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Abstract. There has been an increasing trend towards using optimization to create legged

robot gaits while maximizing or minimizing one or other performance metric (e.g., energy

usage, speed). Because legged systems have discretely changing equations of motion, i.e., a

hybrid system, such optimizations are challenging. If the optimization is incorrectly formu-

lated it can produce infeasible or non-optimal results. There is a need to create benchmarks

that can be used to test optimization softwares and techniques for legged robots. In this

paper, we present two benchmarks for legged robots; passive dynamic walking and energy-

optimal level ground walking. Next, we show how to use these benchmarks to validate

optimization code for the given robot model, not necessarily similar to the benchmark

model, by appropriate simplifications. Our hope is that such benchmarks will provide the

legged robot researcher with a useful tool to not only check the optimization code but to

aid in proper selection of the optimization method and/or software.

Keywords. Passive dynamic walking, Legged locomotion, Optimization benchmark,

Energy-optimal control, Hybrid system.

1 Introduction

The use of optimization to create controllers for legged robots has become a
popular research topic. Using optimization one can create gaits that achieve
multiple objectives simultaneously. For example, creating a walking gait that
minimizes the energy use but achieves a given speed and/or step length.

While there is a plethora of general purpose optimization softwares and
techniques (e.g., single shooting, direct collocation), it is unclear if a given
tool is able to produce the ‘best’ result. Although the software might be
tested on generic benchmark problems (e.g., [9]) they may not work well on
legged locomotion problems because of the hybrid nature of locomotion (e-
quations of motion change with time). Sometimes the poor performance or
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non-convergence might be due to bad formulation of the optimization prob-
lem [16]. Thus, there is a need to create systematic benchmarks for legged
locomotion that will allow users to check the validity of their optimization
techniques.

In this paper, we provide two benchmarks for bipedal robots and then
show how to use them to test the optimization software and technique. These
benchmarks are: (1) passive dynamic walking – a legged robot with appro-
priate mass distribution can walk down a ramp without any control; and
(2) energy-optimal walking – a point mass model of walking with extensible
legs chooses an impulsive push-o↵ from the trailing leg just before leading
leg strikes the ground. Both these problems have well known solutions that
serve as benchmark cases. To test the optimization code, we reduce the giv-
en robot model to be close enough to the benchmark models and run the
optimization. Finally, we check if the optimization using the reduced robot
model produces similar results as the benchmark case. This way we are able
to validate our optimization tools. Thus, the novelty of the paper is: (1)

presentation of two benchmark optimization problems for legged robots, and

(2) a technique to validate the optimization of a generic robot model against

these benchmarks.

The paper is organized as follows. In Sec. 2, we present modeling details
for Ranger, the bipedal robot we want to optimize for energy usage. In Sec. 3
and Sec. 4 we provide the benchmark models of walking and show how to
simplify the Ranger model to check our optimization scheme. The discussion
is in Sec. 5 and conclusion is in Sec. 6.

2 Ranger robot model

Figure 1 (a) shows a photo of Cornell Ranger and Fig. 1 (b) show the di-
mensions, mass, and inertia parameters for the robot. The robot is on a
ramp of slope �. The feet bottoms are roughly circular arcs with radius r.
The ankle joints A1 and A2 are o↵set from the center of circle by the dis-
tance d. As dictated by the geometry of circles the contact points P1 and P2

are always directly below the center of the circles C1 and C2, respectively,
in level-ground walking. There is one foot configuration in which the ankle
joint lies on the line joining the center of the circle and the contact point.
For vertical ground forces this is a natural equilibrium position for the feet;
it takes no ankle torque to hold the foot in this position. The contact point
is then that part of the foot circular arc that is closest to the ankle. We
call this point on the foot the ‘sweet-spot’. The ankle motors are connected
to the ankle joints via cables that we approximate as linear springs. The
ankle motors (A⇤

1, A
⇤
2) are actually nearly coincident with the hip H, but are

separated in this diagram for clarity.
Figure 2 shows the robot joint configuration before just before heel-strike

(left side and denoted by �) and after heel-strike (right side and denoted by
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Figure 1: (a) Photo of Cornell Ranger, and (b) 2D model schematic with
dimensions, mass, and inertia parameters.

+). We swap the names of the legs during heel-strike as shown. To simplify
notation, the angles are named ri before collision and qi after collision, where
i is the joint number. The corresponding velocities are, vi before collision
and ui after collision. We use the Fig. 1 (b) and 2 to derive the equations of
motion for the benchmarks as discussed in their respective sections.

