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Abstract— Maximizing the endurance of unmanned aerial
vehicles (UAVs) in large-scale monitoring missions spanning
over large areas requires addressing their limited battery
capacity. Deploying unmanned ground vehicles (UGVs) as
mobile recharging stations offers a practical solution, extending
UAVs’ operational range. This introduces the challenge of
optimizing UAV-UGV routes for efficient mission point coverage
and seamless recharging coordination. In this paper, we present
a risk-aware deep reinforcement learning (Ra-DRL) framework
with a multi-head attention mechanism within an encoder-
decoder transformer architecture to solve this cooperative
routing problem. Our model minimizes mission time while ac-
counting for the stochastic fuel consumption of UAV, influenced
by environmental factors like wind velocity, ensuring adherence
to a risk threshold to avoid mid-mission energy depletion.
Extensive evaluations on various problem sizes show that our
method significantly outperforms nearest-neighbor heuristics in
both solution quality and risk management. We validate the Ra-
DRL policy in a Gazebo-ROS SITL environment with a PX4-
based custom UAV and Clearpath Husky UGV. The results
demonstrate the robustness and adaptability of our policy,
making it highly effective for mission planning in dynamic,
uncertain scenarios.

I. INTRODUCTION
In mission-critical operations involving unmanned aerial
vehicles (UAVs), such as disaster response, surveillance, and
border security [1]–[5], efficiently covering large areas poses
a significant challenge due to UAVs’ limited endurance.
Frequent recharging disrupts missions and reduces overall
effectiveness. To overcome this, collaborative systems utiliz-
ing unmanned ground vehicles (UGVs) as mobile recharging
depots have emerged. These systems leverage the comple-
mentary strengths of UAVs and UGVs, enabling flexible,
coordinated operations that extend mission durations and
enhance performance across diverse environments [6], [7].
In such dynamic settings, operational risks like failures from
stochastic factors, such as wind and energy consumption
variations, must be addressed to ensure reliability and ef-
ficiency [8], [9].
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Fig. 1: Illustration of the fuel-constrained UAV-UGV coop-
erative routing problem: The UAV visits mission points and
lands on the UGV to recharge. The objective is to plan routes
for both vehicles to minimize the total mission time while
accounting for the UAV’s stochastic fuel consumption and
other vehicular constraints of both the UAV and UGV.

This work addresses a cooperative routing problem where
a UAV-UGV team must visit a set of mission points in the
shortest possible time. The UAV, limited by battery life, relies
on the UGV for recharging, while the UGV, constrained by
road networks and speed, must coordinate its movements
to support the UAV. Our deep reinforcement learning frame-
work introduces a risk-aware policy (Ra-DRL) that optimizes
mission time while accounting for the stochastic nature
of UAV fuel consumption under varying wind conditions.
Extensive testing across different problem sizes highlights
the importance of incorporating operational risks to ensure
reliable and efficient UAV-UGV collaboration.

A. Related works

Extensive research has explored various UAV-UGV coop-
erative routing problems [10], [11] in literature. Maini et
al. [12], [13] tackled a routing problem where a fuel-
constrained UAV visits mission points while recharging on
a UGV traveling along a road network, using Mixed Integer
Linear Programming (MILP) to optimize paths. Li et al.
[14] studied cooperative UAV-UGV path planning, where
the UAV maps terrain and relays obstacle data to the UGV,
using a hybrid path planning algorithm for optimization.
Ramasamy et al. [15]–[17] approached cooperative UAV-
UGV routing by solving the UGV route with K-means
clustering and then applying the Vehicle Routing Problem
(VRP) with local search heuristics for UAV routing. While
many routing problems are modeled as MILP, these become
intractable for large-scale instances due to their NP-Hard
nature [18]. To address this, various heuristics like genetic
algorithms, tabu search, and ant colony optimization are
used to produce high-quality approximate solutions within



reasonable time frames [19], [20]. However, these heuristics
are often tailored to specific problems, making them labor-
intensive and limiting their generalizability and effectiveness
in solving large-scale problems with some compromise in
solution optimality.

