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Abstract

In bipedal locomotion, swing-leg protraction and retraction refer to the forward and backward motion,

respectively, of the swing-leg before touchdown. Past studies have shown that swing-leg retraction

strategy can lead to stable walking. We show that swing-leg protraction can also lead to stable walking.

We use a simple 2D model of passive dynamic walking but with the addition of an actuator between the

legs. We use the actuator to do full correction of the disturbance in a single step (a one-step dead-beat

control). Specifically, for a given limit cycle we perturb the velocity at mid-stance. Then, we determine

the foot placement strategy that allows the walker to return to the limit cycle in a single step. For a

given limit cycle, we find that there is swing-leg protraction at shallow slopes and swing-leg retraction

at steep slopes. As the limit cycle speed increases, the swing-leg protraction region increases. On close

examination, we observe that the choice of swing-leg strategy is based on two opposing effects that

determine the time from mid-stance to touchdown; the walker speed at mid-stance and the adjustment

in the step length for one-step dead-beat control. When the walker speed dominates, the swing-leg

retracts but when the step length dominates, the swing-leg protracts. This result suggests that swing-leg

strategy for stable walking depends on the model parameters, the terrain, and the stability measure

used for control. This novel finding has a clear implication in the development of controllers for robots,

exoskeletons, and prosthetics and to understand stability in human gaits.
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1 Introduction

It has been observed that during humans walking and running, the swing leg moves backward (the angle

between the legs is decreasing) prior to touchdown. This is referred to as ‘swing-leg retraction’ and is

hypothesized to stabilize human gait (Daley and Usherwood, 2010; Seyfarth et al., 2003; Wisse et al., 2005).

Model studies of un-actuated machines walking downhill, also known as passive dynamic walking robots

(Garcia et al., 1998; McGeer, 1990), have two families of solutions for certain ramp slopes. One solution is

stable while the other is unstable. Quite interestingly, the stable solution has a swing-leg retraction while

the unstable solution has a swing-leg protraction. This observation led (Wisse et al., 2005) to hypothesize

that swing-leg retraction helps improve walking stability. Model studies with controlled swing-leg retraction

motions have strengthened this hypothesis. In particular, swing-leg retraction has been demonstrated to

increase the stability as measured by the eigenvalue of the Poincaré map (Wisse et al., 2005; Hobbelen and

Wisse, 2008), and to increase the ability to reject disturbance (e.g., terrain variation) (Hobbelen and Wisse,

2008). Swing-leg retraction has also been shown to increase the stability and the robustness to disturbances

for models of running (Blum et al., 2010; Karssen et al., 2011).

In addition, there have been a number of model-based studies that have tried to understand the benefits of

swing-leg retraction beyond stabilization. Specifically, swing-leg retraction has been shown to: (1) increase

the energy-efficiency by reducing the foot velocity just before touchdown and by reducing the push-off

impulse (Hasaneini et al., 2013b,a; Karssen et al., 2011); (2) minimize foot slippage (Karssen et al., 2011;

Hasaneini et al., 2013b); (3) improve the accuracy of predicting touchdown timing (Bhounsule et al., 2014);

(4) decrease peak forces at collisions (Karssen et al., 2011); and (5) increase viability and controllability

regimes (Hasaneini et al., 2013b). However, the focus of this paper is on the effect of swing-leg strategy on

locomotion stability.

How does swing-leg retraction improve walking stability? We provide an explanation based on the paper

by (Wisse et al., 2005). Consider a 2D biped model moving with a certain speed, the nominal speed, which

corresponds to a certain energy, the nominal energy, (see Fig. 1A). The nominal values above are evaluated at

a particular instance in the walking motion (e.g., at mid-stance). Let us assume that the biped speed/energy

has changed (e.g., due to a disturbance). In the explanation given below, we are interested in the change in

speed, energy, step length, and time with respect to their nominal values.
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(1) When the biped is going fast, it has excess energy. This energy can be dissipated by taking a longer step

to get back to the nominal speed (see Fig. 1B). This is because an increase in step length (assuming all

other factors are held the same) increases the collisional losses (Ruina et al., 2005), thereby eliminating

the excess energy. Similarly, when the biped is going slow, the step length needs to decrease to get

back to the nominal speed (see Fig. 1C). Thus changes in the biped speed and step length have a positive

correlation.

(2) When the biped is going fast, the step time will decrease. Similarly, when the biped is going slow, the

step time will increase. Thus changes in the biped speed and step time have a negative correlation.

