arms from Cornell University. These figures are from [15]. (d)
A sequence of snapshots during walking of the 3D passive dynamic walker shown in c. The figure is from
[17].

The Wilson walker inspired McGeer [38] to create the first passive dynamic walking machine. His robot,
called the Dynamite, had four legs with knees but arranged in pairs so that the inner two and outer two legs
alternate during walking (see Fig. 1.1 (b) for a replica made at Cornell University). Like the Wilson walker,
Dynamite was able to walk stably downhill when launched with the right set of initial conditions. But the
configuration of the legs limits the walking only to the sagittal or the front-back plane. Collins et al. [17]
created a 3D passive dynamic robot with two kneed legs and two swinging arms (see Fig. 1.1 (c) and (d)).
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Their design had swinging arms coupled to the legs and feet with guide rails to stabilize side-to-side (roll
motion) and turning (yaw motion). Owaki et al. [44] built the first successful passive dynamic running robot.
Their design had four legs with knees arranged in pairs (two inner- and outer- legs coupled to each other),
an axial spring in each of the legs to cushion collisions, a spring between the legs to aid hip swing, and arc
shaped feet. The robot was able to successfully run 36 steps on downhill ramp with slope of 0.22 rad. All
these robots have the common feature that they use their natural dynamics and gravity to descend downhill.
Since these robots use no motors, they are very energy-e�cient. However, the most striking aspect is that
their motion looks natural and graceful like that of human. Indeed, Mochon and McMahon [41] have shown
that the leg swing in human walking is dictated greatly by the natural dynamics with very little control. This
suggests that perhaps humans exploit their natural dynamics to walk while expending negligible amounts
of energy. We think that these two aspects, the energy-e�ciency and the biological relevance, makes it
appealing and interesting to study the role of passive dynamics in creating functional legged robots.

The rest of the chapter is written as follows. We describe the simplest passive dynamic walker in Sec. 1.3
and provide necessary details for analyzing its motion. This model is a nice starting point for beginners in
the field. Next in Sec. 1.4, we describe techniques to enable passive-dynamic walking on level ground with
or without control. The discussion and challenges in creating passive-dynamics based robots are in Sec. 1.5.
Finally, the conclusions follow in Sec. 1.6.

1.3 Passive dynamic walking on a slope

The first known simulation of a passive dynamic walking model was done by McGeer [38]. Two other
well-known papers are those by Goswami et al. [27], who called it the compass-gait walker (reminiscent of
the compass tool used in drawing), and by Garcia et al. [22], who created an extremely simplified model
and called it the simplest walker. Garcia’s model had a point mass at the hip and massless legs. After non-
dimensionalizing velocity, the model has a single parameter, the ramp slope. The simplicity of this model
makes it very attractive for learning about passive dynamic models. We present the analysis used in Garcia
et al. [22] in the next section. The MATLAB code for simulating the simplest walker and for general mass
distribution round feet walker is available in the paper by Bhounsule [6]. Another tutorial paper on passive
dynamics is by Wisse and Schwab [51].

1.3.1 Model description and equations of motion

Figure 1.2 (ii) shows a model of the simplest walker. The model consists of a mass M at the hip and
a point mass m at each of the two feet. Each leg has length `, gravity g points downwards, and the ramp
slope is �. The leg in contact with the ramp is called the stance leg (thin red line) while the other leg is
called the swing leg (thick blue line). The angle made by the stance leg with the normal to the ramp is ✓
(counter-clockwise is positive) and the angle made by the swing leg with the stance leg is � (clockwise is
positive). Figure 1.2 a single walking step for the walker. The walker starts in (i), the state in which the front
leg is the stance leg and the trailing leg is the swing leg. A sequence of snapshots that make up a single step
are shown from (ii) to (v). Finally in (vi), the swing leg collides with the ground and becomes the new stance
leg. At this point, we have a complete gait cycle, i.e., the walker configuration in (vi) is the same as (i). Note
that between (iii) and (iv), there is foot scu�ng because the swing leg passes through the ground. We ignore
foot scu�ng in the model but an experimental prototype needs to have a mechanism to create foot clearance
during swing. Foot clearance can be created by having actuated ankles [7] or by adding knees to the walker
[39].
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Figure 1.2: A typical step of the simplest walker.

A single step of the walker consists of the following sequence:

Single Stance phase �! Foot-ground contact event �! Foot-strike phase �!|                                                                                                    {z                                                                                                    }
one step/ period-one limit cycle

Single Stance (1.1)

Next, we state the equations of motion for the phases and events described in Eq. 1.1 and provide a brief
explanation on the derivation. Please see the appendix for more details on the derivation.

Single stance phase (continuous dynamics):
In this phase of motion, the stance leg pivots and rotates about the stationary foot, while the swing leg

pivots and rotates about the hinge connecting the two legs. The assumptions are: the stance leg does not slip,
there is no hinge friction, and foot scu�ng is ignored. The equations for this phase are

✓̈ = sin(✓ � �), (1.2)

�̈ = sin(✓ � �) + {✓̇2 � cos(✓ � �)} sin(�). (1.3)

The Eq. (1.2) and Eq. (1.3) are obtained by doing an angular momentum balance about stance foot contact
point and hip hinge respectively, followed by non-dimensionalizing the time with

p
`/g and applying the

limit, m/M ! 0.