In recent years, learning-based methods have shown sig-
nificant potential in addressing vehicle routing problems and
other combinatorial optimization challenges [21]–[23]. Kool
et al. [24] introduced an encoder-decoder Transformer ar-
chitecture that surpassed classical heuristics in routing tasks,
while Li et al. [25] applied DRL with attention mechanisms
to the heterogeneous capacitated vehicle routing problem,
achieving superior solution quality and efficiency. Fan et
al. [26] combined multi-head attention with a DRL policy
to optimize routes for energy-constrained UAVs. Despite
these advancements, RL-based risk-aware routing remains
largely unexplored. In these cases, stochastic programming
(SP) can address uncertainty but becomes impractical for
large-scale problems due to the high number of variables
[27]. Shi et al. [28] used Constrained Markov Decision
Process (CMDP) with linear programming for the UAV-UGV
rendezvous problem but relied on pre-planned routes for
determining sorties. Given that recharging is closely linked
to sortie planning, our focus is on jointly optimizing both
route planning and recharging rendezvous while accounting
for stochastic UAV fuel consumption. To this end, our key
contributions are:
1. We tackle the risk-aware, energy-constrained UAV-UGV
cooperative routing problem using a CMDP. This is solved
through reinforcement learning with Lagrangian relaxation
and a policy gradient method, leveraging an encoder-decoder
Transformer with attention layers.
2. We evaluate the framework across various problem sizes
and risk tolerances, demonstrating strong generalization ca-
pabilities. Our approach outperforms baselines in both solu-
tion quality and risk management.
3. We develop and validate the policy in a Gazebo simulation
environment using PX4 SITL for the UAV and Clearpath
Husky for the UGV, incorporating realistic environmental
conditions and vehicle dynamics.

II. PROBLEM FORMULATION

A. Problem overview

Consider a collaborative UAV-UGV system, where a fuel-
constrained UAV Ua and a recharging UGV Ug are tasked
with visiting mission points M = {m0,m1, ...,mn} dis-
tributed across a scenario (see Fig. 1). These points are
divided into ground points Mg , accessible to both UAV
and UGV via a road network G, and UAV-only points Ma,
reachable only by the UAV. The UAV, with limited battery
capacity F a and higher velocity va, has stochastic fuel
consumption influenced by environmental factors like wind,
adding uncertainty to its routing. The UGV operates solely
on roads at a slower velocity vg . To avoid fuel depletion, the
UAV must periodically rendezvous with the UGV at ground
points for recharging, spending a service time TR before
resuming its mission. The mission starts at the depot and ends

once all mission points are visited, with the UAV completing
a final recharge.

Problem 1: Given mission points M, develop a risk-
aware strategy to optimize routes for both the UAV and
UGV, accounting for the UAV’s stochastic fuel consumption
influenced by environmental conditions. The strategy must
determine optimal routes and recharging rendezvous between
UAV and UGV, minimizing total mission time while ensuring
the probability of UAV mid-mission fuel depletion stays
below a specified risk threshold.

B. Risk-Aware MDP Formulation

To model the risk-aware UAV-UGV cooperative routing
problem as a Markov Decision Process (MDP), incorporating
the stochastic nature of the UAV’s fuel consumption, we
have extend the MDP by introducing risk constraints. Based
on [28], the problem is framed as a Constrained Markov
Decision Process (CMDP), where the objective is to min-
imize mission time while ensuring that the likelihood of
entering failure states, measured by a risk function remains
within acceptable limits δ. This threshold sets the maximum
permissible rate of mission failures. The CMDP is defined
by the tuple < S,A,R, T > as follows:

1. State Space (S): The state includes the current posi-
tions of the UAV and UGV, the remaining UAV fuel level,
and the status of mission points. At each step, the state
is st = (pt, ft, qt), where pt = {xt, yt} represents the
position, ft is the fuel level, and qt = {xi, yi, dit} tracks the
coordinates and visitation status of mission points mi ∈ M,
with dit = 1 if a point is visited, otherwise dit = 0. The
failure state sf represents the UAV running out of fuel.
2. Action Space (A): Actions at ∈ A involve
selecting mission points for visiting or recharging:
A = {Mg (recharging),Mg (visiting),Ma (visiting)}. In-
feasible actions are masked out based on the current state st
at every decision-making step t.
3. Reward (R): The reward is the negative of the total
mission time, R = −

∑T
t=0 rt, where rt = r(st, at) =

ttravel + TR, representing travel time plus recharge time (for
recharging action only) at every step t.
4. Transition Function (T ): State transitions are considered
deterministic. The next state’s agent position pt+1 is updated
to the selected location, and fuel is updated as ft+1 =
ft − ftravel for visiting, or reset to F a after recharging. The
mission point visitation status is updated for visited mission
points accordingly. If the UAV runs out of fuel, it transitions
to the failure state sf .

Definition 1: The risk is defined as the expected number
of failures, i.e., the number of times the UAV transitions into
the failure state sf during the mission. For a given policy π,
the risk starting from the initial state s0 is defined as:

ρπ(s0) = E

[
T−1∑
t=0

C̄(st, π(st))

]
(1)

where T is the finite trajectory length (i.e., the end of the
mission), and the risk function C̄(st, π(st)) is an indicator



function:

C̄(st, π(st)) =

{
1 if st = sf (failure)
0 otherwise

(2)

In this case, C̄(st, π(st)) indicates whether a failure occurs
at step t, returning 1 if the UAV transitions to the failure state
sf and 0 otherwise.

Objective: The goal is to find the optimal policy π∗ that
minimizes the expected mission time while ensuring the
number of failures remains below the threshold δ:

π∗ = argmin
π

E

[
T−1∑
t=0

C(st, π(st))

]
(3)

subject to:
ρπ(s0) ≤ δ (4)

Here, C(st, π(st)) is the cost function representing the
mission time at step t.

III. REINFORCEMENT LEARNING FRAMEWORK

In this section, we propose an encoder-decoder transformer
network combined with reinforcement learning to learn a
risk-aware routing policy πθ, where θ represents the trainable
parameters. Starting from the initial state s0, the policy πθ
selects an action at at each timestep t, determining whether
the UAV should visit a mission point or recharge based on
the current state st. This continues until either the terminal
state sT or failure state sf is reached. To mitigate UAV
failure risk (e.g., fuel depletion leading to sf ), we introduce
a Lagrangian-based formulation that balances mission time
minimization with risk control, maintaining failure proba-
bility within a specified threshold δ. The cooperative route
T , defined as the sequence of mission points selected by
the UAV to visit or rendezvous for recharging at the UGV,
follows the joint probability distribution:

P(T ; θ) =

T−1∏
t=0

πθ(at | st) (5)

where T is the total number of timesteps. Assuming deter-
ministic transitions, we have:

P(st+1 | st, at) = 1 (6)
In this risk-aware framework, the total cost includes a

Lagrangian multiplier λ, which penalizes the policy if the
risk ρπ(s0) exceeds the threshold δ. The objective function
is:

L(θ, λ) = E

[
T−1∑
t=0

(C(st, at) + λ · (ρπ(s0)− δ))

]
(7)

where C(st, at) represents the mission time cost, λ is the
Lagrangian multiplier, and ρπ(s0) is the expected number of
failures from the initial state s0. The Lagrangian multiplier
λ penalizes the policy when ρπ(s0) > δ, enforcing the risk
constraint during optimization. The goal is to find the optimal
policy π∗θ that minimizes mission time while controlling
failure risk, formulated as:

θ∗ = argmin
θ

max
λ≥0

L(θ, λ) (8)

Here, θ∗ represents the optimal policy parameters, and
λ ≥ 0 is iteratively updated to satisfy the risk constraint

ρπ(s0) ≤ δ. This Lagrangian dual approach balances mission
time optimization with risk tolerance, ensuring that UAV
failure risk remains within acceptable limits.