From (1) and (2) we see that the step length has a negative correlation with the step time which implies a

swing-leg retraction strategy (see Fig. 1D). Thus it seems that only swing-leg retraction can lead to stable

walking.

However, we argue that (2) is not always true. This is because the step time depends on; (a) the biped

speed, and (b) the step length found in (1). When the biped is going fast, the step length needs to increase

to get back to the nominal speed as stated in (1). A faster speed will lead to a decrease in the step time

but the corresponding increase in step length will increase the step time. When the effect of biped speed

dominates the computation of step time, there is swing-leg retraction (see Fig. 1D). But when the effect of

step length dominates the computation of step time, there is swing-leg protraction (see Fig. 1E).

Swing-leg protraction can be advantageous because it decreases the energetic cost of swinging the leg.

Note that in swing-leg retraction, the hip actuator needs to do more work to move the leg beyond its normal

step length so that the swing leg has enough time to be able to move backward before touchdown. However,

in swing-leg protraction the leg is moving forward before touchdown and the actuator does not need to do

extra work to move the leg beyond its normal step length. Thus, the finding that swing-leg protraction helps

bipedal stability has implication for the energy-efficient control of artificial legs in robots, exoskeletons, and

prosthetics and in understanding mechanics of human gait.

In this paper, we demonstrate that swing-leg protraction can also lead to stable walking and provide an

intuitive explanation. Stable walking with swing-leg protraction has also been independently observed by

(Safa and Naraghi, 2015) in a similar walking model but without a hip actuator, but it was mostly ignored

as a viable strategy for biped stabilization. Although past results suggest swing-leg retraction leads to stable

walking, our results do not contradict them. Specifically, we have examined swing-leg strategies on a broader

range of walking motions and terrains not covered in the past studies. Our analysis with a simple bipedal

model suggests that the choice of swing-leg strategy depends on the model parameters, the terrain, and the
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stability measure used for control. Thus, further investigation is needed to understand the role of swing-leg

motion in gait stabilization.

2 Methods

We give brief details of the model and methods used to determine the swing leg control strategy. We use a

2-dimensional model of walking shown in Fig. 2 similar to the one used by (Wisse et al., 2005). The model

has massless legs of length ` and a point-mass M at the hip. Gravity g points downward and the ramp slope

is γ. The stance leg makes an angle of θ with the vertically downward direction and the swing leg makes an

angle of φ with the stance leg. The model has a rotary hip actuator that can control the swing leg relative

to the stance leg.

We use a Poincaré map to relate the state of the walker between successive mid-stance positions (see

Fig. 3). We define the mid-stance to be the position when the gravity vector is along the stance leg. Given

the variables at step i, namely, the mid-stance velocity (θ̇mi ), the swing leg angle at touchdown (φ−i ), and

the ramp slope (γ), we can find the mid-stance velocity at step i+ 1 (θ̇mi+1) using the mapping function F as

follows: θ̇mi+1 = F (θ̇mi , φ
−
i , γ). A limit cycle is the steady state motion of the model. To compute the limit

cycle, we put θ̇mi+1 = θ̇mi = θ̇m0 , φ−i = φ0, and γ = γ? to get

θ̇m0 = F (θ̇m0 , φ0, γ
?). (1)

See supplementary material for elaborate details on evaluation of F .

Stability is defined as the ability of the biped to stick to the same limit cycle in the presence of a

disturbance (e.g., terrain variation, a push). We use the following definition of stability in this analysis: a

limit cycle is stable if the biped can fully correct a perturbation in the state in a single step and unstable

otherwise. Such a controller that allows for full correction of disturbances in a single step is known as

one-step dead-beat control (Antsaklis and Michel, 2006). We call this the superstability-based measure.

However, the more widely used stability measure is based on the maximum eigenvalues of F , which we

call the eigenvalue-based measure. According to the eigenvalue-based measure, the biped is considered to be

stable if the magnitude of the maximum eigenvalue is less than 1, and unstable otherwise (Garcia et al., 1998;

Strogatz, 1994). The main advantage of our measure, the superstability-based measure over the eigenvalue-

based measure, is that it is not based on linearization but is more stringent. Note that both these stability
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measures assess the local stability based on small perturbations as opposed to global stability, which is the

ability not to fall down under small as well as large perturbations.