Our main motivation is to find energy-optimal walking motion for the
robot Ranger. Our energy metric is the called the Cost Of Transport (COT)
and is defined as the energy used per unit weight per unit distance moved.
More details about the energy-optimization formulation and solution are in
the thesis [2]. One question that arises when doing optimization of a com-
plex system: how much can we trust the optimization solutions? One way to
build trust would be to solve the optimization problem using multiple opti-
mization softwares and multiple methods (e.g., shooting, direct collocation)
and compare them. We propose a di↵erent method using legged locomotion
benchmarks. The idea is to simplify the given robot model (in this case, that

of Ranger) so that it is close enough to the benchmark model. Then for-

mulate and solve the corresponding optimization problem and check with the

benchmark solution.
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Figure 2: The robot configuration and angles before and after heel-strike
are denoted by � and + respectively. Note that the legs are swapped and
consequently the angles and angular velocities.

3 Benchmark one: passive dynamic walking

3.1 Overview

McGeer showed that a 2D, 2-legged robot with suitable mass distribution can
walk down a shallow slope with no actuation [8]. To check our optimization
against Ranger, we introduced a ramp, locked the ankles and optimized the
hip motor current for energy usage. We know from previous passive-dynamics
research that on a small slope this model has periodic solutions with zero hip
torque and thus, with a simplified motor model, zero hip current. We also
know that for the motor model the minimum conceivable energy use is zero,
with zero current and thus zero torque at all times. Thus the optimal control
solution should be one with zero hip current for all time, namely passive-
dynamic walking.

3.2 Model simplification for ‘discovery’ of passive dy-
namic walking

For this simplification we lock the ankle joints, that is, q2 = q4 = constant.
This reduces the state space to four dimensions; the position and velocity
of the stance leg q1 and u1 and the position and velocity of the swing leg
q3 and u3. The equations of motion are simplified from Ranger’s governing
equations by doing an angular momentum balance about appropriate points
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(see Figs. 1 (b), 2, and see thesis [2]).

Single stance (continuous):
�̇!
H /P

1

=
�!
M /P

1

�̇!
H /H =

�!
M /H

Heel-strike (instantaneous): q1 = r1 � r3 q3 = �r3
�!
H

+

/P
1

=
�!
H

�
/P 0

2

�!
H

+

/H =
�!
H

�
/H0

where
�̇!
H i is the rate of change of angular momentum about the points i,

�!
M i is the external torque about points i, and

�!
H

+
,

�!
H

�
are the angular

moment before and after heel-strike. The locations for the single stance and
heel-strike, P1, P 0

2, H, and H 0, are from Fig. 2. We also retained the motor
model on Ranger but simplified it a bit by assuming no friction losses. This
step is crucial for the optimization to discover passive dynamic walking. The
electric motor model is standard one and has the following equations

Power model: P = I2R+GHKIu3,

Torque model: T3 = GHKI,

where the hip power is P , the hip torque is T3, hip motor current is I, hip
motor speed u3, motor resistance is R, motor constant is K, and hip motor
gear ratio is GH . Note that this model is torque-free when the electrical
power (and current) is zero. Table 1 (a) in Appendix A, gives the relevant
robot and motor parameters.

3.3 Optimization problem for ‘discovery’ of passive dy-
namic walking.

We assume a walking sequence given by these phases: single stance, heel-
strike, single stance, repeat. We seek a control strategy (hip motor current
as a function of time) and initial conditions, that minimize the cost

COT =
Energy used per step

Weight⇥ Step length
=

Z t=t
step

t=0

|P |dt
M

tot

g d
step

(1)

subject to the following constraints: periodicity, namely that the state vector
at the beginning of single stance should be equal to the state vector just after
heel-strike; and the vertical reaction forces on the grounded legs should be
positive at all times.

In Eqn. 1, M
tot

is the total robot mass (a constant), g is gravitational
constant, and d

step

is the step length. For the optimization we replace |P |
with

p
P 2 + ✏2, where ✏ = 0.01. This is done to smoothen the cost function

(as it is non-smooth at P = 0) and allows SNOPT, a gradient based method,
to perform well.
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Optimization parameters. The optimization parameters are: (1) the s-
tate at beginning of single stance, xi

ss(t = 0) = [q1 , q3, u1 , u3]ss(t = 0) (4
parameters); (2) step time (t

step

) (1 parameter); (3) the currents in the hip
motor in single stance (I(t)). We assume piecewise linear-in-time currents. In
single stance, we divide time into N intervals; t0, t1, . . . , tN . Here ti+1 � ti =
1/N , i = 0, 1, ..., N , t0 = 0 and tN = t

step

. This means there are N + 1
unknowns for currents in single stance; I(t = t0), I(t = t1), . . . , I(t = tN ).
Thus, there are a total of 4 + 1+ (N + 1) = N + 6 optimization parameters.

