
Koopman Operator Based Linear Model Predictive Control for
Quadruped Trotting

Chun-Ming Yang and Pranav A. Bhounsule

Abstract— Online optimal control of quadruped robots would
enable them to adapt to varying inputs and changing conditions
in real time. A common way of achieving this is linear model
predictive control (LMPC), where a quadratic programming
(QP) problem is formulated over a finite horizon with a
quadratic cost and linear constraints obtained by linearizing
the equations of motion and solved on the fly. However,
the model linearization may lead to model inaccuracies. In
this paper, we use the Koopman operator to create a linear
model of the quadrupedal system in high dimensional space
which preserves the nonlinearity of the equations of motion.
Then using LMPC, we demonstrate high fidelity tracking and
disturbance rejection on a quadrupedal robot. This is the first
work that uses the Koopman operator theory for LMPC of
quadrupedal locomotion.

I. INTRODUCTION

Quadruped robots, due to their low center of gravity,
wide base of support, and ability to move over uneven
terrain and obstacles using limited footholds, provide a
viable means of using mobile robots in applications such
as first responders, industrial workers, and helpers at home.
In this regard, the low-level or joint-level control of these
robots is of paramount importance. Current model-based
approaches restrict to linearized models while model-free
approaches use large sample size. This paper addresses the
problem of generating low-level control of quadrupeds in a
generalizable, sample-efficient manner without resorting to
model linearization using the Koopman operator theory.

The traditional approach of performing low-level control
is to create a parametric controller and then fine tune
gains either in simulation and/or hardware [1]. However,
this approach may not scale to different quadrupeds and/or
scenarios because it involves non-intuitive hand tuning. This
can be overcome by formulating and solving a trajectory
optimization (TO) problem offline by tuning a cost function
subject to state and control constraints. The result of TO
is a reference trajectory and/or open loop torque profile.
To implement TO on hardware, one needs an additional
feedback control layer to ensure high-level tracking in the
presence of disturbances and noise [2].

Model predictive control (MPC) is similar to TO in that
it solves an optimal control problem. However, there are
two major differences: one, it solves the TO online over a
finite horizon to make it computationally efficient, and two,
it repeatedly updates the control using sensor measurements,
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Fig. 1. Push recovery using Koopman operator-based linear model
predictive control

thus providing accurate tracking even in the presence of
disturbances and noise. MPC for quadruped control involves
using a physics model, such as single rigid body (SRB),
an idealization, for planning the reaction forces and then
mapping those forces to joint torques using the Jacobian
[3]. Some of the nonlinearities in SRB may be ignored or
linearized to avoid formulating a nonlinear MPC problem,
which is challenging to solve in real time [4]. The limitations
of SRB, such as model mismatch, can be avoided by using
a whole-body model for MPC, but one needs an engineering
feat to make the online computation fast enough for real-time
control [5]. Deep Reinforcement learning (DRL) is an model-
free method that solves the optimization problem over the
entire state space in an offline manner to learn a neural net-
work that maps the control to the states. To enable seamless
transfer to hardware, one could learn trajectories which are
then implemented using feedback control on hardware [6].
Another approach is to use dynamic randomization, where
torque profiles are generated for a wide variety of model
and environmental parameters such that when the controller
is transferred to hardware, it is able to cope with the sim-
to-real gap [7]. However, DRL is not sample efficient. To
achieve sample efficiency, one could use model-based TO
to plan reference motion and model-free RL to track the
reference motion [8].

The Koopman operator takes a nonlinear model xt+1 =
f(xt,ut) and converts it into a linear model in high dimen-
sional space: Π(xt+1) = AΠ(xt) + But, where A,B are
constant matrices and Π(x) is a non-linear function of x.
The original method was conceptualized for an uncontrolled
system in 1931 by Koopman [9], but only recently tools
have been devised to model controlled systems [10]. The
applications of the Koopman operator are currently limited
to a few simple smooth systems, such as quadcopters [11],
underwater vehicles [12], autonomous cars [13], two-link
planar manipulators [14], and soft robot manipulators [15].

