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ABSTRACT
In this paper, we present dead-beat control of a torso-

actuated rimless wheel model. We compute the steady state
walking gait using a Poincaré map. When disturbed, this walking
gait takes a few steps to cancel the effect of the disturbance but
our goal is to develop a faster response. To do this, we develop an
event-based, linear, discrete controller designed to cancel the ef-
fect of the disturbance in a single step – a one-step dead-beat con-
troller. The controller uses the measured deviation of the stance
leg velocity at mid-stance to set the torso angle to get the wheel
back to the limit cycle at the following step. We show that this
linear controller can correct for a height disturbance up to 3% leg
length. The same controller can be used to transition from one
walking speed to another in a single step. We make the model-
based controller insensitive to modeling errors by adding a small
integral term allowing the robot to walk blindly on a 7o uphill
incline and tolerate a 30% added mass. Finally, we report pre-
liminary progress on a hardware prototype based on the model.

1 Introduction
Gravity powered legged robots use gravitational potential

energy for locomotion. The most famous examples are the pas-
sive dynamic robots developed by McGeer [1]. Passive dynamic
legged robots consists of links joined together by hinges. When
these robots are launched downhill with the right set of initial
conditions, they are able to sustain steady locomotion. These

robots are highly energy-effective because they use no motors or
external power and have a zero energy cost.

There are two major limitation of passive, downhill descend-
ing legged robots pioneered by McGeer: (1) they cannot sustain
walking on level ground and uphill (2) they are not robust to ex-
ternal disturbances. In this research, we present a rimless wheel
robot which is gravity powered by virtue of its leaning torso. We
develop a control strategy that uses velocity regulation between
steps to enable the following: (1) robust rough terrain locomotion
(height changes, slopes); (2) variable speed locomotion (ability
to change speeds quickly); and (3) ability to carry added mass.
Finally, we show preliminary work towards developing a hard-
ware prototype based on the model and analysis.

2 Background and Related Work
The passive rimless wheel robot consists of a spoked wheel

without a rim descending downhill [1]. When launched on a
ramp, the rimless wheel has one stable walking solution [2]. The
rimless wheel loses energy at every step due the collision of the
spoke with the ground. For the downhill walking rimless wheel,
this energy is made up by gravity leading to sustained downhill
walking. But the simplest rimless wheel cannot walk on level
ground unless actuated in some way.

One way to enable sustained locomotion of a rimless wheel
on a level ground is to have a design that ensures that the colli-
sional losses are reduced to zero. This can be done by ensuring
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that the velocity of the spoke at touchdown is zero [3]. Gomes
and Ahlin [4] designed a mechanical contraption in which the
rimless wheel is coupled to an inertial disc through a torsional
spring. The role of the torsional spring is to decelerate the rim-
less wheel just as it is about to have a collision and transfer the
energy to the inertia disc so that the spoke makes a nearly zero
velocity collision with the ground. During the first half of the
step, the torsional spring provides the energy from the inertia
disc to the rimless wheel. Such a robot can sustain steady state
motions on level ground in simulation but will need a shallow
ramp in reality because of the dissipation in the springs, inertia
disk, and friction losses in the bearings.

Another way to enable level ground walking is to have an
actively powered rimless wheel. There are multiple ways of do-
ing this. One idea is to have spokes which expand and contract
supplying energy to the robot [5]. However, this requires mul-
tiple motors. Another idea is to have a wobbling mass [6] or a
rotating disc [7] that transfers energy by dynamic coupling. Our
design is slightly different. We add a torso to the rimless wheel
which provides gravitational energy by leaning forward and is
practically the same as the Outrunner [8]. For an exhaustive sta-
bility analysis of passive and controlled rimless wheel robots see
Asano [9].

Dead-beat control refers to full correction of the deviations
of the system in finite time [10]. In the case of legged robots,
this would be the ability to correct the deviation in finite steps.
Dead-beat control is attractive because it allows the robot to fully
recover from external disturbances. The control scheme is rela-
tively straightforward. A steady state gait is expressed as a limit
cycle (see Sec. 4.2 for details). The deviations from the limit cy-
cle can be corrected by controlling the foot placement [11,12] or
some other gait parameter such as leg stiffness [13]. The num-
ber of steps needed for full correction depends on the number of
variables to be regulated and the number of control parameters.
If there are n goals and n control actions, then it would take a
single step to correct for the deviation assuming that none of the
control parameters are saturated [14]. In this paper, we present
an event-based, linear, discrete controller that can correct for dis-
turbances in a single step.