Optimization constraints. The optimization proceeds subject to various
constraints on the optimization parameters and things calculated from those
parameters: (1) the periodicity constraints of the state at the beginning of
single stance should match the state just after heel-strike; xi

ss(t = 0) =
x+
hs(t = t

step

) (4 equality constraints); (2) the transition from single stance to
heel-strike takes place when the swinging leg’s foot hits the ground at time
t = t

step

(1 equality constraint); (3) vertical ground reaction force for the foot
on the ground in single stance should be positive and this is enforced at the
N+1 grid points. This gives N + 1 inequality constraints. Thus, there are a
total of 5 equality constraints and N + 1 inequality constraints.

Method of optimization. We use SNOPT [6], a constrained optimization
software based on sequential quadratic programming. SNOPT requires the
user to define the cost, the optimization variables, and the optimization con-
straints. We create a function that takes in the optimization variables and
integrates the equations of motion in single stance, applies the heel-strike con-
dition and finally outputs the cost and the optimization constraints. Note
that the motor currents are piecewise linear. To ensure that there are no
discontinuities during an integration step (as the optimization needs smooth
first and second derivative), we integrate from one grid point to another.

3.4 Results

Establishing passive dynamic walking benchmark. First, without
any optimization, we look for passive solutions for the set of Ranger’s pa-
rameters assumed here using the root-finding procedure outlined elsewhere
[3, 5]. We find two such passive solutions; solution 1: t

step

= 0.793292 and
xi
ss(t = 0) = (q1, u1, q3, u3) = (2.997167,�0.546173,�0.288850,�0.531317);

and
solution 2: t

step

= 0.936247 and
xi
ss(t = 0) = (q1, u1, q3, u3) = (2.964176,�0.652286,�0.354832,�0.027493).

Generally people find two periodic solutions for the passive dynamic walkers
[4, 8].

Passive dynamic walking is discovered using simplified Ranger mod-
el. Next, we ran the trajectory optimization starting with initial guesses far
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Figure 3: Benchmark two: energy-optimal level walking. (a) Point-mass
model (figure source: Srinivasan [14]) (b) Ranger model simplified to a point-
mass model by various special parameter values. In particular the foot radius
r is set to zero, making the foot a point at a distance d from the ankle.

from the passive solutions. Each time the optimization converged to one of
the above two solutions and with zero current for all time. Thus the trajec-
tory optimization successfully discovered passive-dynamic walking.

4 Benchmark two: energy-optimal level ground
walking

4.1 Overview

Srinivasan and Ruina [14, 15] present a point-mass legged locomotion model.
Using energy-optimal trajectory control, they show that at low speed the
model chooses a walking gait, at fast speeds the model chooses a running
gait, and at intermediate speeds the model discovers a new kind of walk,
which they call the pendular-run. For this benchmark we are only interested
in the walking solution. In particular, the optimal strategy for walking is an
impulsive push-o↵ just before heel-strike followed by a stance phase consisting
of motion as a simple inverted pendulum. For this second validation, we
approximate the point-mass model by putting most of Ranger’s mass on the
hip, and making the legs light. We leave the foot eccentricity non-zero but
make the foot radius equal to zero. In e↵ect this makes the leg extensible,
running between the hip and the infinitesimal foot (which is not inline with
the leg). We then see if the optimization discovers optimum level walking
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with an impulsive push-o↵ just before heel-strike.

4.2 Model simplification for ‘discovery’ of energy opti-
mal level-ground walking

The original model from Srinivasan and Ruina [14, 15] is shown in Fig. 3(a)
and Ranger approximation of the point-mass model is shown in Fig. 3 (b).
We obtain the equations of motion from Ranger’s equations of motion as
follows.

Single stance (continuous):
�̇!
H /i =

�!
M /i, where i = P1, A1, H.

Heel-strike (instantaneous): q1 = r1 � r3, q3 = �r3,

q2 = r4, q4 = r2,
�!
H

+

/P
1

=
�!
H

�
/P 0

2

,

�!
H

+

/A
1

=
�!
H

�
/A0

2

,

�!
H

+

/H =
�!
H

�
/H0 .

Please see Sec. 3 for definitions of the above terms. Table 1 (b) in Appendix
A, gives the relevant robot and motor parameters.