We state the control problem as follows. Given a mid-stance velocity at step i, θ̇mi 6= θ̇m0 , for the given

ramp slope, γ?, we need to find the step length, φi, required to get back to the nominal mid-stance velocity,

θ̇m0 , at the next step. Thus

θ̇m0 = F (θ̇mi , φi, γ
?). (2)

We also need to evaluate the time from mid-stance to touchdown, ti, which is given as follows

ti =

∫ θ−i

0

dθ

θ̇
=

∫ 0.5φi+γ
?

0

dθ√
(θ̇mi )2 + 2(1− cos θ)

(3)

Our numerical calculations are done as follows. To evaluate the limit cycle, we fix the mid-stance speed,

θ̇m0 , and ramp slope, γ, and compute the step length using Eqn. 1. Next, we set θ̇mi = θ̇m0 in Eqn. 3 to

compute the time from mid-stance to touchdown. Then we vary the mid-stance velocity, θ̇mi , and evaluate

the swing leg angle, φi, that will lead to a one-step dead-beat control using Eqn. 2 and the time from

mid-stance to touchdown using Eqn. 3.

3 Results and Discussion

We show results for two limit cycles in Fig. 4; θ̇m0 = 0.1 and θ̇m0 = 0.4. Figs. 4, A and C, show plots of hip

angle at touchdown, φ−i , vs mid-stance velocity, θ̇mi , for various ramp slopes. These plots demonstrate that

for faster mid-stance velocity than the nominal, the walker needs to take a longer step than the nominal

to get back to the limit cycle, and vice versa for slower mid-stance velocity. The reason is that a longer

step length increases while shorter step length decreases the relative energy loss at touchdown (Ruina et al.,

2005). Figs. 4, B and D, show plots of the hip angle at touchdown, φ−i , vs time to touchdown, ti, as a

function of ramp slope. These plots give the trajectory that the swing leg should follow to enable a one-step

dead-beat control. That is, if the swing leg follows the specific curve for the given ramp slope, then the

biped is guaranteed to return to the limit cycle on the following step.

The gradient at the limit cycle for the plot of swing leg angle versus time (limit cycle shown by the black
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dot in Fig. 4) determines the swing-leg strategy; a negative gradient indicates swing-leg retraction while a

positive gradient indicates swing-leg protraction. The region of swing-leg protraction is indicated in gray

in Fig. 4. Table 1 gives the swing-leg speed for each limit cycle considered in Fig. 4. From the table and

the figure we note the following: (1) swing-leg protraction at shallow ramp slopes and swing-leg retraction

at steep ramp slopes, and (2) swing-leg protraction region increases as the limit cycle speed increases, that

is, the gray region increases with θ̇m0 . We explain this observation next. The equation for the stance leg

is classical inverted pendulum equation and is given by θ̈ = sin θ. We do the small angle approximation

to rewrite this equation, θ̈ = θ. Next, we solve this equation and use the initial conditions at mid-stance,

θ(0) = 0 and θ̇(0) = −θ̇mi , to get, θ(t) = θ̇mi sinh(t). At touchdown we have, t = ti and θ(ti) = 0.5φi, thus,

φi = 2θ̇mi sinh ti. (4)

We take the differential of the above equation to get ∂φi = 2 sinh ti(∂θ̇
m
i )+2θ̇mi cosh ti(∂ti). Rearranging

the equation, we get the following expression for the swing-leg speed,

∂φi
∂ti

=
2 ∂φi

∂θ̇mi
θ̇mi cosh ti

∂φi

∂θ̇mi
− 2 sinh ti

(5)

The sign of the swing-leg speed depends on the term ∂φi

∂θ̇mi
− 2 sinh ti because all the other terms in the

expression are positive. From Figs. 4, A and C, we note that ∂φi

∂θ̇mi
at the limit cycle (black dot) is positive but

the value decreases as the ramp slope increases. That is, at shallow ramp slopes, the gradient, ∂φi

∂θ̇mi
, is large,

which makes the denominator in the above equation positive, leading to swing-leg protraction. However,

as the ramp slope increases, the gradient ∂φi

∂θ̇mi
, is small, which makes the denominator negative, leading to

swing-leg retraction. Further, we note that as the limit cycle speed (θ̇0m) increases, we get a larger range of

ramp slopes where the gradient, ∂φi

∂θ̇mi
, is large, thus increasing the swing-leg protraction region (compare the

gray region in D with that in B).

The transition from swing-leg retraction to swing-leg protraction occurs through infinity. From Figs. 4,

B and D, we note that at shallow ramp slopes, there is swing leg protraction indicated by positive gradient.