Foot-ground contact event:
The swing leg contacts the ground when the following condition is met,

� = 2✓. (1.4)

Foot-strike phase (discontinuous dynamics):
In this phase of motion, the legs exchange their roles. That is, the current swing leg becomes the new

stance leg and the current stance leg becomes the new swing leg. The assumptions are: the swing leg has
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a plastic collision (no slip and no bounce) with the ground, the collision is instantaneous, and there is no
double support phase. The equations for this phase are:

✓+ = �✓�, (1.5)
�+ = ��� = �2✓�, (1.6)
✓̇+ = cos(2✓�)✓̇�, (1.7)

�̇+ =
⇣
1 � cos(2✓�)

⌘
cos(2✓�)✓̇�, (1.8)

where the super-script � and + denotes the instance just before and just after foot-strike respectively. The
switching of the leg angles is given by Eq. (1.5) and Eq. (1.6). The angular rates of the legs after foot-strike
are obtained by using conservation of angular momentum about the impending foot-strike point and the
hinge joint at the hip to obtain Eq. (1.7) and Eq. (1.8) respectively. Then, time is non-dimensionalized usingp
`/g and the limit, m/M ! 0, is applied.

1.3.2 Analysis using Poincar´e return map

 Poincare section (S)
 an event, e.g., foot-strike

0

1
Period-one
limit cycle

(Fixed point)

(Perturbation)

Figure 1.3: A Poincaré Map is used to find walking solutions and to analyze stability.

A Poincaré return map is used to find steady-state walking motions and to analyze motion stability
[22, 38, 47]. In Figure 1.3, the gray region is the Poincaré section and denotes an instance in the walking
motion (e.g., before foot-strike, after foot-strike, mid-stance).

We assume the Poincaré section to be the instance just after foot-strike. Let q

0

= {✓+0 , ✓̇+0 , �+0 , �̇+0 } be the
state after foot-strike. Then, there is a function S that takes the initial condition, q

0

, and returns the state
after one step, q

1

. The function S is called the stride map. Thus, the Poincaré map is, q

1

= S(q
0

). There is
an initial condition q

0

such that
q

0

= S(q
0

). (1.9)

The above condition defines a period-one limit cycle. In other words, the initial condition after foot-strike,
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Variable Stable solution Unstable solution

State, q

0

2
6666666666664

0.200310900544287
�0.199832473004977
0.400621801088574
�0.015822999948318

3
7777777777775

2
6666666666664

0.193937369810184
�0.203866927442010
0.387874739620369
�0.015144260853192

3
7777777777775

Eigenvalues, �

2
6666666666664

0
0.000000001586465

�0.190099639402167 � i0.557599274284362
�0.190099639402167 + i0.557599274284362

3
7777777777775

2
6666666666664

�0.000000000000002
�0.000000005231481
0.459589047035257
4.003865226079296

3
7777777777775

Table 1.1: Fixed points (first row and denoted by q

0

), eigenvalues using central di↵erence (second row and
denoted by �), for the simplest walker for slope, � = 0.009. The fixed points are accurate to 12 decimal
places. The eigenvalues computed by central di↵erence and with perturbation size of 10�5 and are accurate
to 5 decimal places.

q

0

, defines a walker state that maps onto itself after one step. Similarly, one can find a period-two limit cycle
by applying the function S twice and so on.

In general, it is not possible to find S and the state q

0

analytically, so one needs to resort to numerical
techniques. To compute S, we first integrate the equations of motion in the single stance phase (Eq. (1.2)
and Eq. (1.3)) till the foot-strike event (Eq. (1.4)), and apply the leg support exchange conditions (Eq. (1.5)-
(1.8)). Finally, to find four initial conditions in q

0

, the zeros of Eq. 1.9 (q
0

�S(q
0

) = 0) are found. The zeros
can be found by root finding techniques such as Newton-Raphson’s method. In our experience, a good initial
guess is of paramount importance for the root finder to give quick results. To find good initial conditions,
we recommend simulating and animating a single step to see if it is close to repeating and then use those as
a guess for the root finder (also see [51]).

After obtaining q

0

, the stability of the period-one limit cycle is analyzed. To do this, one needs to
compute the eigenvalues of Jacobian of the Poincaré map, S. To obtain the Jacobian, we used the central
di↵erence with a step size of 10�5. The limit cycle is stable if the magnitude of the biggest eigenvalue is less
than 1 and unstable otherwise [22, 38, 47].

We give benchmark results for a ramp slope, � = 0.009, the only free parameter in this model. Using
the method described above, there are two period-one limit cycles. Tab. 1.1, first row, gives the two limit
cycles. Table 1.1, second row, gives the eigenvalues of each of the fixed points, q

0

. As seen from the table,
the middle column is the stable limit cycle because the biggest eigenvalue is inside the unit circle while the
third column from left is the unstable limit cycle because the biggest eigenvalue is outside the unit circle.
Thus one limit cycle is stable and the other is unstable. Figure 1.4 shows the angular position of the stance
and swing leg as a function of time for the stable limit cycle and phase portrait of the stable limit cycle.

