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Abstract—Efficient mission planning for cooperative systems
involving Unmanned Aerial Vehicles (UAVs) and Unmanned
Ground Vehicles (UGVs) requires addressing energy constraints,
scalability, and coordination challenges between agents. UAVs
excel in rapidly covering large areas but are constrained by
limited battery life, while UGVs, with their extended operational
range and capability to serve as mobile recharging stations, are
hindered by slower speeds. This heterogeneity makes coordina-
tion between UAVs and UGVs critical for achieving optimal
mission outcomes. In this work, we propose a scalable deep
reinforcement learning (DRL) framework to address the energy-
constrained cooperative routing problem for multi-agent UAV-
UGV teams, aiming to visit a set of task points in minimal
time with UAVs relying on UGVs for recharging during the
mission. The framework incorporates sortie-wise agent switching
to efficiently manage multiple agents, by allocating task points
and coordinating actions. Using an encoder-decoder transformer
architecture, it optimizes routes and recharging rendezvous for
the UAV-UGV team in the task scenario. Extensive computational
experiments demonstrate the framework’s superior performance
over heuristic methods and a DRL baseline, delivering significant
improvements in solution quality and runtime efficiency across
diverse scenarios. Generalization studies validate its robustness,
while dynamic scenario highlights its adaptability to real-time
changes with a case study. This work advances UAV-UGV cooper-
ative routing by providing a scalable, efficient, and robust solution
for multi-agent mission planning. More details are available on
the website: https://sites.google.com/view/muavugvdrl.

I. INTRODUCTION

In applications like disaster response, search-and-rescue op-
erations, and environmental monitoring, rapid and persistent
coverage of critical areas is essential. Unmanned Aerial Vehi-
cles (UAVs) play a pivotal role in these tasks, providing real-
time surveillance of disaster zones, wildfire perimeters, and
critical infrastructure [1–3]. Their ability to access otherwise
unreachable areas, such as dense forests, mountainous terrains,
and urban rooftops, makes them invaluable for time-sensitive
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Fig. 1: Illustration of the fuel-constrained UAV-UGV coopera-
tive routing problem. UAV-specific task points (red hollow cir-
cles) and ground task points (blue solid circles) must be visited,
with rendezvous points (black circles) for UAVs recharging on
the UGVs. The goal is to plan UAV and UGV routes (red dashed
and blue solid paths, respectively) to minimize total mission
time while adhering to UAV fuel and UGV speed constraints.

tasks. However, UAVs are fundamentally limited by their bat-
tery capacity, requiring frequent recharges thereby disrupting
sustained mission coverage [4].

To mitigate this limitation, Unmanned Ground Vehicles
(UGVs) have emerged as complementary agents in multi-
agent systems. UGVs, capable of traversing road networks
and operating for extended durations, act as mobile recharging
stations for UAVs, extending their operational range and en-
abling uninterrupted mission execution. The synergy between
UAVs and UGVs combining the agility of aerial operations
with the endurance and logistical support of ground vehicles
has shown immense potential for improving mission efficiency
across diverse applications [5]. However, this demands intelli-
gent coordination to optimize routes, synchronize recharging
schedules, and ensure all task points are visited in an efficient
manner.

The coordination of UAVs and UGVs in such cooperative
missions presents unique challenges. UAVs must balance fuel
consumption and mission routing (i.e., the order of task
point visits) while timing their rendezvous with UGVs for
recharging. UGVs, meanwhile, are constrained by their slower
speeds and reliance on road networks. In multi-agent systems,
these challenges are amplified as multiple UAVs and UGVs
must collaboratively plan routes and synchronize operations
for seamless task execution. Traditional heuristic-based or
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hierarchical optimization approaches often struggle to scale
with the increasing complexity and dynamic nature of these
problems. This highlights the need for a comprehensive coop-
erative routing framework that optimally plans routes for UAVs
and UGVs while synchronizing recharging rendezvous. Such a
framework must account for the heterogeneous capabilities of
these agents, balance their operational constraints, and deliver
robust, scalable solutions that adapt to real-time changes,
ensuring efficient and timely mission completion.