As the ramp slope increases, the gradient increases, reaching positive infinity. Further increase in the ramp

slope causes the gradient to flip from positive to negative infinity and then increases to a finite negative
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value. Thus, for each limit cycle speed, θ̇0m, there is ramp slope, γ, at which ∂φi

∂θ̇mi
− 2 sinh ti = 0. When this

happens, the swing leg speed is infinite (see Eqn. 5). The physical explanation for this is that the change

in leg angle and the change in speed produce an equal and opposite effect on the time from mid-stance to

touchdown. Thus, the time from mid-stance to touchdown is unchanged leading to an infinite swing leg

speed. As infinite speeds are impossible, the biped loses its ability to be super-stable at this point.

The plot of φ−i (ti) shown in Figs. 4, B and D can be used to control the hip actuator in exoskeletons

and legged robots. When the swing leg is made to follow the φ−i (ti) trajectory, there will be a complete

cancellation of perturbation in speed in a single step, assuming that there are no further disturbances from

mid-stance to touchdown. Note that to be able to choose a particular trajectory one requires measurements

of mid-stance position, mid-stance speed, and the ramp slope.

One interesting question is that: do humans do one-step dead-beat control under perturbations? By

the eigenvalue-based stability metric, this would correspond to a maximum eigenvalue of 0. Past studies

on humans show that eigenvalues of walking are between 0.4 and 1 (Dingwell and Kang, 2007), which

suggests an exponential decay rather than dead-beat control. But because human walking data is noisy and

has considerable variability, even if humans did a dead-beat control (in some dimensions), it would not be

distinguishable from an exponential decay.

We assumed that the swing leg is massless in our model. But real robots and humans have legs with

finite mass. So the question is to whether the results hold true when the legs are massy. The effect of

a massy leg is that the swing leg will add/remove energy during the swing phase, in addition to that at

touchdown. However, since robots and humans have relatively light legs (legs account for 15% of human

weight (Srinivasan, 2006)), we speculate that adding legs to the model would not alter the results significantly.

4 Conclusions

For a simple 2D point mass model of walking descending a ramp slope there are stable gaits with both, swing-

leg retraction as well as swing-leg protraction. The reason for different strategies is because the change in

time (compared to nominal step time) from mid-stance to touchdown depends on two opposing effects; the

perturbed mid-stance speed and the adjustment in step length. When the speed of walking dominates the

computation of the time, we obtain swing leg retraction strategy, but when the step length dominates, we

obtain swing-leg protraction strategy. For a given limit cycle characterized by a mid-stance speed, swing-leg

protraction stabilizes walking at shallow ramp slopes and swing-leg retraction stabilizes walking at steep
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ramp slopes. The swing-leg protraction region increases as the limit cycle speed increases.

Our analysis suggests that the swing-leg strategy depends on the ramp slope, the nominal walking speed,

and the definition of stability, which in our case is full cancellation of perturbations in a single step. Thus it

is clear that the swing-leg strategy to stabilize bipedal walking is quite complex as it depends on a variety

of factors. Further research is needed to elucidate the nature of swing-leg strategy for different models,

actuation schemes, and stability specification (e.g., eigenvalue-based stability).
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Fig. 1: Hypothetical example to explain swing leg strategy to enable one-step dead-beat control. (A)
Nominal walking cycle. The biped has the same mid-stance leg velocity θ̇m0 between steps. The nominal step
length is φ0 and time from mid-stance to touchdown is t0. (B) The biped starts with mid-stance velocity
higher than the nominal speed. The biped needs to take a longer than nominal step length φ1 > φ0 to
increase the collisional loss compared with the nominal gait to get to the nominal mid-stance velocity of θ̇m0 .
The time in this case is t = t1. (C) The biped starts with mid-stance velocity lower than the nominal speed.
The biped needs to take a shorter than nominal step length φ2 < φ0 to reduce the collisional loss compared
with the nominal gait to get to the nominal mid-stance velocity of θ̇m0 . The time in this case is, t = t2. The
swing-leg strategy depends on the timing t1 and t2 relative to t0 as discussed next. (D) When the times are
such that, t2 > t0 > t1, the swing leg needs to retract in order to regulate walking speed. This is indicated
by the negative gradient on the φ vs t plot. The literature has ample examples of this scenario. (E) When
the times are such that, t1 > t0 > t2, the swing leg needs to protract in order to regulate the walking speed.
This is indicated by the positive gradient on the φ vs t plot.
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Fig. 2: 2-D point-mass walking model. The walker consists of two massless legs of length ` with a
point-mass M at the hip joint. Gravity points down and is denoted by g. The stance leg (the leg which is
on the ground is shown in black) makes an angle θ with the vertically downward direction. The swing leg
(the leg which is in the air is shown in light grey) makes an angle φ with the stance leg. We assume that
at least one leg is on the ground (single stance phase) and at no instance are both legs on the ground (no
double stance phase). The ramp slope is γ. There is an actuator at the hip joint.
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Fig. 3: A typical step of our point mass model. The walker starts in the upright or mid-stance position
in (I). In this position, the gravity (not shown in the figure) is along the stance leg and in the downward
direction. The swing leg is not shown in I. Next, the stance leg (shown in dark color throughout) moves
passively under gravity and the swing leg (shown in light gray color throughout) is controlled to follow a
time-based trajectory φ(t). Just before touchdown in (II), the swing leg is at an angle φ−i . Next, after
touchdown in (III), the swing leg becomes the new stance leg. Finally, the stance leg and the swing leg move
passively. The walker ends in the upright position or mid-stance position on the next step in (IV).
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Fig. 4: Swing-leg strategy for two limit cycles for a range of ramp slopes. Plots for the limit cycle
characterized with mid-stance velocity θ̇m0 = 0.1 (A and B) and θ̇m0 = 0.4 (C and D). The plots on the left
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The model chooses a swing-leg protraction strategy in the grey region and a swing-leg retraction strategy
elsewhere.