1.3.3 Passive dynamic walking in 3-dimensions

McGeer [39] and Garcia [23] analyzed a 3-D model with four degrees of freedom (roll or side-to-side,
pitch or front-back, yaw or turning on the stance leg and inter-leg pitch angle between stance and swing
leg). However, both of them were unable to find a stable walking gait. Kuo [33] considered a simpler 3D
model without the yaw degree of freedom. After doing an exhaustive search, he found that one eigenvalue
was always greater than one. This eigenvalue associated with this unstable gait was in the roll direction
and was due to a mismatch in the roll velocity at ground contact condition. Further, he demonstrated that
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Figure 1.4: Left: Stance leg and swing leg angle as a function of time for one step of the simplest walker,
Right: Phase portrait for one step of the simplest walker for slope, � = 0.009.

several simple strategies such as: applying a torque in the yaw direction, spinning a reaction wheel, moving
the upper body slightly, and controlling the lateral foot placement, all have the e↵ect of stabilizing the roll
motion while preserving the passive dynamics.

Collins et al. [17] were able to create a stable, 3D passive dynamic machine by adding swinging arms
(see Fig. 1.1). Coleman and Ruina [14] created a non-anthropomorphic walker with ellipsoidal feet that was
able to walk stably downhill. Though Coleman and Ruina were able to explain the stability of their walker
using Poincaré based methods [13], it is not clear what design parameters are critical in achieving stable
three-dimensional passive dynamic walking.

1.4 Powered bipedal robots inspired from passive dynamics

In walking robots, energy is lost each time the foot hits the ground (unless special mechanism is used
to prevent collisional losses). In order to sustain steady walking, this energy needs to be supplied through
external means. In case of passive dynamic robots walking downhill, this energy is supplied by gravity.
These facts suggests two di↵erent approaches to enable level ground walking; (1) prevent energy loss during
collision by suitable robot design (see Sec. 1.4.1), and (2) use an actuator to supply the lost energy (see
Sec. 1.4.2). The rest of this section will highlight some of the methods to enable almost-passive walking on
level ground.

1.4.1 Collisionless walking

One way to enable level ground walking with passive models is to find means of reducing the collisional
losses at foot-strike to zero. Gomes and Ruina [24] created a passive dynamic walking model which had an
upper-body that was coupled to each leg through a torsional spring (see Fig. 1.5 (a)). They found internal
oscillatory modes of the upper body that ensures that the swing leg contacts the ground with zero velocity.
Thus, the robot is able to sustain walking on level ground without external energy input. However, note that
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Figure 1.5: Collisionless walking models: (a) Bipedal walking model with upper body coupled to the legs
through torsional springs [24], (b) Rimless walking model with inertial device with torsionally coupled
spring [25].

the motion of the robot is unstable because even the slightest perturbation will create a collisional loss at foot-
strike and the robot will be o↵ the limit cycle. Thus there are no stable (asymptotic, uniform, etc.) solutions
for collisionless locomotion models. Also, the model requires the swing foot to stick to the ground and
later release for swing. Gomes and Ahlin [25] have created a physical prototype of a rimless wheel, another
passive dynamic model [38], that can demonstrate nearly collision-less walking. Their device consists of
the rimless wheel coupled to an inertial wheel through a torsional spring. Between the middle to the end of
a step, the torsional spring transfers the energy of the rimless wheel to the inertial wheel thereby reducing
the wheel velocity to almost zero just before the next spoke makes contact with the ground. The torsional
spring then transfers the stored energy back to the wheel from start to the middle of the step speeding up the
rimless wheel. This energy transfer ensures walking on level ground without collisional losses.

Figure 1.6: Powered walkers inspired from passive dynamics. (a) Cornell powered biped, (b) Delft powered
biped, and (c) MIT learning biped. These figures are from [15], and (d) Cornell Ranger [7].
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1.4.2 Actuating passive dynamic walking robots

In robots where collision-less walking is not possible, one can add one or more actuators to enable level
ground walking. Figure 1.6 shows powered bipedal robots based on passive dynamic walking principles.
The Cornell biped (Fig. 1.6 (a)) has five internal degrees of freedom (two ankles, two knees, and a hip),
the arms are mechanically linked to the opposite leg, and the upper body is kinematically constrained so
that its midline bisects the hip angle through a hip bisection mechanism. The robot is electrically powered
by an ankle push-o↵ that is triggered when the opposing foot hits the ground. The Delft biped (Fig. 1.6
(b)) is similar to Cornell biped, but is powered by pneumatic hip actuation and has a passive ankle. The
MIT learning biped (Fig. 1.6 (c)) is based on the simpler ramp-walker passive hip, is powered by two
servo motors in each ankle, and uses reinforcement learning to automatically acquire the controller [15].
The Cornell Ranger (Fig. 1.6 (d)) has three internal degrees of freedom (one hip and two ankles) and is
electrically powered. More details on control of Ranger are discussed later in this section. Next, we review
control schemes that preserve the natural dynamics while enabling walking on level ground.

Virtual passive dynamic walking is able to recreate downhill walking by adding a virtual gravity field
using ankle and hip actuators. In passive dynamics walking with a downhill slope of �, gravity makes an
angle of � with the direction perpendicular to the ramp. Thus, the component of gravity normal to the ramp
is g cos(�) and along the ramp is g sin(�). But since � is relatively small, one can approximate the normal
component as g and horizontal component as g�. However, if the slope was zero (level ground walking),
then the component normal to the ground would be g and it would be 0 in the horizontal direction. From
the above arguments we see that the walker on level ground is missing a horizontal component of g�. Thus,
the idea behind virtual passive dynamic walking control is to use actuators to create a virtual gravitational
field such that the horizontal component is g� and leave the vertical component una↵ected [1]. The resulting
motion is very similar to passive dynamic walking on slope � but it is on level ground. However, this requires
both, an ankle as well as a hip actuator.