A. Encoder-Decoder Transformer architecture

To learn the routing policy πθ, we use an encoder-decoder
transformer architecture (see Fig. 2), adapted from Kool et
al. [24] for cooperative routing. The encoder transforms the
mission point coordinates into high-dimensional embeddings,
and the decoder uses these embeddings to make decisions
based on the current scenario state.

1) Encoder
We incorporate a multi-head attention (MHA) mechanism

in the encoder to extract higher-dimensional representations
from the mission point features. The input is a 3D vector
X = (oi = {xi, yi, bi},∀mi ∈ A), where (xi, yi) are
normalized coordinates and bi is a binary variable indicating
recharging eligibility. The inputs are linearly projected to
h0i = W 0oi + b0, with an embedding dimension dh = 128.
The embedding is then processed through L = 3 multi-
head attention layers to create an advanced embedding hLi ,
capturing the relationships among mission points. In each
attention layer l ∈ L, Query, Key, and Value vectors are
computed from the previous layer embedding hl−1i , with
dimensions dq = dk = dv = dh

M , where M = 8 is the
number of attention heads. For each head j, the attention
scores Zl

j are calculated as:

qli,j = hl−1i W l
q,j , kli,j = hl−1i W l

k,j , vli,j = hl−1i W l
v,j

(9)

Zl
j = softmax

(
qli,jk

l
i,j

T

√
dk

)
vli,j (10)

MHA(hl−1i ) = Concat(Zl
1, Z

l
2, ..., Z

l
M ) (11)

Here, qli,j , k
l
i,j , v

l
i,j are the Query, Key, and Value vectors

in head j, and W l
q,j ,W

l
k,j ,W

l
v,j are the trainable parameter

matrices. The attention output MHA(hl−1i ) is followed by
a feed-forward layer (FF) with ReLU activation. Residual
skip connections and Batch-Normalization (BN) are applied
in both MHA and FF sublayers:

ĥli = BN(hl−1i + MHA(hl−1i )) (12)

hli = BN(ĥli + FF(ReLU(ĥli))) (13)
After processing through L attention layers, the final node
embedding hLi is passed to the decoder for action selection.

2) Decoder:
During each decision-making step, the decoder determines

the probability of selecting each available node based on
the encoder’s node embedding hLi and a context vector that
captures the current scenario state. At step t, the context
vector htc is constructed using the agent’s current position
hLj for j ∈ pt, the agent’s fuel level ft, and the encoder
node embedding hLi :

h̄t =
1

n

n∑
i=0

hLi (14)

htc = h̄tWg + Cat(hLj , ft)Wc (15)
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Fig. 2: Architecture of the proposed Transformer network. The encoder consists of three attention layers to generate input embeddings
from raw data, while the decoder creates a context vector based on the current state. Both the input embedding and context vector
pass through multi-head and single-head attention layers to determine the action, sequentially forming the cooperative route as shown.

Here, Wg and Wc are trainable parameters. The decoder uses
the context vector htc as the Query and the encoder embed-
dings hLi as Key/Value in a multi-head attention (MHA) layer
to compute the glimpse htg:

htg = MHA(htc, h
L
i W

g
k , h

L
i W

g
v ) (16)

Once glimpse htg is obtained, it is used in Query qt and hLi
in Key kt in a single-head attention layer to compute the
compatibility ht. Infeasible actions are masked out based
on constraints, such as previously visited mission points or
unreachable points due to fuel levels. The compatibility is
calculated as:

qt = htgWq, kt = hLi Wk (17)

ht =

Cp · tanh
(

qtktT√
dq

)
, if feasible

−∞, else
(18)

Here, Wq , Wk are trainable matrices and Cp = 10 is a
clipping parameter. The output probabilities for the actions
are calculated using the softmax function:

πθ(at | st) = softmax(ht) (19)
Following this process, the decoder selects actions sequen-
tially until the mission is completed or terminated. We use a
sampling decoding strategy during training and both greedy
and sampling strategies are applied during evaluation.