In this paper, we use the Koopman operator to create
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Fig. 2. Single Rigid Body Model

a relatively low degree of freedom, a linear model of a
quadruped, and use Linear Model Predictive Control (LMPC)
to demonstrate slip and push recovery, reference tracking
in translation, and rotation. The main novelty of this work
is that it is the first demonstration of the use of Koopman
operator theory for modeling and controlling a quadrupedal
robot. The method is generalizable to other quadruped sys-
tem because we use SRB, a well known idealization of many
quadruped robots, for system identification. Finally, hardware
demonstration shows the efficacy of the approach to do real-
time optimal control.

II. METHODS

A. Single Rigid Body Model (SRB)

The quadruped system shown in Fig. 2 is modeled using
SRB model [16]

Θ̇ = A−1
Ω (θ, ψ)Ω (1)

p̈ =
R(Fi + Fj)

m
− g (2)

IΩ̇ = Ω× (IΩ) + ri × Fi + rj × Fj (3)

where p ∈ R3 and ṗ ∈ R3 are the SRB center of
mass (CoM) position and velocity both in the world frame
respectively; Θ = [ϕ, θ, ψ]⊤, Ω ∈ R3 are orientation
expressed by X-Y-Z Euler angles and angular velocities
in body frame respectively. The leg ground reaction force
for the foot i is Fi ∈ R3 and the distance from the
foot to the center of mass is ri ∈ R3; AΩ(θ, ψ) =
[cψ/cθ,−sψ/cθ, 0; sψ, cψ, 0;−cψsθ/cθ, sψsθ/cθ, 1] ∈ R3×3

is the matrix transforms body angular to Euler angle rate,
where cA = cosA, sA = sinA; R ∈ R3×3 is the rotation
matrix mapping vector from body frame to global frame; m
is the mass of the robot; g ∈ R3 is the gravity vector in
the world frame; I ∈ R3 is the inertia matrix of the torso
in the body frame. Note that Eqns. 1-3 are nonlinear and
they can be compactly written as: ẋ = f(x)+g(x)u, where
x = [p,Θ, ṗ,Ω]⊤ and u = [Fi,Fj ]

⊤.

B. Koopman Operator Theory

For a given nonlinear system xt+1 = f(xt,ut); x ∈ X ⊆
Rn; u ∈ U ⊆ Rm; f : X → X , a set of nonlinear observable
functions Π(x) exists such that the evolution of the system
along these observables is characterized by linear dynamics

governed by an infinite dimension operator K, known as
Koopman operator

[KΠ](x,u) = Π ◦ f(x,u) (4)

A finite-dimensional approximation of K, denoted as K =
[A,B];A ∈ RN×N ;B ∈ RN×m, is derived by employing
the Extended Dynamic Mode Decomposition (EDMD) ap-
proach [10], which projects K onto a subspace of observable
functions via least squares regression. The finite dimension
approximated operator K can be used to represent the linear
evolution of observable functions as

Π(xt+1) =
[
A B

] [Π(xt)
ut

]
= KΠ̂(xt,ut) (5)

where Π(xt) = [π1(xt), ..., πN (xt)]
T ∈ RN is the dic-

tionary of observable functions. By utilizing M snapshots
of the system states and control inputs in lifted space
formed by the basis function πi(x) in the dictionary, we
obtain the approximated operator K. The paired dataset
X = [x1,x2, ...,xM−1] and Y = [x2,x3, ...,xM ] can be
obtained by perturbed nonlinear dynamics xt+1 = f(xt,ut)
with a given control sequence U = [u1,u2, ...,uM−1], the
approximation of the Koopman operator then can be obtained
by solving the least square regression such that [17]

K = argmin
K

∥Π(Y)−KΠ̂(X,U)∥2 (6)

By constructing G1 and G2, an analytical solution for K
may be computed

G1 =
1

M

M∑
i=1

Π(yi)Π̂(xi,ui)
⊤, (7)

G2 =
1

M

M∑
i=1

Π(xi)Π̂(xi,ui)
⊤, (8)

K = G1G
−1
2 (9)

C. Koopman Operator-Based Modeling

The SRB model equations (see Eqn. 1-3) are nonlinear.
Our goal is to compute a linear model using Koopman
operator theory.