The main novelty of this work is development of a simple
event-based, linear controller that cancels the effect of the distur-
bance in a single step. The same controller can be used for one
step velocity regulation too. The controller is simple because it
uses a single measurement (stance leg velocity at mid-stance) and
sets one control variable (torso angle) to correct for disturbances
in a single step. Simple extension to the controller, like the ad-
dition of an integral term, can make the controller insensitive to
modeling effects and unknown terrain variation.
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FIGURE 1. MODEL OF THE RIMLESS WHEEL ROBOT WITH
TORSO. THE ROBOT IS MOVING TO THE RIGHT. THERE IS AN
ACTUATOR BETWEEN THE TORSO AND THE HUB THAT CAN
CONTROL THE TORSO ANGLE, α .

3 Model and Numerical Simulation

The model of the robot is shown in Fig. 1. The rimless
wheel consists of N = 8 massless spokes, each of length `. The
mass of the rimless wheel is m and is concentrated at the hub.
A point mass M is attached to the hub through a massless rod
of length L and constitutes the torso. There are two phases of
motion. The single stance phase where the entire rimless wheel
pivots about a single spoke, moving like an inverted pendulum
(see Sec. 3.1.1) and the heel-strike phase where there is an ex-
change of support from one spoke to another through a plastic
collision (see Sec. 3.1.2). The condition for transition from sin-
gle stance to heel-strike is given in Sec. 3.1.3. The gravity is g
and points downwards. The ramp slope, γ , and height, h, are used
to create a disturbance, but are normally set to zero. The contact
spoke and the torso make an angle of θ and α respectively with
the normal to the ramp.

The only control variable for this model is the torso angle.
To make analysis simple we assume that the torso angle is set to
α instantaneously once per step. Note that α is the angle with
respect to the inertial frame, so the actuator needs to continu-
ously control the torso during the step to maintain this orienta-
tion. On hardware this can be easily done by using an inertial
measurement unit that measures the orientation with respect to
the inertial frame. Also, we neglect the transient response when
the actuator sets the torso angle during the step. This is a fair
assumption to make because the actuator, when tuned properly,
can quickly change the torso angle without creating unnecessary
transients.
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3.1 Equations of motion
We are going to give very brief explanation about deriving

the equations of motion. Please refer to the thesis [15] for a more
detailed derivation of the equations.

3.1.1 Equations for single stance phase: The
equation of motion for the single stance phase can be obtained
by doing an angular momentum balance about the spoke which
contacts the ground to obtain the following ordinary differential
equation.

Aθ̈ = bss, (1)

A = {m`2 +M`(`−Lcos(θ −α))},
bss = M`Lθ̇

2 sin(α−θ)+mg`sin(θ − γ)+

Mg{`sin(θ − γ)−Lsin(α− γ)}.

We have included a downhill slope γ (with respect to the
horizontal) in the equations. This is used to add a disturbance to
the model to check the robustness of the controller.

3.1.2 Equations for heel-strike phase: The equa-
tion of motion for the heel-strike is obtained by applying conser-
vation of angular momentum about the point where the following
foot is about to hit and is given by an algebraic equation

θ
+ = arccos

(
cos(θ−)+

h
`

)
(2)

Aθ̇
+ = bhs (3)

where A is the same as that in Eqn. 1 and

bhs =

(
(M+m)`2 cos

( 2π

N

)
−ML`cos(α−θ−)

)
θ̇−

3.1.3 Equations for detecting a collision: The
condition for transition from single stance to heel-strike is.

`cos(θ)− `cos
(

θ +
2π

N

)
+h = 0. (4)

We have included step down, h, in the equations. This is used to
add a disturbance to the model to check robustness of the con-
troller.

3.1.4 Equations for detecting mid-stance: The
mid-stance is the position when the stance leg is vertical with
respect to the slope, and is given by the following condition

θ = 0. (5)

This position is used by the controller to adjust the torso angle
for control. More details are in the next section.