A. Related works

The cooperative routing problem has been extensively ex-
plored within the fields of transportation [6] and robotics
[7, 8], with various strategies proposed to address its inher-
ent complexity. These approaches can be categorized into
traditional optimization techniques, heuristic methods, and
learning-based frameworks, including reinforcement learning
for cooperative multi-agent systems. Traditional methods often
model UAV-UGV cooperative routing as extensions of the
Vehicle Routing Problem (VRP) or the Traveling Salesman
Problem (TSP). In transportation, the Truck-Drone Delivery
Problem, a specialized form of VRP with Drones (VRP-
D) or TSP with Drones (TSP-D) has been formulated using
Mixed Integer Linear Programming (MILP) to derive optimal
solutions [9, 10]. MILP provides a rigorous mathematical
framework for integrating energy constraints, time windows,
and heterogeneous vehicle characteristics. However, MILP’s
applicability to large-scale, real-time problems is severely
limited due to its computational complexity, as the number
of nodes increases [11]. Consequently, while MILP offers
theoretical optimality, it becomes impractical for dynamic and
complex scenarios.

To address these scalability challenges, heuristic and meta-
heuristic methods have been widely adopted as practical al-
ternatives. Techniques such as Genetic Algorithms (GA) [12],
Tabu Search (TS) [13], and Simulated Annealing (SA) [14]
have shown effectiveness in approximating optimal solutions
within reasonable computation times. Adaptive approaches,
including Iterated Local Search [15] and Adaptive Large
Neighborhood Search [16], further enhance solution quality by
iteratively exploring and refining the solution space, balancing
exploitation and exploration. In the context of UAV-UGV
systems, heuristic methods often employ multi-echelon or
multi-level optimization frameworks to simplify coordination
complexities. For instance, strategies like “UGV first, UAV
second” decompose the problem into manageable subprob-
lems, where rendezvous points are identified using Minimum
Set Cover (MSC) formulations and routes are optimized
through MILP or metaheuristic algorithms [4, 17, 18]. Seyedi
et al. [19, 20] introduced a heuristic for cyclical patrolling
by uniform UAV-UGV teams, leveraging spatial partitioning
to optimize area coverage. While effective for continuous
surveillance, this method may not be well-suited for scenar-
ios involving discrete task points. Despite their practicality,
heuristic methods often require significant domain-specific
customization, limiting their adaptability to diverse problem

settings. Furthermore, their performance in dynamic, real-
time scenarios, particularly in large-scale multi-agent systems
remains constrained, underscoring the need for more robust
and scalable solutions.

In recent years, learning-based approaches have emerged
as promising alternatives for solving complex routing tasks.
Deep Reinforcement Learning (DRL) has shown the capability
to learn optimal policies through environment interaction,
eliminating reliance on handcrafted heuristics [21–24]. Vinyals
et al. [22] introduced the Pointer Network, which leveraged
attention mechanisms to solve the Traveling Salesman Problem
(TSP). This framework was later extended by Bello et al.
[25], who incorporated reinforcement learning to tackle more
complex VRP and TSP variants. Kool et al. [26] advanced
the field further by proposing an encoder-decoder transformer
architecture with multi-head attention layers, achieving state-
of-the-art performance on VRP tasks while surpassing tra-
ditional heuristics. Zhang et al. [27] and Fuertes et al. [28]
developed DRL-based frameworks using transformer networks
for multi-agent cooperative routing, demonstrating scalabil-
ity and efficiency. However, most existing DRL frameworks
focus on single-agent or homogeneous multi-agent systems,
often overlooking scenarios with heterogeneous agents, such
as UAV-UGV systems, which perform distinct roles. Wu et
al. [29] applied DRL to optimize truck-drone delivery tasks
but restricted their model to one-truck-one-drone systems.
Fan et al. [21] proposed a DRL-based approach for energy-
constrained UAVs, assuming fixed recharging locations, which
limits flexibility. Furthermore, Ramasamy et al. [30, 31] em-
phasized the importance of synchronizing recharging instances
in cooperative routing, highlighting their impact on mission
efficiency.