4.3 Optimization problem for ‘discovery’ energy opti-
mal level-ground walking

We assume a walking sequence given by these phases: single stance, heel-
strike, single stance, repeat. We seek a control strategy that includes finding
initial conditions in single stance, and torque in the hip and stance ankle
motor as a function of time, that minimize the cost given by,

COT =
Energy used per step

Weight⇥ Step length
=

Z t=t
step

t=0

{|T2u2|+ |T3u3|}dt
M

tot

g d
step

, (2)

where ankle and hip torques are T2 and T3 respectively, the ankle and hip
speeds are u2 and u3 respectively, total robot mass is M

tot

(a constant),
gravitational constant is g, and step length is d

step

. The absolute value is not
a smooth function as it has a kink at 0. So we smooth this function as by
replacing |x| with

p
x2 + ✏2, where ✏ = 0.01. This make the cost function

smooth and allows SNOPT, the gradient based optimization, to perform well.
We use the following constraints: periodicity requires that the state vector

at the beginning of single stance should be equal to the state vector just after
heel-strike; step length and step velocity is given; and the vertical reaction
forces on the grounded legs should be positive at all times. Because the
solution we are trying to discover has infinite forces, the numerics are helped
by constraining hip and ankle motor torques to be within given bounds.
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Convergence to the singular solution is inferred by the torques always using
the bounds, no matter how high (see [15] for an explanation).

Numerical formulation of point-mass optimal trajectory problem

Parameters. The optimization parameters are as follows: (1) state at be-
ginning of single stance, xi

ss(t = 0) = [q1 , q2 , q3, u1 , u2 , u3]ss(t = 0)
(6 parameters); (2) the step time (t

step

) (1 parameter); and (3) torque in
the ankle motors (T2(t)) and in the hip motors (T3(t)). We assume piece-
wise linear torque profile. In single stance, we divide time into N inter-
vals; t0, t1, . . . , tN . Here ti+1 � ti = 1/N , i = 0, 1, ..., N , t0 = 0 and
tN = t

step

. This means we have 2(N + 1) unknowns for torques in single
stance; Tj(t = t0), Tj(t = t1), . . . , Tj(t = tN ), where j = 2, 3. Thus there are
a total of 6 + 1 + 2(N + 1) = 2N + 9 optimization parameters.

Constraints. The optimization constraints are as follows: (1) the state at
the beginning of single stance should match the state just after heel-strike,
xi
ss(t = 0) = x+

hs(t = t
step

). (2) step velocity, v
step

, and step length, d
step

,
are both specified; (3) transition from single stance to heel-strike takes place
when the swinging leg’s foot hits the ground at time t = t

step

; (4) the vertical
ground reaction force for the foot on the ground in single stance should
be positive and are enforced at the grid points leads to N + 1 inequality
constraints; (5) the torques in the hip and ankle motors have to be within
the actuator limits and are enforced at the grid points leads to 2(N + 1)
inequality constraints. Thus there are a total of 9 equality constraints and
3(N + 1) inequality constraints.

Method of optimization. This is the same as that of benchmark one (see
Sec. 3).

4.4 Results

Establishing optimal walking benchmark. We present results obtained
for the step velocity of V = 0.4 and step length of D = 0.4. Using the
analytical solution given in Appendix B, COT = 0.009882649139799 at this
(V,D) combination.

Optimal walking is discovered using simplified Ranger model. Us-
ing Ranger’s reduced point-mass model and using a grid size N = 12, we
calculated the COT to be 0.010113205021986. The error between our result
and analytical calculations is about 2%. This error is consistent with nu-
merical optimization results by Srinivasan [14] also taking account that this
model, as opposed to the point-mass comparison, has a small, but non-zero
leg swing cost. We also tried di↵erent di↵erent grid sizes, N = 4, 8, 16, 32
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Figure 4: Ankle trajectory and controls for point-mass model limit of the
Ranger model. (a) The ankle angle shows sudden lengthening at push-o↵; (b)
The ankle rate, being near constant for the small-angle inverted-pendulum
phase; (c) The ankle torque, which has no cost in this model when the ankle
rate is zero, the optimizations seeming attempt to discover an impulse is
shown by the spike at the right; and (d) The ankle power, which is e↵ectively
zero but for a sudden, seemingly-attempting-to-be-singular rise at push o↵.

and found that di↵erence between optimization cost and true cost are con-
sistent with those found using the point mass model (see Table 3.1, pp. 66,
in Srinivasan [14]).