B. Training method

The training algorithm (see Algorithm 1) is based on the
REINFORCE policy gradient method [29] and includes: 1)
the policy network πθ, which selects actions based on a
probability distribution, and 2) the baseline network πϕ,
which selects greedy actions (maximum probability). At each
iteration, routes and rewards are computed for a batch, while
baseline rewards come from the greedy rollout of the baseline
network. The policy parameters θ are updated using the
policy gradient algorithm, and the baseline parameters ϕ are
updated if they underperform in a paired t-test. To manage
risk, we introduce a Lagrangian multiplier λ to balance

mission time minimization with risk control. The Lagrangian
penalizes the policy if the risk ρπ(s0) exceeds a predefined
risk threshold δ, with λ updated iteratively via gradient
ascent. The risk loss is computed encouraging the policy
to reduce risk when it exceeds δ. REINFORCE is selected
for its ability to learn directly from interactions, maintaining
linear complexity in terms of epochs, steps, and gradient
computations, making it practical for large-scale problems.

Algorithm 1: Policy network training using REIN-
FORCE with Lagrangian-based risk management

Input: Policy network πθ , Baseline network πϕ, epochs E, Number of
batches N , batch size B, episode length T , Risk threshold δ,
Lagrangian multiplier λ

Output: Trained policy network π
θ
′

1 for epoch in 1 . . . E do
2 Sample N batches from dataset
3 for iteration in 1 . . . N do
4 for instance b in 1 . . . B do
5 Initialize s0,b at t = 0
6 while t < T do
7 Get action at,b ∼ πθ(at,b|st,b)
8 Obtain reward rt,b, risk rrisk,t,b, and st+1,b

9 t = t + 1

10 Rb =
∑T−1

t=0 rt,b

11 Risk return Rrisk,b =
∑T−1

t=0 rrisk,t,b

12 Baseline reward Rϕ
b , Baseline risk Rϕ

risk,b from greedy
rollout with πϕ

13 Compute losses:
14

Reinforce Loss =
1

B

B∑
b=1

(Rb −Rϕ
b ) log πθ(sT,b | s0,b)15

Risk Loss =
1

B

B∑
b=1

λ(Rrisk,b − R
ϕ
risk,b) log πθ(sT,b | s0,b)16

Total Loss = Reinforce Loss + Risk Loss
17 Compute gradient:

∇θJ ← ∇θTotal Loss
18 Update θ ← θ + α∇θJ
19 if Risk threshold violated then
20 Update Lagrangian multiplier: λ← λ + αλ(Rrisk,b − δ)
21 Clamp: λ = max(0, λ)

22 if OneSidedPairedTTest(πθ, πϕ) < 0.05 then
23 ϕ← θ



IV. RESULTS

A. Dataset

We have evaluated the effectiveness of our risk-aware UAV-
UGV cooperative routing algorithm through simulations over
a 20 km × 20 km area using a single UAV-UGV system.
The UAV, traveling at 12 m/s with a fuel capacity of 150 kJ,
follows a stochastic fuel consumption model, while the UGV
moves at 4.5 m/s on a fixed road network G. UAV mission
points (Ma) are uniformly sampled around recharging stops
(Mg) on the road network. The UAV’s energy consumption
accounts for both weight and wind velocity contributions to
longitudinal airspeed. Based on [28], the energy consumption
model is modeled as: P (v∞) = b0+b1v∞+b2v