This paper addresses the existing gaps in UAV-UGV cooper-
ative routing by proposing a DRL framework that leverages an
encoder-decoder transformer architecture with policy gradient
method. The framework is designed to optimize coordinated
routing for energy-constrained UAVs and UGVs, with UGVs
acting as mobile recharging stations. It aims to minimize the
total mission time while ensuring efficient synchronization
between UAVs and UGVs. The primary contributions of this
work are as follows:

1. We formulate the energy-constrained multi-UAV-UGV co-
operative routing problem as a bi-level optimization problem
for approximate heuristic solutions and as a Markov Decision
Process (MDP) to solve it through DRL using an encoder-
decoder-based transformer architecture with attention layers.
2. We introduce a one-agent-per-sortie agent selection strategy,
enabling the decentralized framework to scale across varying
team sizes and configurations. The approach is evaluated
on diverse problem sizes and distributions, showcasing its
generalization capability.
3. We compare our method against heuristic-based bi-level
optimization strategies for cooperative routing and a learning-
based baseline with an alternative agent selection strategy. Our
framework demonstrates superior solution quality and runtime



efficiency, emphasizing its effectiveness..
4. Through a case study, we demonstrate the utility of our
framework for online route planning, adapting to dynamically
appearing task points and changing team configurations dur-
ing the mission.

II. PROBLEM FORMULATION

A. Problem Overview

In scenarios requiring rapid assessment, such as disaster relief,
infrastructure monitoring, or environmental surveys, points
of interest are often dispersed across a region. These points
may include locations accessible via road networks (e.g.,
near roads) or remote and inaccessible areas (e.g., forests,
mountainous terrain, or rooftops). To address this challenge,
a heterogeneous team of agents with UAVs and UGVs can
be deployed. UAVs, with their high mobility and speed, can
efficiently access both accessible and remote locations but
are constrained by limited battery capacity. Conversely, UGVs
operate exclusively on road networks at slower speeds, serving
as mobile charging platforms to extend the operational range of
UAVs (see Fig. 1). By effectively coordinating the operations
of UAVs and UGVs, it is possible to maximize mission
efficiency and ensure complete coverage of all task points.

The problem can be defined as follows: Given a set of task
points M = {m0,m1, . . . ,mn}, partitioned into two subsets:
ground points Mg , accessible by both UGVs and UAVs, and
aerial points Ma, accessible only by UAVs and a heteroge-
neous system comprising UAVs A = {ua

j | j = 1, . . . ,M}
and UGVs G = {ug

i | i = 1, . . . , N}, the goal is to determine
optimal routes for all agents to visit every task point in
the shortest possible time by any of the UAVs. UAVs, with
higher speeds (va) but limited fuel capacity Fa, periodically
rendezvous with UGVs at ground points for recharging. UGVs,
operating at slower speeds (vg) along road networks, provide
logistical support necessary for UAVs to sustain prolonged
operations.

Assumptions 1: The problem is modeled under the follow-
ing assumptions:

• All UAVs and UGVs initiate the mission from the same
starting depot.

• UAVs require a constant recharging time TR during each
rendezvous with a UGV.

• The mission starts when any of the UAVs or UGVs
departs from the depot and concludes when all task
points have been visited, with UAVs completing their
final recharge on any UGV.

• A UGV can provide recharging services to only one UAV
at a time.

Problem 1: The objective is to develop a coordinated strat-
egy for UAVs and UGVs to minimize the total mission time.
UAVs must operate within energy constraints and periodically
recharge by rendezvousing with UGVs, which adhere to speed
constraints. The strategy must ensure that all task points are
visited in minimum time with the coordination between UAVs
and UGVs.

Challenges 1: The problem presents several challenges due
to the heterogeneity of the agents and the operational con-
straints:

• Designing optimal routes for UAVs and UGVs to mini-
mize overall mission time while addressing their opera-
tional energy and mobility constraints.

• Synchronizing UAV-UGV recharging events to avoid de-
lays while balancing safety (failure because of fuel deple-
tion) and efficiency. Frequent recharging ensures safety
but prolongs mission time, whereas fewer recharges re-
duce time but risk fuel depletion and mission failure.

• Managing the interdependence of UAV and UGV routes
to ensure seamless coordination, particularly in schedul-
ing rendezvous points and allocating recharging tasks.