Another way to achieve almost passive dynamic walking is to track a constant mechanical energy. The
key idea is that passive dynamic robots are able to maintain a periodic walking motions because their me-
chanical energy (i.e., kinetic + potential energy) is constant between steps. Thus to recreate passive dynamic
walking on level ground, one can use the actuators to track this mechanical energy [26]. Further, each slope
has a di↵erent total mechanical energy. Thus, by tracking the total mechanical energy for a given slope, the
walking motion can be made slope independent. A key point here is that the tracking gains need to be kept
low to ensure that the natural dynamics of the passive gait is preserved.

Yet another way of preserving passive dynamic walking is to use ON-OFF or bang-bang control to supply
the energy lost during collision. Camp [12] presented a 2-D knee-less model with two legs and two powered
ankles that used such an actuation scheme. The ankle motor is turned ON when the swing leg reaches
a prescribed angle and shut-o↵ at the instance of foot-strike. The walker exhibits a variety of stable and
unstable limit cycles as the motor stall torque is varied. The stall torque is thus analogous to the ramp of the
passive dynamic walker. An extreme case of this type of control is to use an impulse type control to power
walking [20]. An impulse is provided at the beginning of the swing phase and no actuation is provided for
the rest of the step. By choosing appropriate impulse at the beginning of swing phase the robot is able to
walk stably.

Low gain Proportional-Derivative (PD) controllers can be used to create passive-dynamic like walking
gaits on level ground. Typical implementation involves dividing the walking step into set of states or a state
machine, and having di↵erent PD controllers and set-points for di↵erent states [11, 18]. The gains on the
PD controller are weak so that they do not interfere with the natural dynamics of the legs.

Instead of using continuous feedback to track the mechanical energy, one can use feedback at discrete
times in the walking step. For instance, when a passive dynamic robot walks on level ground without
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any control whatsoever, the end-of-step state will be di↵erent from the start-of-step state because of the
collisional losses. The error can be used to derive feedback control law that nullifies the di↵erence [40].
This type of control is called once per step control because the feedback error and corrections are based on
sampling the state once per step. Bhounsule et al. [7] took a similar approach to stabilize the robot Ranger
(see Fig. 1.6(d)) which walked a distance of 40.5 miles non-stop on a single battery charge. The stabilization
is in addition to the energy-optimal trajectory controller that is set up on the robot. The Poincaré map for
Ranger is about the mid-stance position. The energy-optimal trajectory is linearized about the Poincaré map.
In the linearized equations, the state variables are the stance leg velocity, swing leg position and velocity at
mid-stance and the control actions are the foot placement and ankle push-o↵. The linearized equations are
used to set up a discrete linear quadratic regulator to reduce the errors in the state at the Poincaré section [8].
We provide more details in the next section.

1.4.3 Discrete-decision continuous action control

Next, we present a controller formulation that does discrete, event-based, intermittent control that is able
to preserve much of the passive dynamics of walking robots (also see [8]). We illustrate the problem with a
hypothetical example and then show how it can be used to control a bipedal robot.

Control problem
Let the state of the full, possibly non-linear, system be x(t), the control be u(t) and the continuous system

dynamics defined by F with ẋ = F(x, u). Further, assume the system has a desirable nominal trajectory x̄(t)
associated with a nominal baseline control ū(t):

˙̄x = F(x̄, ū). (1.10)

The feedforward command ū(t) in the above equation is open loop and does not stabilize the system ad-
equately, or perhaps at all. For example, even with perfect initial conditions, modeling errors, actuator
imperfections and disturbances will cause the system to too-much, or catastrophically (‘failure’), deviate
from the nominal trajectory. So we add a feedback control that supplements u with a control �u to ade-
quately brings the system back to the nominal trajectory. In this case, we do feedback at discrete times and
the control commands are simple feedforward control functions over the interval. This di↵ers from common
continuous feedback control because we only sense key quantities and only at occasional times.

Schematic example
We illustrate the event-based intermittent feedback control idea with a schematic example. Consider the

nominal trajectory of a second-order system shown as a solid red color line in Fig. 1.7. Let n and n + 1
be instances of time at which we are taking measurements from sensors. The time interval between the
measurements n and n + 1 is typically on the order of the characteristic time scale of interest (and not the
shortest time our computational speed allows). Let us assume that we take two measurements, xn = [x1 x2]0
(e.g., a position and velocity) at time n. We want to regulate two outputs: z1 and z2 (some attributes of the
state xn) at time n + 1.

Assume that, due to external disturbances, the system has deviated from its nominal trajectory. We show
the trajectory as a dashed blue color line in Fig. 1.7 (a). Now, the state of the system is x̄n (, xn) at time
n. When feedback corrections are absent, the relevant output z̄n+1 (, zn+1) whose components, in notational
shorthand, are [z̄1 z̄2]0.