3.2 Simulation
3.2.1 A single step At the core of the simulator is

a single step that starts from mid-stance and ends at the mid-
stance of the next step. The initial state for the robot is the mid-
stance position, {0, θ̇ m}, where θ̇ m is the stance leg velocity at
mid-stance. Given the initial state at mid-stance, the robot goes
through the following sequence of motions

Single Stance

collision︷︸︸︷−→ Heel-strike→ Single Stance

mid-stance︷︸︸︷−→︸ ︷︷ ︸
one step/ period-one limit cycle

Single Stance (6)

In the above sequence single stance is given by Eqn. 1, the colli-
sion event is given by Eqn. 4, the heel-strike is given by Eqns. 2
and 3, and mid-stance event is given by Eqn. 5. The equations
for single stance are integrated in MATLAB using ode113 1 with
an error tolerance of 10−9. The two events are detected by the
event detector in the integrator.

3.2.2 Failure modes There are two failure modes for
the robot which we need to check at each integration step. These
are described next.

Falling Backwards: Falling backwards is detected by check-
ing the angle made by the spoke with the vertical. This hap-
pens when the angle between the stance leg angle and grav-
ity is more than half the inter-spoke angle. The condition is
θ > π

N .
Flight phase: When the vertical ground reaction force, Ry,
on the stance leg goes to zero, we get a flight phase. Since
we are restricted to walking motions, we consider this to be
a failure mode. This condition is
Ry = (M+m)(g− θ̇ 2 cos(γ−θ)+ θ̈ sin(γ−θ)) = 0.

4 Methods
4.1 Poincaré Map:

The Poincaré map is used to analyze walking [1, 16]. To
compute the map, we need to relate the state of the walker at any
instance in the step with the same instance on the next step. Here,
we will relate the state at mid-stance on the current step, n, to the
mid-stance at the next step, n+1. To do this, we can use Eqns. 1
to 5 to get

θ̇
m
n+1 = F(θ̇ m

n ,αn,γn,hn), (7)

1We have found MATLAB ode integrator, ode113, to be slightly faster for
stringent tolerances than the more commonly used function, ode45.
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where the Poincaré mapping, F , is a scalar function that maps
the mid-stance angular velocity at step n, θ̇ m

n , to the mid-stance
angular velocity at step n+1, θ̇ m

n+1. The torso angle, αn, is a con-
trol parameter that we can adjust as desired. Finally, the slope,
γn, and the height drop at heel-strike, hn, is an external distur-
bance that we can set. We numerically solve the equations (see
Sec. 5).

4.2 Period-one limit cycle for steady state walking:
Limit cycles are periodic solutions of the Poincaré map F .

To find the limit cycle, we need to find a fixed point of the func-
tion F . We compute limit cycles for level ground by putting
γn = γ = 0. Also, since there is no height drop at heel-strike,
thus hn = h = 0. We put these values in Eqn. 7 and put steady
state value for velocity, θ̇ m

n+1 = θ̇ m
n = ṡθ m. Also, this steady state

speed will correspond to a certain torso angle, αn = sα , say.
We can rewrite Eqn. 7 for a limit cycle as follows:

Ď̇θ
m = F(Ď̇θ

m, sα,γ = 0,h = 0). (8)

The torso angle, sα , is a control variable. Hence the only un-
known is the mid-stance speed, ṡθ m. Thus the limit cycle is char-
acterized by a single variable, namely, the angular speed at mid-
stance ṡθ m.

4.3 Eigenvalue based stability
For limit cycle walkers, stability is associated with the abil-

ity of the robot to be on the same limit cycle in the presence of a
disturbance (e.g., terrain variation, a push). The stability is found
by finding the Jacobian of the limit cycle (F in Eqn. 8) and then
finding the eigenvalues of the Jacobian. This is given by

J =
∂F
∂x

, (9)

λ = eig(J), (10)

where the state space is x = {θ , θ̇} and the two eigenvalues are
in λ . Because we are computing the eigenvalues of a Poincaré
map, one eigenvalue is zero and corresponds to a perturbation
in the absolute position of the stance leg. Thus, the system has
only one non-trivial eigenvalue. The walking machine is stable
if the magnitude of the eigenvalue is less than 1 and unstable if
the eigenvalue is greater than 1 [17].

4.4 Discrete, once per step, linear control
If the biggest eigenvalue is λmax, then the effect of distur-

bance will grow/shrink by a factor of λmax at every step. For
example, with an eigenvalue is 0.56, it takes about 4 steps for

the deviation to reduce by a factor of 100 (0.564 ≈ 0.01). In
this case, one might want to design a controller that can get the
system back to the limit cycle at a much faster rate. In this sec-
tion, we indicate how to develop a linear, discrete, event-based
controller that gets the rimless wheel back to the limit cycle in a
single step, also known as a one-step dead-beat controller [10].