B. MDP Formulation

This cooperative routing problem is modeled as a sequential
decision-making process, where agents iteratively select task
points to visit or recharge. The problem is formalized as a
Markov Decision Process (MDP), characterized by the tuple
⟨S,A, T ,R⟩, with components defined as follows:

1) The state space S represents the environment’s status
at any decision step. At time t, the state st ∈ S is defined
as st = (pt, ft, qt), where pt = {xt, yt} indicates the current
position of the active agent (i.e., the agent taking action), ft
denotes its remaining fuel level, and qt = {xi, yi, dit} encodes
the coordinates and visitation status of all task points mi ∈ M.
Here, dit = 1 if task point mi has been visited, and dit = 0
otherwise.

2) The action space A includes all feasible task points that
the active agent can select at each decision step. Actions at ∈
A involve either visiting a task point or recharging at a ground
point. Ground points Mg serve dual purposes: visiting and
recharging. The action space is thus: A = {Mg (recharging)∪
Mg (visiting)∪Ma (visiting)}. Infeasible actions are masked
based on the current state st, ensuring only valid options are
available.

3) The reward function rt = r(st, at) is defined as the
travel time tij between two task points i and j, plus a fixed
recharging time TR: rt = tij + TR. Here, TR = 0 for visiting
actions. This per-step reward accumulates to form the overall
mission cost. The return R measures the total mission cost
and is defined as the maximum cumulative time taken by any
agent and a penalty P = 800 is added in case of mission
failure, yielding the final return: R = max

a∈A∪G

∑T
t=0 r

(a)
t + P.

4) The transition function T governs how the environment
evolves from st to st+1 = (pt+1, ft+1, qt+1) based on action
at. The agent’s position is updated to the selected node:
pt+1 = {xt+1, yt+1} ≡ at. The fuel level is updated as
ft+1 = ft − fij for visiting actions or reset to Fa for
recharging. The visitation status updates as dit+1 = 1 for the
selected point mi. Agent switching is governed by a sortie-
wise selection strategy (see Section IV). All transitions are
deterministic.

Objective:
The goal of the DRL agent is to learn a policy πθ that



minimizes the expected return R, corresponding to the worst-
case mission time across all agents. Formally:

π∗ = argmin
π

Eπ [R] = argmin
π

Eπ

[
max

a∈A∪G

T∑
t=0

r
(a)
t + P

]
This formulation aligns with the cooperative routing objective:
to minimize total mission completion time.

III. HEURISTICS FRAMEWORK

In this section, we formulate the multi-agent cooperative rout-
ing problem using a bilevel optimization framework, which
serves as a benchmark that can be addressed using heuristic
methods with standard solvers.

A. Bilevel Optimization Framework

The bilevel optimization framework, also referred to as a
multi-echelon strategy, provides a hierarchical approach for
solving heterogeneous multi-agent cooperative routing prob-
lems. This methodology decomposes the problem into two
interdependent levels, often guided by sequencing strategies
such as ‘UGV first, UAV second,’ ‘UAV first, UGV second,’
or other prioritization routines [4, 17, 18]. At the first (outer)
level, the route for one type of vehicle is planned while
considering predefined mission parameters and environmen-
tal constraints. This planned route serves as a reference or
constraint for the second (inner) level, where the routing
of the other vehicle type is optimized. The second level
incorporates the interactions between the vehicles, addressing
critical factors such as task allocation, temporal coordination,
and spatial synchronization. By dividing the problem into
manageable subproblems, this hierarchical approach simplifies
the complexity of multi-agent coordination and enables the
application of heuristic or optimization methods tailored to
the unique operational characteristics and constraints of each
vehicle type.