Figure 4 shows the trajectories for the ankle joints position and velocity,
the actuator torques and the mechanical power versus time. The hip motion
is low power throughout, due to the light legs. Almost all the energy for
walking goes to the ankles to generate the push-o↵. By increasing the grid
sizeN , we found that that the push-o↵ becomes more pre-emptive, decreasing
its duration and increasing the peak. This results suggests that the push-o↵
tends to an impulse as the grid is made to grow infinitely big. These results
are in agreement with those by Srinivasan and Ruina [15].
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5 Discussion

The main result of the paper is the validation of optimization methods for
a bipedal robot model by reducing it to simpler benchmark model and pre-
scribing relevant conditions.

Optimization of gaits is becoming a popular approach for developing con-
trollers for bipedal robots [13] as well as in biomechanics [1, 7]. Some of
the possible reasons why the optimization can be challenging is due to the
high dimensionality of the optimization space (e.g., humanoid robot), hybrid
nature of locomotion (di↵erent equations for di↵erent phases of motion),
spring-damper ground contact models which make the optimization problem
sti↵. One question that often arises is how much can one trust the optimiza-
tion solution when analytical solutions are unknown? In this paper, we show
that it possible to test the optimization of more elaborate models by reducing
it to simple benchmark cases. This allows us to create trust in the solution
generation by the optimization software.

Our work has limitations. We have only checked for a moderately com-
plex model with maximum of 3 degrees of freedom. It would be interesting
to try the optimization for a humanoid robot (typically with 20+ degrees of
freedom) using either benchmark. We suspect that the optimization might
converge to a local minimum. Another limitation is that the benchmarks are
only valid for bipedal walking. For running, one can adapt the benchmarks
provided in the paper by Ruina et al. [11]. For quadrupedal robots there are
benchmarks for passive dynamic walking in the paper by Smith and Berke-
meier [12] and Remy et al. [10]. However, we are not aware of benchmarks
for problems other than those with energy-based costs.

6 Conclusion

In this paper, we provided a technique to validate optimization methods
for the creation of energy-optimal bipedal walking gaits. We relied on two
benchmarks whose analytical solutions are known. The key idea is to reduce
the bipedal model to be close enough to the benchmark model, then run the
optimization, and finally check it against the benchmark case. If the opti-
mization produces the known solution then the optimization tool is validated.
Though the current benchmark cases have limitations (e.g., the benchmarks
are only for energy-optimal control, tested on relatively simple bipedal mod-
el), it is hoped that further research in this area will lead to creation of new
benchmark problems that cover wide spectrum of legged locomotion cases.
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(a) Passive dynamic walking
Parameter Value

` 0.96 m
r 0.2 m
d 0.11 m
kh 0
J` 0.24 kgm2

m 2 kg
M 4.5 kg
w 0 m
c 0.3 m
g 10 m/s2

� 0.005
GH 66
K 0.017 Nm/A
R 1.3 ⌦

(b) Energy-optimal walking
Parameter Value

` 1 m
r 0
d 0.05 m
kh 0
m 0.01 kg
M 1 kg
w 0
c 0.5 m
g 1 m/s2

� 0

Table 1: Reduction of Ranger to benchmark model (a) Ranger pa-
rameter values for checking against the passive dynamic walking benchmark.
(b) Ranger parameter values used for checking against the energy-optimal
level walking benchmark.

A Model parameters for reduction to bench-
mark cases

B Energy-optimal level walking benchmark

The analytical formula for the point mass energy-optimal level ground walk-
ing is given Srinivasan [14] pp. 24-25. We briefly describe the calculation
here.

The non-dimensional step velocity is V and non-dimensional step length
is D. The corresponding dimensional step velocity is vstep = V

p
g` and

dimensional step length is dstep = D`, where gravitational constant is g and
leg length is `. The Cost Of Transport (COT) is give by the following formula.

COT =
v2i tan

2(↵)

2gdstep
, (3)

where ↵ = sin�1(D/2) and is one half of the angle between the legs at foot-
strike, and vi is the velocity of the point mass immediately after foot-strike.
To compute vi we first evaluate the step time using Eqn. 4 using known
values of vstep, dstep, and then solving for vi using Eqn. 5, both of which are
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given below.

tstep =
dstep
vstep

(4)

tstep = 2

Z ↵

0

d✓

✓̇(t)
where ✓̇(t) =

s✓
vi
`

◆2

+

✓
g

`

◆
(cos↵� cos ✓). (5)

We used MATLAB to solve for vi. Numerical quadrature (the function quadl

in MATLAB) was used to find ✓̇(t) in Eqn. 5 and a non-linear root solver
(the function fsolve in MATLAB) was used to solve for vi using the value of
tstep computed in Eqn. 4 and known values for ↵, g, and `.
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