Table 1: Swing-leg speed for the two limit cycles shown in Fig. 4.

Slope Swing-leg speed Swing-leg speed

for θ̇m0 = 0.1 for θ̇m0 = 0.4
0.1 0.4028 0.8342
0.5 -4.5973 0.8630
1.0 -0.3080 0.9212
2.0 -0.1021 1.1352
3.0 -0.0581 1.6134
4.0 -0.0392 3.1871
5.0 -0.0287 -31.1363
7.0 -0.0177 -1.1934
9.0 -0.0121 -0.5580
11.0 -0.0088 -0.3458
13.0 -0.0066 -0.2418
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1 Bipedal model and equations of motion

A figure of the model and a single step of the model are shown in Fig. 2 and Fig. 3 respectively, in the

paper. The step starts in the mid-stance phase (stance leg is along the gravitational field) at step i and ends

in the mid-stance phase at step i+ 1. We present the equations of motion next.

1.1 Mid-stance position at step i (Fig. 3 , I) to instant before touchdown at

step i (Fig. 3 , II)

The non-dimensional mid-stance velocity at step i is θ̇mi . We have non-dimensionalised the time with
√
`/g.

From (I) to (II), the stance leg moves passively to the instant before touchdown, while the swing leg is

controlled by the hip actuator to follow a time-based trajectory φ(t). In (II), the instant before touchdown,

the stance leg makes an angle of θ−i with the vertical, the swing leg makes an angle of φ− with the stance

leg, and the non-dimensional stance leg velocity is θ̇−i .

Since the swing leg is massless, it does not affect the motion of the stance leg. Hence, we may apply

energy conservation from (I) to (II) to get

(θ̇mi )2

2
+ 1 =

(θ̇−i )2

2
+ cos θ−i . (1)

Let non-dimensional ground reaction force be R (non-dimensionalized with Mg). Since the legs are

massless, R acts along the stance leg. Using Newton’s law we derive an expression for R. Further, the leg
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can only push against the ground. Hence the reaction R needs to be positive. Thus

R = cos θ − θ̇2 ≥ 0. (2)

The angular speed, θ̇i, increases monotonically as the angle θi increases with time. Thus, we check for

the condition given by (2) only during touchdown (i.e., when the vertical angle is at its maximum after

mid-stance). Thus

cos θ−i ≥ (θ̇−i )2. (3)

Substituting θ̇−i from Eqn. 1 in Eqn. 3 and simplifying, we get

cos θ−i ≥
(θ̇mi )2 + 2

3
. (4)

Let ti be the time it takes for the walker to move from mid-stance position to the instant just before

touchdown. Then

ti =

∫ θ−i

0

dθ

θ̇
=

∫ θ−i

0

dθ√
(θ̇mi )2 + 2(1− cos θ)

(5)

which we solve using numerical quadrature.