We first linearize Eqn. 8 at the fixed point to get

∆θ̇
m
n+1 = A

θ̇
∆θ̇

m
n +Bα ∆α. (11)

Next we assume a linear controller, ∆α = −K∆θ̇ m
n and put

it in the above equation to get

∆θ̇
m
n+1 = (A

θ̇
−Bα K)∆θ̇

m
n (12)

To develop a one-step dead beat controller we set ∆θ̇ m
n+1 = 0 and

solve for K

K = B−1
α A

θ̇
=⇒ ∆α =−B−1

α A
θ̇

∆θ̇
m
n . (13)

The gain K is a scalar and inverting Bα is not an issue. If Bα

is not square, then one can use the pseudo-inverse. Alternately,
in MATLAB, K can be obtained by using the place command.
However, one restriction is that α < π for the rimlesswheel to
keep moving forward. The controller that we describe above
is event-based because it is triggered at mid-stance, is discrete
because of Eqn. 11, and is linear because of Eqns. 12 and 13.
By setting the eigenvalue to zero in Eqn. 13, we get a one-step
dead-beat controller. More details about this type of controller is
in [18, 19].

5 Numerical Results
5.1 Model parameters

The model parameters for simulations are shown in Table 1.
The torso angle α is a control variable that we set once per step.
The nominal walking is on level ground, so the ramp slope, i.e.,
γ = 0 (Eqn. 1), and there is no step variation during heel-strike,
i.e., h = 0 (Eqn. 4).

5.2 Limit cycle
To find the limit cycle, we need to solve Eqn. 8. To do this,

we use the non-linear equation solver, fsolve in MATLAB. We
specify a tolerance of 10−6 for fsolve. A torso angle, α = 0.5401,
gives an average speed of 1.33 m/s, which corresponds to aver-
age human walking speed. We define average speed as the ratio
of step length to step time.

The fixed point is x∗= {0,−1.2057}. Figure 2 shows the po-
sition and velocity for steady state walking of the rimless wheel.
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FIGURE 2. PERIOD ONE LIMIT CYCLE FOR THE RIMLESS
WHEEL: (A) STANCE LEG POSITION AS A FUNCTION OF TIME
AND (B) STANCE LEG VELOCITY AS A FUNCTION OF TIME.
THE SPEED OF THE RIMLESS WHEEL IS 1.33 m/s.

TABLE 1. MODEL PARAMETERS FOR SIMULATIONS

Parameter Value

N 8

m = M 1 kg

`= 2L 1 m

g 9.81 m/s2

5.3 Eigenvalues
We compute the Jacobian of the Poincaré map (Eqn. 9) by

doing a central difference of size 10−3. Next, we compute the
eigenvalues by using the function eig in MATLAB to get, λ =
{0,0.4301}. The first eigenvalue is zero and corresponds to a
perturbation in the position direction. Since our map is from mid-
stance to mid-stance, the perturbation in the position direction
is on the Poincaré section and hence evaluates to zero. Thus,
the maximum eigenvalue is, λmax = 0.4301 < 1 and indicates
a stable limit cycle. However, it would take the walker about
6 steps for a perturbation to reduce by a factor of 100. That
is, 0.43016 ≈ 0.01 ≈ 0. In the next section we will develop a
controller that can get the robot back to the limit cycle in a single
step.
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FIGURE 3. DISTURBANCE REJECTION OF THE CON-
TROLLER. A STEP DOWN OF 0.03 LEG LENGTH IS INTRO-
DUCED AT THE FIRST HEEL-STRIKE, APPROX 0.1 SEC IN (A).
THIS LEADS TO A 45% DECREASE IN VELOCITY AT THE NEXT
MID-STANCE IS SHOWN IN (B). WITHOUT A CONTROLLER
(OPEN-LOOP) IT TAKES ABOUT 6 STEPS TO GET TO THE LIMIT
CYCLE (RED STARS) BUT IT TAKES TWO STEPS FOR OUR
FEEDBACK CONTROLLER TO CORRECT FOR DISTURBANCE
(BLUE DOTS).

5.4 Linearized equations for control
The linearized control equation (Eqn. 11) is obtained by us-

ing a central difference step size of 10−3. We get

∆θ̇
m
n+1 = 0.4301∆θ̇

m
n −1.4789∆α (14)

Note that the first variable A
θ̇
= 0.4301 is the eigenvalue of

the system. The value of Bα = −1.4789 is negative. This sug-
gests that a positive increment in α will make the mid-stance
velocity at the next step, θ̇ m

n+1, to increase and become more neg-
ative. This makes sense because by increasing the torso angle,
the gravity potential increases leading to a faster speed.