2
∞+b3v

3
∞+

b4w + b5v∞w where v∞ denotes the airspeed and w is the
fixed weight of the UAV (2.3 kg). The airspeed v∞ is the
sum of the vehicle’s ground speed va and the wind velocity
component parallel to the vehicle’s ground speed, as ex-
pressed by:v∞ = |va + cos(−ψ) · ξa,b|. Here, ξa,b represents
the wind speed, modeled using a Weibull distribution with
shape parameters a = 3m/s and b = 3, which corresponds to
mild steady wind near ground level. The wind direction ψ is
uniformly distributed between 0° and 360°. We have trained
the model on three problem sizes, U15G5 (15 UAV and 5
ground points), U30G10, (30 UAV and 10 ground points) and
U45G15 (45 UAV and 15 ground points) with 5.12 million
instances each, evaluated against two risk thresholds: δ = 0.5
and δ = 0.1. Training is conducted using the Adam optimizer
(learning rate 10−4, decay rate 0.995) for 100 epochs with
256 instances per batch on an RTX 2080 Ti GPU. The
average training time per epoch is 1.8 minutes for U15G5,
3.2 minutes for U30G10, and 5.1 minutes for U45G15. The
model’s performance is evaluated across different decoding
strategies, risk thresholds, and generalization tests on larger
problem sizes and extended road networks.

B. Comparative analysis

Given the complexity of the problem, no standard bench-
marks are available, and finding an exact solution becomes
computationally intractable as mission points increase. To
evaluate model performance, we test on 256 test samples
under two risk thresholds (δ = 0.05 and δ = 0.1), comparing
the RL-based risk-aware model (Ra-DRL) to a nearest
neighbor heuristic baseline (Ra-NN), which greedily selects
the nearest mission points and triggers recharging when
fuel level drops below a threshold γ to avoid failure. For
fair comparison, we apply similar masking during action
selection. We also compare two DRL decoding strategies:
greedy decoding (selecting the highest-probability action)
and sampling decoding, where N trajectories are sampled and
the best is chosen. We evaluate with N = 1024 (DRL(1024))
and N = 10240 (DRL(10240)).

The Table I shows that Ra-NN exhibits a tradeoff between
mission time and risk, with lower fuel thresholds (γ) leading
to more conservative decisions and fewer failures. However,
reducing the fuel threshold also shortens mission time at
the cost of higher failure rates. In contrast, the RL model

TABLE I: Comparison evaluation of the DRL policy across
problem sizes

Method U15G5 U30G10 U45G15
Obj.
(min.)

Time
(sec)

Risk
(%)

Obj.
(min.)

Time
(sec)

Risk
(%)

Obj.
(min.)

Time
(sec)

Risk
(%)

Ra-DRL (greedy, δ=0.05) 178 0.5 0.03 218 1.11 0.04 260 2.06 0.01
Ra-DRL (1024, δ=0.05) 155 1.65 0.03 186 4.57 0.05 249 6.89 0.02
Ra-DRL (10240, δ=0.05) 151 28.18 0.02 181 48.28 0.04 249 75.51 0.02
Ra-DRL (greedy, δ=0.1) 176 0.5 0.091 210 1.09 0.05 260 2.19 0.04
Ra-DRL (1024, δ=0.1) 141 3.1 0.06 182 4.41 0.07 249 7.95 0.07
Ra-DRL (10240, δ=0.1) 139 34.01 0.08 178 42.32 0.08 248 78.6 0.07
Ra-NN (γ=60%) 344 0.03 0.12 457 0.06 0.13 574 0.13 0.13
Ra-NN (γ=40%) 330 0.03 0.18 435 0.06 0.38 543 0.13 0.45
Ra-NN (γ=20%) 322 0.03 0.30 426 0.06 0.47 531 0.13 0.63