We identify a set of Koopman observer functions Π(x) :
Rn → RN that can evolve linearly in the lifted observable
space with the finite-dimensional Koopman operator K =
[A,B], such that the dynamics are approximated by Eqn. 5.
To perform the EDMD to find the linear Koopman predictor
A ∈ RN×N and B ∈ RN×m , a set of physics informed
observable functions [11] Π̄ = [RΩ,RΩ2, ...,RΩp]⊤ is
selected to form the lifted state space, where the operator (·) :
Rl×l → Rl2 maps the matrix into a vector by concatenating
the columns inside the matrix, then the linear SRB states can
be augmented as

Π = [1,p,Θ, ṗ,Ω, Π̄]⊤ ∈ R13+9p (10)

Note that one of the observable is 1 here is needed to put
the constant terms such as the gravity term. We also include
the state x = [p,Θ, ṗ,Ω]⊤ so we can recover it for use in
the LMPC discussed in the next section.
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Fig. 3. Control diagram for implementation on the quadruped in simulation and hardware

D. Koopman Operator-Based Model Predictive Control

We formulate a LMPC using the Koopman operator model
as follows

min
u

k−1∑
i=0

∥∥xt+i − xdt
∥∥
Qi

+ ∥ut+i∥Ri
(11)

s.t. Πt+i = AΠi +Bui, i = 0, 1...k − 1, (12)
xi = CxΠ(xi),umin ≤ ui ≤ umax (13)

where Cx ∈ Rn×N is selection matrix that pulls out the state
x from Π(x); Qi ∈ Rn×n and Ri ∈ Rm×m are user-chosen
diagonal positive definite matrices.

For a given initial state x0 ∈ Rn, using Eqn. 12 and 13
recursively for k time steps, we obtain

Xqp = Aqpx0 +BqpUqp (14)

where Xqp ∈ Rn×k and Uqp ∈ Rm×k are the concatenated
state and control from 1, 2, ..., k The cost function can then
be rewritten as

min
Uqp

∥∥Aqpx0 +BqpUqp −Xd
qp

∥∥
Qqp

+ ∥Uqp∥Rqp
(15)

where Xd
qp ∈ Rn×k is the concatenated reference trajecto-

ries; Qqp ∈ Rnk×nk and Rqp ∈ Rmk×mk are user-chosen
diagonal positive weight matrix.

The QP can now be written as

min
Uqp

1

2
U⊤
qpHUqp +PUqp (16)

s.t. c ≤ CUqp ≤ c (17)

where H = 2(B⊤
qpQqpBqp+Rqp), P = 2(x⊤

0 A
⊤
qpQqpBqp−

X
d⊤
qp QqpBqp) and C ∈ Rmk×mk, c ∈ Rmk, c ∈ Rmk

denoted the inequality constraints of control input.

E. Controller Implementation in Simulation and Hardware

The controller is implemented on a model of Unitree Go1
quadruped in MuJoCo version 2.0.0 [18] using Ubuntu 20.04
on an Intel Core i7 and on hardware.