1.2 Instant before touchdown at step i (Fig. 3 , II) to instant after touchdown

at step i (Fig. 3 , III)

At touchdown, the legs form a closed loop with the ramp. This condition is given by

cos(θ−i − φ
−
i )− cos(θ−i ) + 2 sin

(
φ−i
2

)
sin γ = 0. (6)

At touchdown, we switch the angles of the stance and swing legs. To find the angular velocity of the

stance leg after touchdown θ̇+i , we do an angular momentum balance about the impending collision point
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(Garcia et al., 1998)

θ+i = θ−i − φ
−
i , (7)

φ+i = −φ−i , (8)

θ̇+i = θ̇−i cosφ−i . (9)

1.3 Instant after touchdown at step i (Fig. 3 , III) to mid-stance position at

step i+ 1 (Fig. 3 , IV)

Let the mid-stance velocity at step i+ 1 be θ̇mi+1. Because the legs are massless, we may use the conservation

of energy to relate the energy of the point mass between III and IV

(θ̇mi+1)2

2
+ 1 =

(θ̇+i )2

2
+ cos θ+i . (10)

We also need to ensure that the ground reaction force is positive from III to IV. Using an argument

similar to that used to derive Eqn. 3, we get

cos θ+i ≥ (θ̇+i )2. (11)

Next, we substitute (θ̇+i )2 from Eqn. 10 and θ+i from Eqn. 7 into Eqn. 11 and simplify to get

cos(θ−i − φ
−
i ) ≥

(θ̇mi+1)2 + 2

3
. (12)

2 Methods

To analyze the walking motion we use tools in dynamical systems, namely Poincaré Map and Limit Cycles.

2.1 Poincaré Map

The Poincaré map is used to analyze walking motions of this model as done by others (Garcia et al., 1998;

McGeer, 1990). To compute the map, we need to relate the state of the walker at any instant in the step

with the same instant on the next step. Here, we will relate the state at mid-stance of the current step, i,

(see Fig. 3 (I)) to the mid-stance at the next step, i + 1 (see Fig. 3 (IV)). To do this, we can use Eqns. 1,
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6, 7, 8, 9, and 10. These 6 equations have 9 variables; θ̇mi , θ̇mi+1, θ̇+i , θ̇−i , θ+i , θ−i , φ+i , φ−i , and γ. We can use

the 6 equations to eliminate 5 variables to end up with an equation with 4 independent variables,

θ̇mi+1 = F (θ̇mi , φ
−
i , γ), (13)

where the Poincaré map F , is a scalar function that maps the state (θ̇mi ) from mid-stance at step, i, to the

state at the next step (θ̇mi+1), i+ 1, for a given step length φ−i , and ramp slope γ.

2.2 Limit Cycle

Limit cycles are periodic solutions of the Poincaré map F . To do this, we need to find a fixed point of the

function F . Since we want to find solution for a given ramp slope, we fix the slope γ = γ? in Eqn. 13 and

try to find the step length φ−i = φ0 that will lead to θ̇mi+1 = θ̇mi = θ̇m0 . Using the variables above, we can

rewrite Eqn. 13 as

θ̇m0 = F (θ̇m0 , φ0, γ
?). (14)

2.3 One-step dead-beat control

A controller that does full correction of disturbances in a single step is known as a one-step dead-beat control

(Antsaklis and Michel, 2006). We state the one-step dead-beat control as follows. For the disturbance that

leads to a mid-stance velocity at step i, θ̇mi 6= θ̇m0 , for the given terrain γ?, we have to find the step length

φi, needed to get back to the nominal mid-stance velocity θ̇m0 at the next step. Thus

θ̇m0 = F (θ̇mi , φi, γ
?). (15)

2.4 Numerical evaluation of limit cycles and dead-beat control

Our prime goal is to compute the step length φi vs time ti for a given limit cycle. We proceed as follows.

Each limit cycle is characterized by a specified mid-stance velocity. Thus, the mid-stance velocity at the

next step is given, θ̇mi+1 = θ̇m0 . The ramp slope is given, γ = γ?. Next, for a range of mid-stance velocities,

0 < θ̇mi < 1, we find values of the 6 unknowns θ̇+i , θ̇−i , θ+i , θ−i , φ+i , and φ−i using the 6 equations, Eqns. 1,

6, 7, 8, 9, and 10. Also, we rule out solutions that violate the take-off conditions given by Eqns. 4 and 12.

We can also compute the time to go from mid-stance to touchdown, ti, using Eqn. 5 using the computed
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values of θ−i and θ̇mi . Further, we repeat the above calculation for a range of ramp slopes, 0.01o < γ? < 15o.

Beyond 15o there are no walking solutions (Bhounsule, 2014).
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