We obtain one-step dead-beat controller by substituting val-
ues for A

θ̇
and Bα into Eqn. 13 to get

K =−0.2908⇒ ∆α = 0.2908∆θ̇
m
n . (15)

5.5 Disturbance rejection
Disturbance rejection is the ability of the robot to reject ex-

ogenous disturbances. Current legged robots are most fragile to
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DEAD-BEAT CONTROLLER SWITCHES BETWEEN GAITS IN A
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terrain variation [20]. To test our feedback controller, we intro-
duce a step up of 0.03 ` at the end of step 0 as shown in Figure 3
(a). The effect is that the mid-stance velocity decreases by 45 %
at mid-stance at step 1. Beyond a step up (height) disturbance of
0.03 `, the robot falls backwards which is a failure mode. With
open loop control, the rimless wheel takes about 6 steps to get to
the nominal speed, while with our feedback controller (Eqn. 15),
the robot gets to nominal speed on the two-steps. This suggests
that the linearization of the step height disturbance to the robot
mid-stance velocity is non-linear, else we would have obtained
a one-step dead-beat response. Similarly, the controller is able
to correct for a step down (height) disturbance of 0.03 `. Any
bigger step down leads to a flight phase which we consider as a
failure mode and terminate the simulation.

5.6 Variable speed walking
There might be instances when we want the rimless to walk

at different speeds (e.g., to meet certain overall velocity con-
straint). This will require the rimless wheel to switch between
speeds quickly. The one-step dead-beat controller can be used to
do this transition. We illustrate this next.

We have computed open-loop and feedback gains for three
walking speeds as shown in Table 2. These are for walking at
speeds to 1 m/s (slow gait), 1.33 m/s (nominal gait), and 1.66

TABLE 2. THREE WALKING SPEEDS AND ASSOCIATED CON-
TROLLER SENSITIVITIES AND FEEDBACK GAIN.

Parameter Units Nominal Fast Slow

V m/s 1.33 1.66 1.00

α rad 0.5401 0.712 0.421

ṡθ m rad/s -1.2057 -1.5763 -0.8325

A
θ̇

- 0.4301 0.4489 0.4178

Bα 1/s -1.4789 -0.9949 -2.2707

K s -0.2908 -0.4512 -0.1840

m/s (fast gait). We want the following walking sequence.

Nominal Gait︸ ︷︷ ︸
2 steps

⇒ Slow Gait︸ ︷︷ ︸
3 steps

⇒ Fast Gait︸ ︷︷ ︸
3 steps

⇒ Nominal Gait︸ ︷︷ ︸
2 steps

(16)

It is straightforward to realize this walking sequence by switch-
ing between controllers at mid-stance after the required number
of steps. Figure 4 (a) shows the stance leg velocity vs time and
(b) shows the error in mid-stance speed as a function of step
length. During the transition, the error in mid-stance speed is
not zero (see Fig. 4 (b) steps 2, 5, and 8). This error in speed is
nulled by the feedback controller in a single step. Thus, switch-
ing gaits is quite straightforward with our control approach.

5.7 Integral control for handling modelling errors
Our linear, discrete, event-based controller is a model-based

controller that cannot handle modeling errors. We consider two
sources of errors; a steady slope and an added mass on the hub.
For these two errors, our controller will give a steady state error.
However, if our controller is supplemented with an integral term
over the mid-stance speed deviation, the resulting controller can
be made insensitive to modeling errors. Thus the controller takes
the following form

∆α =−K∆θ̇
m
n +KI

∫
∆θ̇

m
n , (17)

where KI is the integral control gain and has the effect of reduc-
ing the steady state value to zero. The gain is kept relatively small
so that it does not affect the one-step dead-beat control presented
earlier.