For the multi-UAV-UGV cooperative routing problem, we
adopt the ‘UGV first, UAV second’ strategy [32]. In the outer
level, the routes for UGVs are planned, taking into account
their slower speeds, restriction to road networks, and role as
mobile recharging stations. In the inner level, UAV sorties are
optimized based on the UGVs’ preplanned routes, ensuring
efficient energy management and synchronized recharging
schedules. Both the stages are discussed in detail:

1) Outer level: Determining UGVs’ route sorties
The UGVs’ operational routes within the road network are

determined through a two-step hierarchical process. Initially
in the first phase, a Minimum Set Cover (MSC) problem
[33] is solved to identify the essential refueling stops Re

required to ensure that all task nodes M are accessible to
UAVs from the road network following the work of [17]. The
task nodes represent target locations, while the UAVs’ fuel
capacity Fa defines the coverage radius. The MSC solution
provides the minimum set of refueling stops that guarantee
UAV coverage for all task nodes. Once the refueling stops
Re are identified, the UGV routes are optimized by solving
a Traveling Salesman Problem (TSP). This step determines
the most efficient sequence for the UGV to traverse the

refueling stops, starting and ending at a fixed depot. The TSP
optimization minimizes the UGV’s total travel distance and
provides an ordered route for visiting the refueling stops. In the
second phase of the outer level, the problem is divided into n
independent subproblems, where n corresponds to the number
of refueling stops (including the depot). The UGV is assumed
to travel only between two consecutive refueling stops within
each subproblem. Each task point is assigned to its nearest
refueling stop (including the depot) within the coverage radius.
In each subproblem, the starting refuel stop acts as the source
node, while the next refuel stop serves as the destination node.
UAV task points associated with the destination refuel stop
are allocated to the corresponding subproblem. This division
ensures that each subproblem contains distinct task points and
well-defined UGV traversal paths. Further details about the
MSC formulation and subproblem division are provided in
the Appendix.

2) Inner level: Determining UAVs’ route sorties
Following the division of the problem into subproblems

and the allocation of tasks, each subproblem is modeled as
an Energy-Constrained Vehicle Routing Problem with Time
Windows (E-VRPTW). In this formulation, the source and des-
tination refueling stops establish time windows to synchronize
the operations of UAVs and UGVs. The time window for the
destination refueling stop is calculated based on the UGV’s
travel time to that stop. As UAVs can only land on UGVs
after their arrival at the refuel stop, the lower bound of the
time window is given by:

tr =

[
∥xr − x0∥

vg

]
, ∀ (x0, xr) ∈ S

where xr denotes the destination refueling stop coordinates,
x0 represents the source refueling stop in subproblem S, and
vg is the UGV’s speed. If the UGVs arrive at the refuel
stops earlier than the UAVs, they are assumed to wait for
the UAVs to land for recharging. To account for multiple
recharging events, the destination refuel stop and its time
window are duplicated, forming a set of refuel stops Xr where
each duplicated instance corresponds to a separate recharging
event (xr ∈ Xr).

The E-VRPTW formulation represents the problem as a
graph-based model where task nodes Ms within each subprob-
lem, along with the set of refuel stops Xr, form the vertices
of the graph: V = Ms ∪ Xr. Edges between nodes i and
j are defined as: E = {(i, j) | i, j ∈ V, i ̸= j}, with a
non-negative arc cost tij representing the travel time between
nodes. Decision variables xijk indicate whether UAV k travels
from vertex i to vertex j. UAVs begin their routes at the source
depot S, visit task points, and recharge at the designated refuel
stop xr ∈ Xr. The objective function, as defined in Eq. 1,
minimizes the total travel time for all UAVs. Eq. 2 ensures that
each task point is visited exactly once by any UAV. The fuel
constraints are enforced through Eq. 3, which mandates that
UAVs are fully recharged at the destination refuel stop, and
Eq. 4, ensures that UAV fuel levels remain within operational
limits throughout the mission. Eq. 5 governs fuel consumption



and prevents subtour formation by ensuring that the fuel level
decreases according to the travel distance. Time constraints are
introduced through Eq. 6, which ensures that UAVs respect the
time windows for refueling stops, and Eq. 7, which updates
the UAVs’ arrival time at each node based on travel time.
The flow conservation constraint in Eq. 8 guarantees route
continuity by enforcing that every UAV entering a node must
also exit from it. The starting and ending conditions of UAV
routes are stated in Eqs. 9-10, ensuring that UAVs initiate
their journeys from the depot and conclude them at a refueling
stop. Finally, Eq. 11 enforces feasibility conditions, preventing
UAVs from selecting actions that would result in infeasible
fuel consumption. These constraints collectively ensure that
the UAVs operate efficiently while adhering to energy lim-
itations, mission constraints, and coordination requirements
within the multi-UAV cooperative routing framework.