Our feedback controller measures deviations at time n (�xn = xn � x̄n) and uses actuation to reduce
the deviations in output variables (�zn+1 = zn+1 � z̄n+1). For illustration, we choose two control actions,
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(a) Trajectory without stabilizing controller
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Figure 1.7: Schematic example. (a) Shows the nominal (solid red) and deviated (dashed blue) trajectory, for
some dynamic variable x of interest. We measure the state x at the start of a continuous interval, namely
at section n. (b) Shows the new deviated trajectory in target variables z after switching on our feedback
controller. In this example, feedback controller nulls (zeros) the output z at the end of the interval, illustrating
a ‘dead-beat’ controller. (c) The feedback motor program has two control actions: a sinusoid for first half
cycle and a hat function for the second half of the cycle. These shapes are arbitrary and di↵erent from each
other in form only for illustrative purposes. They could overlap in time. We choose the amplitudes U1 and
U2 of the two functions at the start of the interval depending on the error (x � x̄). By a proper choice of the
amplitudes U1 and U2 deviations are, in this example, fully corrected in between measurements. The choice
of trigger for event n, the choice of sensor measurements x, the choice of output variables z, and the control
shape functions f (t) are o✏ine design choices.

�un = [U1 f1(t) U2 f2(t)]0, a half sinusoid and a hat function, each active for half the time between time n+ 1
and n (Fig. 1.7 (c)). The controller adjusts the amplitudes (U1 and U2) of the two control functions, based
on measured deviations �xn, to regulate the deviated outputs �zn+1. For example, with a proper choice of the
amplitudes, it should be possible to fully correct the deviations in the output variables, as seen in Fig. 1.7
(b).

In the simplest cases, we linearize the map from the measurement section n to the section n + 1. The
sensitivities of the dynamic state to the previous state and the controls Un = [U1 U2]0 are: A = @xn+1/@xn,
B = @xn+1/@Un, C = @zn+1/@xn and D = @zn+1/@Un. The brute-force way of calculating the sensitivity
matrices A,B,C and D is by numerical finite-di↵erence calculations. We then have, for our linearized
discrete system model:

�xn+1 = A�xn + BUn (1.11)
�zn+1 = C�xn + DUn. (1.12)

Again, the �xn are a list of measured deviations, the �zn are a list of deviations which we wish to control,
the U are the activation amplitudes (2 in our example above). For simplicity, assume full state measurement,
the controller architecture is thus

Un = �K�xn, (1.13)
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where K is a constant gain matrix. We choose the gains K to meet or optimize various goals using a discrete
linear quadratic regulator (DLQR).

For most systems, ones that have the needed controllability, it is possible to find shape functions f1(t)
and f2(t) so that the matrix B is non-singular. In the same way that a square matrix is generically non-
singular, n random shape functions for an n order system should (generically) lead to a non-singular B and
thus the possibility of 1-step dead-beat control. Of course the matrix B can be more or less well conditioned
depending on how independent the shape functions are from each other.

Discrete linear quadratic regulator (DLQR)
One can use a DLQR to any goal function z of the state. In DLQR [43], we seek to minimize the cost

function Jdlqr defined as,

Jdlqr =

n=1X

n=0

⇣
�zn+1

T
Qzz�zn+1 + Un

T
RUUUn

⌘
, (1.14)

where Qzz and RUU are matrices that weight the di↵erent components of �zn+1 and Un (RUU must be positive
definite and Qzz positive semi-definite). The weights Qzz and RUU are design parameters picked to give
reasonably fast return to nominal values but without unduly high gains (which might tend to lead to control
command that are beyond safety limits). They are often given as diagonal for simplicity.

Putting Eqn. (1.12) in Eqn. (1.14) and re-arranging gives,

Jdlqr =

n=1X

n=0

⇣
�xn

T
Q�xn + 2�xn

T
NUn + Un

T
RUn

⌘
, (1.15)

where Q = C

T
QzzC, N = D

T
QzzC and R = D

T
RzzD + RUU . Jdlqr can be minimized with a linear state

feedback, Un = �K�xn with gain K found by solving the standard Ricatti equation [43].

Other goals.
The same linear control architecture given by Eqn. 1.13, could have gains K chosen to optimize or

achieve other criteria that do not fit into standard basic linear control formalisms. For example, there could
be a weight on the sparseness of K, on non-quadratic costs for error and control over some range of initial
conditions, on the basin of attraction for the non-linear system, etc. To calculate K one might then require
more involved optimization calculations, but the structure of the resultant controller would be preserved.
Similarly the choice of shape functions could be subject to optimization on independence, smoothness,
maximizing control authority, etc.

Factors to consider while designing the controller:
The systems we are interested in controlling are not those in which we do measure control quality by

how closely a target is followed, clearly the type of intermittent control we discuss here is not optimal for
that. Rather, we are interested in preventing total system failure. For walking or for an inverted pendulum,
falling down is failure. To slightly generalize, by failure we mean that the system state has moved outside a
particular target region surrounding the target point. How is this region defined? In practice, it is the region
outside of which non-linear e↵ects lead to divergence of the solution to points much farther from the target
(e.g., falling down). Sticking to the linear model, the user has to supply the target region based on intuitions,
experience, or non-linear modeling. Some issues in the controller design include:

1. Selecting a suitable section or instance of time to take measurements — this instant should be when the
dynamic-state estimation is reasonably accurate, and when dynamic-state errors which cause failure
are evident;



1.4. POWERED BIPEDAL ROBOTS INSPIRED FROM PASSIVE DYNAMICS 15

2. selecting measurement variables (xn) that are well-predict system failure;

3. picking output variables (zn) that can well-correct against system failure; and

4. picking actuator shape profiles ( f (t)’s) that have large, and relatively independent, e↵ects on the target
variables, and are also su�ciently smooth for implementation with real motors.

We next discuss the above points with in the context of a walking robot.