We consider the effect of slope and added mass on the nom-
inal gait which corresponds to a speed of 1.33 m/s. We set a
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FIGURE 5. (A) ROBUSTNESS AGAINST TERRAIN VARIATION.
THERE IS A 7o UPHILL. (B) ROBUSTNESS AGAINST ADDED
MASS. A MASS OF 1 KG IS ADDED TO THE HUB WHICH
CONSTITUTES A 30% INCREASE IN MASS. IN EITHER CASE,
THE MODEL-BASED FEEDBACK CONTROLLER (RED ASTER-
ICS) SHOWS A STEADY STATE ERROR WHILE THE FEEDBACK
CONTROLLER WITH ADDED INTEGRAL TERM IS ABLE TO
REGULATE TO THE STEADY-STATE SPEED (BLUE CIRCLES)

slope, γ = −0.1221 = −7o, where a negative value indicate an
uphill slope. We simulate the system with the event-based con-
troller with and without integral term. Only the controller with
the integral term is able to maintain the desired nominal speed.
This is shown in Fig. 5 (a). Similarly, we add a mass of 1 kg
at the hub and simulate the system with and without the integral
term. The integral controller was able to nullify the effect of the
added mass in a couple of steps and is shown in Fig. 5 (b).

6 Hardware
We discuss preliminary results on developing a hardware

prototype based on the rimless wheel robot. Our robot is called
the Roadrunner and is named after the mascot of the University
and is shown in Fig.6 (a).

The robot consists of two rimless wheel sub-assemblies at-
tached to each other through an axle which holds a torso (the
box) that houses the motors, batteries, and electronics. The robot
legs and the torso are 3D printed on Stratasys Dimension 1220es
3-D printer. The axle is of aluminum and there are compres-
sion springs in each leg to cushion the collision. The Fig.6 (b)
shows a schematic of the motors, power train, batteries, and elec-

FIGURE 6. (A) THE ”ROADRUNNER” RIMLESS WHEEL
ROBOT (B) SCHEMATIC OF THE TORSO (BOX) BETWEEN THE
RIMLESS WHEEL SUBASSEMBLIES THAT HOUSES THE MO-
TORS, THE BATTERIES AND THE ELECTRONICS.

tronics. The 22.2 V brushless DC motor connects to the axle
by a timing belt. The motor is powered by two 3S Lithium-ion
Polymer batteries connected in series. An Arduino Mega 2560
is used to control the motor. A 6-axis inertial measurement from
Sparkfun is also placed in the torso. The gyroscope values and
accelerometer values are fused together using a balance filter to
compute the orientation of the torso with respect to the verti-
cal. A Proportional-Integral Controller on the torso orientation is
used to control the torso angle.

In preliminary trials, we got the Roadrunner to move at a
speed of 6 miles per hour (approximately 2.68 m/s). Due to lack
of data collection capabilities in our current robot setup, we are
not able to provide experimental results, except for a video that is
in reference [21]. Note how the torso leans forwards as the robot
begins to accelerate. The motion of our robot is very similar to
that of the Outrunner robot [8,22] but the exact mechanism used
for forward motion for Outrunner is not very clear to us.

The major difference between the model and the rimless
wheel prototype is that the prototype has springy legs while the
model does not. To develop a controller for the hardware proto-
type, Eqn. 11 will have to be modified as follows:

∆θ̇
m
n+1 = A

θ̇
∆θ̇

m
n +Bα ∆α (18)

where A
θ̇

and B
θ̇

are appropriate sensitivities. One can derive an
expression for the sensitivities using a rimless wheel model with
spring. Another method would be to evaluate the sensitivities
directly on the robot by perturbing the mid-stance velocity and
the torso angle. Currently, we do not have a sensor to measure
the robot speed but we are modifying the robot to incorporate an
encoder. We plan to test the control approach on the robot in near
future.
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7 Conclusions and Future Work
In this paper, we presented the simplest gravity powered

model of rimless wheel capable of walking on level ground in
addition to slopes. The modification is the addition of an actu-
ated torso that can be set to a prescribed set point instantaneously.
The actuated torso is analogous to the ramp of a passive rimless
wheel. By controlling the torso angle, the rimless wheel can gen-
erate walking gaits at various speeds. We developed event-based,
discrete, linear controller capable of rejecting disturbances in a
single step. The same controller can be used to switch gaits by
interpreting the deviation of one controller as a disturbance for
the transitioning gait. By adding an integral controller the con-
troller can be made insensitive to modeling disturbances.

Our future work will focus on extended trials on the rim-
less wheel prototype to realize robust walking gaits. We have
neglected running gaits but our framework can easily extend to
running motions as well. Finally, the model can be extended to
3D by adding a finite width [23, 24] and adding another actuator
in the side-to-side direction for the torso to allow for turning.
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Appendix A: Multimedia Extension
A video of the hardware prototype available on this YouTube

link: https://youtu.be/xTSG48KMMR4.
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