Each leg of the Go1 robot comprises two 0.2 m links
with three degrees of freedom. The torso weighs 4.75 kg,
and each leg weighs 2 kg. The torso has an IMU providing
orientation, angular speed, and linear acceleration. Each joint
has an absolute encoder providing joint angles. The joint
torque limits are ±33.5 Nm. An onboard Raspberry Pi
4 processes the IMU and encoder data and sends torque,
position, and velocity references along with their gains to the
motor controller at 1000 Hz. The motor controller operates
at 10 kHz to ensure high-fidelity torque tracking. Figure 3
gives an overview of the Koopman operator-based LMPC in
simulation and hardware and details follow

1) Finite State Machine: A finite state machine is used
to manage the control logic, sending commands to leg
controllers for Front Right (FR), Front Left (FL), Rear Right
(RR), and Rear Left (RL) legs. In a trot gait, FR-RL and
FL-RR legs move in pairs, transitioning between swing and
stance phases every 0.2 sec. If a swing leg collides with
an obstacle, detected by a contact sensor, the swing foot’s
position is held constant.

2) Swing Leg Controller: The role of the swing leg
controller is to track the reference position of the swinging
foot using joint torques on the swing leg joints. Given
the swing foot reference position and velocity, pdfi, ṗ

d
fi, an

analytical inverse (see [1] Sec. 3.5) is used to compute the
corresponding joint reference position and velocity, qdi , q̇

d
i .

The following simple proportional-derivative controller is
used to compute the joint torque for leg i at 1 kHz.

τi = −Kp(qi − qdi )−Kd(q̇i − q̇di ) (18)

3) Linear Model Predictive Control: The LMPC uses the
Koopman operator-based model and estimated torso states
to compute desired ground reaction forces for the stance
legs (see Sec. II-D). The planning horizon for the model
predictive control is 6 ms or 166.67 Hz while the update
horizon is 5 ms or 200 Hz. The MPC is solved online using
qpSWIFT [19] in about 3 ms.

4) Stance Leg Controller: The stance leg controller mod-
ule uses the desired ground reaction forces to estimate the
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Fig. 4. Fitting the Single Rigid Body Model using the Koopman operator

joint torques using the Jacobian of the stance leg.

τi = J⊤
i fi (19)

5) State Estimation: The state estimation module esti-
mates the linear velocity of the torso by fusing the accelera-
tion data from the IMU and the joint encoder data using an
Extended Kalman Filter (EKF). The EKF uses the integrated
acceleration as the process model and the estimated linear
velocity using the Jacobian of the contact feet and the joint
velocity as the measurement model.

III. RESULTS

A. Koopman Operator Model Fit

To generate data for the EDMD, we integrate the SRB
Eqns. 1-3 with Runge-Kutta of order 4 with a fixed step size
of dt = 0.001 sec from t = 0 to t = 0.1 sec. For each roll-
out, we use a randomly generated initial conditions at t = 0
and random control input for every 0.001 sec. We use a total
of 100 roll-outs to create a training dataset. Then using the
p = 4 observables Π(x) discussed in Sec. II-C, we perform
the EDMD to obtain a linear model.

Figure 4 (a) shows fidelity of the fit on one out of fifty
testing trajectories. We did the extensive test by generating
50 initial conditions and using 50 random force profiles for
a 0.05 sec roll-out using the SRB model, then using the
same paired initial condition and force inputs we generated
corresponding predictions using Koopman operator model.
The linear model fitting results are evaluated by the error
between the actual and predicted trajectories across 50 sets
of data shown in Fig. 4, where (b) for translation p, (c) for
orientation Θ , (d) for linear velocity ṗ, (e) for angular rates
Ω. The solid line shows the mean and the bands shows the
variance. It can be seen that the errors are within ±10−3

indicating a sufficiently accurate fit.
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Fig. 5. Simulation: Slip and Recovery

B. Koopman Operator LMPC in Simulation

To check the disturbance rejection, approximately 10 ob-
jects of height in the range of 5− 7 cm are scattered on the
ground to intentionally make the robots’ feet slip (see Fig. 5
inset). During the rough terrain simulation experiment, the
first significant slip occurs when the robot’s rear foot strikes
the second object, causing the robot to lose its balance.
However, the robot regains stability when the foot makes
contact with the flat ground within 1 sec, recalculating
the adequate force for effective disturbance rejection with
orientation Θ and angular velocity Ω tracking errors (RMSE)
of 0.012 and 0.092 respectively.