Example: Controlling a bipedal walking robot

For a 2D bipedal robot walking at steady speed, here is how we can go about designing a discrete
controller [5]. A typical walking step of a bipedal robots includes two phases: a smooth continuous phase
in which the entire robot vaults over the grounded leg, and a non-smooth discontinuous phase in which the
legs exchange roles.

1. Suitable section or instance of time to take measurements: Any instant not-close to support-exchange
is a good time for measurement. This is because the measurements are typically noisy during the
non-smooth support change (heel-strike collision).

2. Suitable measurement variables (xn) that are representative of system failure: The state of the lower
body is most important for walking balance, so good measurement variables are the state (position
and velocity) of the stance leg.

3. Suitable output variables (zn) that also correlate with system failure: Step time, step length are impor-
tant quantities to regulate during walking, and they serve as good output variables.

4. Suitable actuator shape profiles ( f (t)’s) that have large and relatively independent e↵ects on the target
variables: For leg swing, for example, two torque profiles, one with large amplitude near the start of
the interval, and one with large amplitude near the end, yield good control authority over position and
velocity of the swing leg at the end of the interval.

Once the above quantities are picked, we can check the system controllability. If the system is not well con-
trollable (correction of reasonable disturbances requires unreasonable actuation amplitudes) the first likely
fix is picking better actuation shape functions.

As noted, we used this discrete feedback control idea to stabilize steady walking gait of a bipedal robot
leading to energy-e�ciency record and long distance 65 km walking record [7, 9, 45].

Computing the linearization

For linear control approaches, the gain selection depends on having the linearized map Eqn. (1.11) and
Eqn. (1.12) from Eqn. (1.10). We assume we have a system, or computational model of the system, with
which we can perform numerical experiments. To get the matrices A and C, we can perturb xn element-wise
and use finite di↵erence to compute these matrices. Similarly to get matrices B and D, we can put in small
amplitudes of the controls Un and use finite di↵erence to compute the sensitivities.
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1.5 Discussion and Challenges

Energy efficiency and Dynamic Walking
Energy-e�ciency for a variety of locomotion/mobility modes is quantified by Total Cost Of Transport

(TCOT) [48] and the Mechanical Cost Of Transport (MCOT) which are defined as follows,

TCOT =
Total Energy used per step

weight ⇥ step length
, (1.16)

MCOT =
Mechanical Energy used per step

weight ⇥ step length
(1.17)

The total energy includes the mechanical energy and other energy-terms like dissipation in the resistive
elements of electric motors, energy to power the electronics (e.g., sensors, computers). For passive dynamic
walkers, the total energy is equal to the mechanical energy and is equal to the tangent of the ramp slope.
Thus, MCOT = tan(�) = TCOT, where � is the ramp slope. McGeer’s Dynamite had a TCOT = MCOT
= 0.025 [38]. Some of the most energy-e�cient powered legged robots are: Collins biped (TCOT = 0.2,
MCOT = 0.055 [16]; Cornell Ranger (TCOT = 0.19, MCOT = 0.04) [7]; and Cargo (TCOT = 0.1) [28]. To
put these numbers in perspective, humans have a TCOT = 0.3 [2] 1 and MCOT = 0.05 [37]. Note that both,
TCOT and MCOT are a function of the step size and step velocity and the above values correspond to the
lowest energy values at a specific step size and step velocity [4].

Stability and Robustness
Passive dynamic-based walkers have shown poor stability and robustness characteristics. The most well-

known method of computing stability of passive dynamic-based robots is using the eigenvalues of the limit
cycle (see Sec. 1.3.2). The walking motion is stable if the magnitude of the biggest eigenvalue is less than
1 and unstable otherwise. In particular, an eigenvalue equal to 0 implies that all disturbances are nullified in
a single step. Thus a values closer to zero implies greater stability. However, passive dynamic robots have
rarely demonstrated an eigenvalue less than 0.6 > 0 [7]. One way of stabilizing the passive dynamic-based
walkers is to develop a controller that sets the eigenvalue to a desired value, also known as pole placement
[7, 8, 33]. Another option is to minimize the biggest eigenvalue during the controller design phase [42].

A commonly used metric for robustness of passive dynamics-based walkers is the maximum change in
height that the robot can withstand without falling [52]. One can non-dimensionalize the change in height
with the leg length to compare di↵erent robots. The maximum step-down (normalized by leg length) for
passive dynamics-based robots from TU Delft are: Max, 1%, Denise 1%, and Mike 2% [29], indicating poor
robustness to terrain variation. Kim and Collins [32] have found that adding random disturbances rather than
a single disturbance is a better indicator of stability. They have also found that to get consistent results, one
needs to evaluate stability (ability to not fall) over 100 steps. Kelly and Ruina [31] provide a technique for
creating asymptotically stable and robust using Lyapunov function. But all the approaches so far, evaluate
the robustness after controller design. A challenge then, is to come up with a technique to design a controller
for a given robustness.

Versatility, Maneuverability, Agility
Versatility refers to the ability of the bipedal robot to stand, walk, turn, and climb stairs [35]. Maneu-

verability is the robot’s ability to turn its body or change the heading [21, 30] and agility is defined as the
robot’s ability to change its velocity [10]. Passive dynamics-based robots have demonstrated very limited

1The TCOT is computed using the total metabolic energy.. However, if only the energy to walk is taken into account then human
TCOT is 0.2.
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versatility, agility, and maneuverability. There does not seem to be any fundamental limitation in addressing
these metrics except that very limited work has been done in this regard.