consistently outperforms Ra-NN, achieving 45-60% shorter
mission times while maintaining lower risk levels. This
trend becomes more evident as problem sizes increase, with
the RL model excelling in both objective value and risk con-
trol. Despite Ra-NN’s faster computations due to its greedy
nature, it sacrifices mission success rates. In the Ra-DRL
policies, sampling-based decoding reduces mission time by
5-15% compared to greedy decoding, though it slightly in-
creases risk due to its exploratory nature. Larger sample sizes
(1024 vs. 10240) offer diminishing returns in mission time
but significantly raise computational costs. As risk tolerance
decreases, mission times increase to meet stricter thresholds,
particularly in smaller scenarios like U15G5 and U30G10,
with less impact in larger scenarios like U45G15. Overall,
the results demonstrate the scalability and efficiency of the
RL model, balancing mission time and risk across varying
problem sizes and thresholds.

C. Generalization

To assess the generalization of the proposed DRL framework,
we evaluate it on larger problem instances by: 1) increasing
the number of mission points, and 2) expanding the road
network. We generate test cases for configurations: U60G20
(60 UAV and 20 ground points) and U75G25 (75 UAV and
25 ground points). The policy trained on U45G15 is applied
to these larger instances to gauge its adaptability to more
complex and large scenarios.

TABLE II: Performance across larger scenarios

Method U60G20 U7525
Obj.

(min.)
Time
(sec)

Risk
(%)

Obj.
(min.)

Time
(sec)

Risk
(%)

Ra-DRL (greedy, δ=0.05) 264 1.55 0.03 265 1.68 0.04
Ra-DRL (1024, δ=0.05) 250 8.38 0.05 250 9.74 0.03
Ra-DRL (10240, δ=0.05) 244 84.56 0.07 245 96.5 0.06
Ra-DRL (greedy, δ=0.1) 265 1.32 0.06 266 1.66 0.05
Ra-DRL (1024, δ=0.1) 250 8.6 0.10 250 9.85 0.10
Ra-DRL (10240, δ=0.1) 244 86.7 0.12 245 98.3 0.11
Ra-NN (γ=60%) 676 0.27 0.14 790 0.48 0.22
Ra-NN (γ=40%) 632 0.26 0.49 708 0.47 0.59
Ra-NN (γ=20%) 596 0.25 0.76 673 0.45 0.80

Table II shows that the trained risk-aware policy effec-
tively maintains risk thresholds in larger problem instances
(U60G20 and U75G25), even though it is originally trained
on U45G15. Sampling-based decoding results in approxi-
mately 5% shorter mission times compared to greedy de-
coding but at significantly higher computational cost, similar
to the trends observed in Table I. Both δ = 0.05 and δ =
0.1 models manage risk well, demonstrating scalability and
robustness, with slight deviations in the N = 10240 sampling
strategy. Mission costs remain similar across risk thresholds.
Larger sampling sizes (10240 vs. 1024) provide minimal
mission time improvements but greatly increase compu-
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Fig. 3: Gazebo deployment: (i) (a) Mission routes and (c) fuel consumption profile with Ra-DRL(N=1024, δ = 0.10) policy,
and (b) mission routes and (d) fuel consumption profile with Ra-DRL(N=1024, δ = 0.05) policy. Animation can be found at
http://tiny.cc/jg6mzz (ii) Autonomous UAV landing on the UGV for recharging (iii) The simulation architecture for UAV-
UGV cooperative mission.

tational time, consistent with results for smaller problem
instances. The Ra-NN baseline shows a higher failure rate
and significantly longer mission times compared to our Ra-
DRL policies, underscoring the effectiveness of the RL-based
approach. Using curriculum learning, we can fine-tune any
pretrained model for lower risk thresholds in fewer training
epochs (e.g., δ = 0.05 models can be used for warmup when
training for δ = 0.03). More details and route animations are
available in our repository at http://tiny.cc/jg6mzz.