Objective:

min
∑
k∈A

∑
i∈V

∑
j∈V

tijxijk (1)

Constraints: ∑
k∈A

∑
j∈V

xijk = 1, ∀i ∈ Ms (2)

fa
i,k = Fa, ∀i ∈ Xr, k ∈ A (3)

0 ≤ fa
i,k ≤ Fa, ∀i ∈ V \ {S,Xr}, k ∈ A (4)

fa
j,k ≤ fa

i,k − (fa
ijxijk) + L1(1− xijk),

∀i, j ∈ V \ {S,Xr}, k ∈ A
(5)

ti,k ≥ tr,i, ∀i ∈ Xr, k ∈ A (6)

tj,k ≥ ti,k + tijxijk − L2(1− xijk), ∀i, j ∈ V, k ∈ A (7)

∑
j∈V

xijk =
∑
j∈V

xjik, ∀i ∈ V, k ∈ A (8)

∑
j∈V

xS,j,k = 1, ∀k ∈ A (9)

∑
i∈V

xi,Xr,k = 1, ∀k ∈ A (10)

xijk = 0, if fij > fi,k, ∀i, j ∈ V, k ∈ A (11)

The UAVs’ route sorties are derived by solving the E-
VRPTW formulation using standard optimization solvers.
These solutions provide the sortie end times, denoted as tR,
along with the designated UGVs facilitating the recharging
operations. The rendezvous times are subsequently used to
calculate both the UGVs’ waiting times at refueling stops and
the UAVs’ waiting times for recharging, as each UGV can
accommodate only one UAV at a time during the recharging
process. At each rendezvous point, the UAV spends a fixed
recharging time TR to complete recharging before resuming

its assigned mission. After determining the UAV and UGV
route sorties for a specific subproblem, the process advances
to the next subproblem. This iterative approach continues se-
quentially until all subproblems have been addressed, ensuring
that every task point is visited and the mission objectives are
successfully accomplished. A sample solution of UAVs’ route
sorties is shown in the Appendix.

To establish a non-learning baseline for our cooperative
routing problem, we adopt the bilevel optimization frame-
work detailed earlier. This approach leverages the Google
OR-Tools™ CP-SAT solver [34], which employs constraint
programming (CP) techniques to solve the E-VRPTW. To
enhance the solver’s capability and reduce the likelihood of
convergence to local optima, the solver can incorporate differ-
ent metaheuristic methods: 1) Guided Local Search (GLS),
2) Tabu Search (TS), and 3) Simulated Annealing (SA).
These metaheuristics improve the solver’s ability to explore the
solution space, producing high-quality approximations within
significantly shorter runtimes compared to traditional Mixed
Integer Linear Programming (MILP) approaches. This baseline
serves as a robust benchmark against which the performance
of our proposed DRL-based framework is evaluated.

IV. REINFORCEMENT LEARNING FRAMEWORK

This section introduces a Deep Reinforcement Learning (DRL)
methodology for cooperative routing of multiple UAVs and
UGVs. We propose an encoder-decoder transformer-based
architecture combined with a reinforcement learning algorithm
to learn an optimized routing policy πθ, where θ represents the
model’s trainable parameters. Starting from an initial state s0,
the policy πθ selects actions at at each timestep t, determining
whether the active agent visits a task point or performs a
recharging operation based on the current environment state
st. This iterative decision-making continues until the terminal
state sT is reached. The output of the trained policy forms
a cooperative route T , comprising a sequence of visited task
points and coordinated recharging events between UAVs and
UGVs. The routing policy is represented as a joint probability
distribution:

P(T ; θ) =

T−1∏
t=0

πθ(at|st) (12)

Here, T is the total number of timesteps until mission termi-
nation.