Mechanical Design
Proper tuning of the mass distribution, inertia, and leg geometry is vital to enable un-actuated passive

dynamic walking down a ramp. We discuss the issues next.
The natural frequency of the swinging leg should be such that it is able to swing forward to break the

forward fall about the stance leg. The natural frequency depends on the leg inertia and the location of the
center of mass of the leg. The pendulum swing time is directly proportional to the inertia of the leg and
inversely proportional to the location of the center of mass of the leg. Thus, by increasing the inertia or
moving the center of mass near the torso increases the swing time and which increases the natural frequency
of walking. If the natural frequency increases too much then there will be no passive walking solutions.
However, moving the center of mass away from the pin joint will increase the energy loss at foot-strike
leading to energy-ine�ciency. Thus, there is a tradeo↵ in locating the center of mass on the legs. Another
key parameter is the o↵set of the center of mass with respect to the line joining the hip joint and the foot
contact point. Simulations have shown that the existence of walking solutions are extremely sensitive to the
mass fore-aft o↵set.

Adding an upper body increases the energy-e�ciency and stability of a 2D model of walking but adds
more complexity to the walker [50]. One way of reducing the complexity is to kinematically couple the
upper body to the legs through a hip bisection mechanism. The hip bisection mechanism ensures that the
angle of the upper body is the average of the angle between the two legs. However, it is conjectured that
the hip bisection mechanism could potentially reduce the energy e�ciency because of the need to actively
counteract e↵ects of the torso on the trailing leg following collision (private communication, Steve Collins).

A circular shaped foot is more energy-e�cient than a point foot. As the radius of curvature of the foot
increases, the collisional losses at foot-strike decreases, thereby increasing energy-e�ciency. When the
radius of curvature of the foot is equal to the leg length, there is a collision free support transfer between the
legs, provided the center of mass is also at the hip joint. Such a walker is called a synthetic wheel [38] and
can walk on level ground without using external energy.

Walking robots also need a mechanism that will enable ground clearance during leg swing. One tech-
nique is to use sideways rocking to allow for ground clearance (e.g., see Wilson Walker, Fig. 1.1 (a)) . To
enable rocking, the bottom of the feet are made circular in the longitudinal as well as lateral direction with
the center of both arcs approximately at the same place [33]. In addition, the leg mass, center of mass, and
inertia needs to be tuned so that the lateral and longitudinal swing leg motion have the correct frequency
which is dependent on the slope and dynamics of the rest of the walker. Another technique of creating
ground clearance is to use knees but needs proper design (e.g., a latching mechanism) to prevent knee buck-
ling. As both these methods add additional degrees of freedom, it also decreases the range of passive walking
solutions.

Finally, friction in joints need to be as little as possible. Simulations with passive dynamic walkers have
shown that passive dynamic walking solutions disappear as the friction increases [38]. For a passive inspired
powered robot it is vital for the motors to be back-drivable to allow for passive leg swing.

Estimation
Good control depends on good estimates of the robot state and perhaps of the external disturbances. For

example, to create energy-e�cient walking with ankle actuation, the timing of push-o↵ is critical. Push-o↵
before heel-strike is four times cheaper than push-o↵ after heel-strike [34, 46]. However, to do push-o↵ just
before heel-strike one needs good estimates of the time to heel-strike, which depends on the stance and swing
leg angles and the terrain. Since it is next to impossible to have a precise estimate of all these things, it is not
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possible to determine the exact time to heel-strike. A compromise is to start the rear ankle push-o↵ as the
front foot hits the ground so as to achieve an overlap between the two. Sometimes it might be necessary to
know the robot state just after heel-strike (e.g., if control is based on instance after heel-strike). However, the
robot is vibrating at the instance after heel-strike which makes it challenging to do state estimation. Finally,
almost all passive dynamic robots walk blindly. If these robots have to walk in practical scenarios such as in
the presence of obstacles or stepping stones, it is crucial to incorporate vision based estimation and modify
the control algorithm accordingly.

Higher dimensional systems
Most successful passive dynamics-based walkers have a few degrees of freedom, typically between 3 to

6. It is not obvious how to extend passive dynamics control approach to high dimensional systems such as
humanoids which have 10+ degrees of freedom. Most humanoids are versatile but not quite energy-e�cient
(TCOT of Honda’s ASIMO is around 3.2 and that of Boston Dynamics’ PETMAN/ATLAS is around 5 [7]).
Creating energy-e�cient and versatile humanoids will dramatically increase their practicality.

1.6 Conclusion

Passive dynamic walking is an attractive concept because of the low energy usage and the naturalness
in the motion. However, the major drawbacks of passive-dynamics robots are: limited robustness, limited
versatility and limited agility/maneuverability which restricts their applications to simple systems and simple
scenarios. How to create walking machines that meet all the above metrics is clearly an important, but
unsolved challenge.
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1.8 Appendix

1.8.1 Derivation of equations of motion for the simplest walker

The equations of motion for the simplest walker were given in Section 1.3. We provide more details
here.