To check the reference tracking ability, we command the
robot to follow a combination of reference forward and
lateral speed as shown in Fig. 6 (a), the RMSE for linear
velocity ṗ is 0.021. Then a combination of forward speed
and turning speed as shown in Fig. 6 (d) (e) is commanded
with resulting tracking RMSE for linear velocity ṗ as 0.008,
and for angular velocity Ω as 0.056.

C. Koopman Operator LMPC in Hardware

To evaluate the controller’s disturbance rejection capabil-
ities, the robot, while trotting, is subjected to a forceful
push that causes its forward velocity to oscillate by up to
0.4 m/s (see Fig. 7). Despite this perturbation, the robot
successfully recovers from a pitch deviation of 6.5 degrees
within 2 sec with the tracking errors for orientation Θ and
angular velocity Ω, measured as RMSE, being 0.018 and
0.404, respectively.

To evaluate the reference tracking capability, we command
the robot to follow a combination of forward and lateral
reference speeds as shown in Fig. 8 (a). The ground reaction
forces in Fig. 8 (b) (c), zoomed in between 4.6 − 5.4 sec,
demonstrates the controller’s ability to manage the steep
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Fig. 6. Simulation: Tracking a forward and lateral speed.

velocity change from 0 to 0.2 m/s for forward and 0 to −0.1
m/s for lateral as commanded by a step function, with the
tracking error of the linear velocity ṗ quantified by RMSE of
0.026, lastly, a combination of forward and turning speed is
commanded as shown in Fig. 8 (d) (e). The RMSE is 0.048
for linear velocity ṗ and 0.415 for Ω angular velocity.

IV. DISCUSSION, CONCLUSION, AND FUTURE WORK

In this paper, we have used the Koopman operator to create
a linear model of the SRB model of a quadruped. This is
used with LMPC to control the trot gait of a quadruped in
simulation and hardware demonstrating the efficacy of the
approach.

We use the analytical model (the SRB model) instead of
hardware data for system identification. Often hardware data
based data identification is challenging because there may
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not be enough excitation to tease out the model parameters
[20], but with simulated data it is always possible to generate
a richer data set. Although we have used data-based EDMD
to identify the linear model, analytical method such as direct
encoding may also be used [21].

The SRB model enables us to reduce the dimension of the
Koopman operator substantially. The full robot dynamics has
18 degrees of freedom (6 in the torso and 3 in each of the 4
legs). However, if we assume the legs are massless, then we
only need to model the torso. This is done using the SRB
model which has only 6 degrees of freedom. The result is
that we can adequately describe the nonlinear model using
only 49 observables.

The use of the Koopman operator based linear model leads
to a QP over a finite horizon (LMPC) which has an analytical
solution if there are no constraints. In our case, we do have
control constraints and hence need to solve the problem
numerically. However, we are able to solve the LMPC in 3
ms for a horizon of 6 ms enabling real-time optimal control.

We do see that our linear model remains accurate with
a prediction error within ±10−3 up to 0.05s, its accuracy
diminishes as time progresses. The SRB model is a control
affine model and a bilinear Koopman operator-based model
should better describe the dynamics [22]. But the use of
bilinear model leads to a nonlinear model predictive control
which is computationally challenging to solve [23]. One
approach is to linearize the bilinear term at the operator point,
which leads to an LMPC [24].

In conclusion, the generation of simple linear model with
only 49 observables using the idealized SRB model is found
to be adequate to do high-fidelity LMPC of a quadruped in
hardware for reference tracking and moderate disturbances.

Our future work will explore methods to increase the
robustness of the quadruped to larger disturbances, increase
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Fig. 8. Hardware: Tracking a fore-aft and side-way speed.

the range of movement of the robot, and explore multiple
gaits such as bounding, pacing, trotting, and transitioning
between these gaits.
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