V. EXPERIMENTS

In this section, we deploy the proposed risk-aware UAV-
UGV collaborative routing model in the Gazebo simulation
environment to evaluate its performance and risk mitigation
capabilities. The simulation involves collaboration between a
Clearpath Husky UGV and a custom quadrotor UAV, focus-
ing on task completion, energy consumption, and recharging
operations.
1. UGV platform: The Clearpath Husky UGV is equipped
with a Hokuyo UST10 Laser Scanner, Intel RealSense cam-
era, GPS module, BlackflyS camera, and IMU for localiza-
tion. The UGV navigates at a speed of 0.5 m/s, using its
sensor suite for obstacle detection and navigation.
2. UAV platform: A custom-built quadrotor UAV (2.3 kg)
with a rear-facing camera, IMU, GPS, and range sensor flies
at 3.25 m/s with a maximum fuel level of 22 kJ. The UAV’s
stochastic energy consumption model is integrated into the
UAV model.
3. Environment model: Wind velocity, as described earlier,
simulates realistic ground-level conditions with an average
speed of 2.5 m/s. Dynamic perturbations in wind speed and
direction are introduced to mimic unpredictable patterns,
challenging the UAV’s stability and stochastic energy con-
sumption.
4. Control architecture: The simulation runs on an Intel
Core i9 system with Ubuntu 20.04 and ROS Noetic. The
UAV and UGV communicate via the ROS Master. The risk-
aware policy is implemented in Python, generating mission
plans based on mission points, wind data, and real-time
UAV-UGV positions. The UAV is controlled via PX4 SITL
using MAVLink through MAVROS, while the Husky UGV

uses gmapping SLAM for navigation (see Fig. 3iii). For
precise UAV landing, vision based autonomous landing is
employed (see Fig. 3ii), with the UGV recharging the UAV
upon successful landing. The implementation code can be
found at http://tiny.cc/jg6mzz.

In Gazebo, we deploy the Ra-DRL(1024, δ = 0.05) and
Ra-DRL(1024, δ = 0.1) policies on the UAV-UGV system
at Baylands Park area with 12 mission points. The Ra-
DRL(δ = 0.05) policy results in a safer route with 4 recharg-
ing rendezvous, completing the mission in 12 minutes. In
contrast, the Ra-DRL(δ = 0.1) policy finishes in 7 minutes
with only 2 recharging instances, but the UAV’s fuel drops
to 11% of capacity, compared to 22% for the safer policy
(see Fig. 3i).

VI. CONCLUSIONS AND FUTURE WORK

In this study, we introduce a risk-aware deep reinforce-
ment learning (Ra-DRL) framework that leverages a trans-
former network with multi-head attention layers to solve
the UAV-UGV cooperative routing problem under stochastic
fuel consumption. Our approach efficiently optimizes UAV-
UGV routes while managing risk thresholds, to minimize
mission time and prevent UAV energy depletion failures.
The transformer architecture comprising an encoder for
generating input embeddings and a state-aware decoder for
sequential decision-making, facilitates effective collaboration
between the UAV and UGV. The evaluation of our Ra-DRL
framework demonstrates several key accomplishments: 1) It
outperforms nearest-neighbor heuristic baselines by 45-60%
in solution quality and exhibits superior risk management,
achieving a more favorable risk-cost tradeoff. 2) It shows
strong generalization across larger and more complex prob-
lem instances, consistently delivering high-quality solutions.
3) We successfully deploy the framework in a Gazebo-ROS-
SITL environment, incorporating real-world vehicle dynam-
ics, proving its viability for realistic mission planning. For fu-
ture work, we plan to deploy our framework in outdoor real-
world settings, addressing vehicle dynamics and real-time
constraints. We also aim to explore metaheuristic baselines
and extend the framework for multi-UAV-UGV collaboration
to enhance performance in diverse mission scenarios.

http://tiny.cc/jg6mzz
http://tiny.cc/jg6mzz
http://tiny.cc/jg6mzz
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