Single stance phase
The equations of motion in single stance phase are given below:

AssXss = bss (1.18)

Ass =
"
�`2 (M + 2 m � 2 m cos(�)) �`2 m (cos(�) � 1)

l2 m (cos(�) � 1) `2 m

#
, X =

"
✓̈
�̈

#
,

bss =
"
M g ` sin(� � ✓) � `2 m �̇2 sin(�) � g `m sin(� � ✓ + �) + g `m sin(� � ✓) + 2 `2 m ✓̇ �̇ sin(�)

`2 m ✓̇2 sin(�) � g `m sin(� � ✓ + �)

#

To reduce them to the simplest walker Equations 1.2 and 1.3, we non-dimensionalize time with
p
`/g and

take the limit m/M ! 0.
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(a) Single stance (b) Instance before foot-strike (-) (c) Instance after foot-strike (+)

Figure 1.8: (a) Simplest walker in single stance phase. This caricature is used to derive equation for single
stance mode. (b,c) Simplest walker at an instance just before and after foot-strike respectively. These two
caricatures are used to relate angles and velocities after foot-strike with those before foot-strike.

Next, we give more details about the derivation of the equation for single stance. Let
�̇!
H /X and

�!
M/X

denote the rate of change of angular momentum and external torque about the point X, respectively. The
first and second lines in the above equation are obtained by equating the angular momentum to the external
torque about the foot in touch with the ground, C1, and the hip, H, respectively. These points of interest are
shown in Figure 1.8 (a). We obtain the following equations:

�̇!
H /C1 =

�!
M/C1 , (1.19)

�̇!
H /H =

�!
M/H . (1.20)

The above two equations can be written as:
!
r H/C1 ⇥M

!
aH +

!
r C2/C1 ⇥m

!
aC2 =

!
r H/C1 ⇥M

!
g +

!
r C2/C1 ⇥m

!
g , (1.21)

!
r C2/H ⇥m

!
aC2 =

!
r C2/H ⇥m

!
g , (1.22)

where:
!
g = g |̂ cos(�) � g ı̂ sin(�) , (1.23)
!
aH = �ı̂

⇣
l ✓̈ cos(✓) � l ✓̇2 sin(✓)

⌘
� |̂

⇣
l cos(✓) ✓̇2 + l ✓̈ sin(✓)

⌘
, (1.24)

!
aC2 = �ı̂

✓
l ✓̈ cos(✓) � l cos(✓ � �)

⇣
✓̈ � �̈

⌘
� l ✓̇2 sin(✓) + l sin(✓ � �)

⇣
✓̇ � �̇

⌘2
◆
...

� |̂
✓
l ✓̈ sin(✓) + l ✓̇2 cos(✓) � l sin(✓ � �)

⇣
✓̈ � �̈

⌘
� l cos(✓ � �)

⇣
✓̇ � �̇

⌘2
◆
, (1.25)

!
r H/C1 = |̂ l cos(✓) � ı̂ l sin(✓) , (1.26)
!
r C2/C1 = |̂ (l cos(✓) � l cos(✓ � �)) � ı̂ (l sin(✓) � l sin(✓ � �)) , (1.27)
!
r C2/H = ı̂ l sin(✓ � �) � |̂ l cos(✓ � �) . (1.28)

To create an actuated model, a hip torque and an ankle torque needs to be added to the first and second
line of bss in Eq. 1.18, respectively.
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Foot-strike phase

The angles after foot-strike are obtained by comparing the angles in Figure 1.8 (b) with that in Figure 1.8
(c). These are given by:

✓+ = �✓�, (1.29)
�+ = ��� = �2✓�. (1.30)

The angular velocities after foot-strike are given by:

AhsXhs = bhs, (1.31)

Ahs =
"
`2 (M + 2 m � 2 m cos(�)) `2 m (cos(�) � 1)
�l2 m (cos(�) � 1) �`2 m

#
,Xhs =

"
✓̇+

�̇+

#
,bhs =

"
M `2 ✓̇� cos(��)

0

#
(1.32)

To reduce the above two equations to the simplest walker Equations 1.7 and 1.8, we non-dimensionalize
time with

p
`/g and take the limit m/M ! 0.

Next, we show how to obtain the above velocities after heel-strike. Let
�!
H
�
/X and

�!
H
+

/X denote the angular
momentum about the point X before (superscript �) and after (superscript +) foot-strike respectively. The
first and second lines in the above equation are obtained by equating the angular momentum about the foot
that is about to touch the the ground, C1, and the hip, H, respectively to get the following equations:

�!
H
�
/C2
=
�!
H
+

/C1
, (1.33)

�!
H
�
/H =

�!
H
+

/H . (1.34)
(1.35)

Note that for the instance after foot-strike the contact points C1 and C2 are swapped. The above equation
can be written as:

!
r
�
H/C2
⇥M

!
v
�
H +

!
r
�
C1/C2

⇥m
!
v
�
C1
=
!
r
+

H/C1
⇥M

!
v
+

H +
!
r
+

C2/C1
⇥m

!
v
+

C2
, (1.36)

!
r
�
C1/H ⇥m

!
v
�
C1
=
!
r
+

C2/H ⇥m
!
v
+

C2
, (1.37)
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where:

!
r
�
H/C2
= |̂ ` cos

�
✓� � ��� � ı̂ ` sin

�
✓� � ��� , (1.38)

!
r
�
C1/C2

= ı̂
�
` sin

�
✓�

� � ` sin
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�
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+
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� � ı̂ ` sin
�
✓+

�
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r
+
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= |̂

�
` cos

�
✓+

� � ` cos
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�
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!
v
�
C1
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H = �ı̂ ` ✓̇+ cos
�
✓+

� � |̂ ` ✓̇+ sin
�
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�
, (1.46)
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