A. Encoder-Decoder Transformer Architecture

The routing policy πθ leverages an encoder-decoder trans-
former architecture [35], recognized for its robust performance
in sequential data processing tasks such as natural language
processing, computer vision, and vehicle routing problems
[36–38]. This architecture is adapted to process the cooperative
routing problem, as illustrated in Fig. 3. The encoder gener-
ates high-dimensional embeddings of task points, capturing
essential spatial and contextual relationships. The decoder
subsequently selects the active agent and determines its actions
based on contextual information derived from the current state.
This transformer-based approach efficiently models complex
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Fig. 3: Architecture of the proposed transformer network. The encoder consists of three attention layers that process raw input data to
generate node embeddings. The decoder employs an agent selection strategy to determine the active agent type (UAV or UGV) and
constructs a context vector based on the current state of the selected agent. It uses the input embeddings and the context vector to
determine action for the selected active agent.

interactions between agents and task points, enabling the
learning of an optimal routing policy for the UAV-UGV
system.

1) Encoder

The encoder utilizes a multi-head attention (MHA) mech-
anism to transform raw features of the problem instance into
high-dimensional representations. The input to the encoder
is a 3D vector representation of task points, denoted as
X = {oi = (xi, yi, bi) | ∀mi ∈ M}, where (xi, yi) are the
normalized coordinates of a task point, and bi is a binary
indicator denoting whether mi is a ground point eligible for
UAV-UGV rendezvous (bi = 1 if mi is ground point and
bi = 0 otherwise). Each input vector is initially projected
into an embedding space using a linear transformation, h0

i =
W 0oi + b0. Here, W 0 and b0 are trainable parameters, and
the embedding dimension is set to dh = 128. The initial
embeddings h0

i are processed through L = 3 attention layers
to capture complex task point relationships, yielding the final
embeddings hL

i .

Each attention layer l ∈ {1, 2, . . . , L} comprises an MHA
module, residual connections, a feed-forward (FF) network
with ReLU activation, and batch normalization (BN). Within
the MHA module, the Query, Key, and Value vectors are
computed from the node embeddings of the previous layer. The
dimensions of the Query/Key and Value vectors are defined as
dq = dk = dv = dh

M , where M = 8 is the number of attention
heads. For each attention head j ∈ {1, 2, ...,M}, attention

scores Zl
j are computed using the following equations:

qli,j = hl−1
i W l

q,j , kli,j = hl−1
i W l

k,j , vli,j = hl−1
i W l

v,j

(13)

Zl
j = softmax

(
qli,jk

l
i,j

T

√
dk

)
vli,j (14)

MHA(hl−1
i ) = Cat(Zl

1, Z
l
2, . . . , Z

l
M ) (15)

Here, qli,j , kli,j , and vli,j correspond to the Query, Key,
and Value for attention head j, respectively. The trainable
parameter matrices W l

q,j ∈ Rdh×dq , W l
k,j ∈ Rdh×dk , and

W l
v,j ∈ Rdh×dv govern these computations. The outputs of all

attention heads are concatenated to produce the final output of
the MHA module, MHA(hl−1

i ). The MHA output is passed
through a feed-forward (FF) network with a ReLU activation
function, followed by residual skip connections and batch
normalization (BN) layers. These operations are summarized
as:

ĥl
i = BN(hl−1

i + MHA(hl−1
i )) (16)

hl
i = BN(ĥl

i + FF(ReLU(ĥl
i))) (17)

After processing through all attention layers, the final node
embedding hL

i is obtained, which serves as input to the
decoder for subsequent processing.

2) Decoder
At each decision-making step t, the decoder executes two

primary tasks: it first identifies the active agent using an agent
selection strategy, and subsequently determines the task point
to visit or perform recharging action using an action selection
strategy.

Agent Selection Strategy:
The agent selection strategy adopts a sortie-wise agent

switching mechanism to improve coordination. This approach
allows each agent to complete an entire sortie (defined as
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the sequence of actions from one recharge event to the
next), before switching to another agent. It refines the one-
agent-per-decoding-step strategy proposed previously in [21],
transitioning from alternating agents at every decision point to
a more structured sortie-based routine.

At the beginning of the mission, UAVs are given priority
as active agents. The UAV with the smallest time dimension
value is selected first. This UAV completes its sortie by
visiting multiple task points and concluding at a refueling
node. Subsequently, the next UAV, determined by the smallest
remaining time dimension value, is selected to begin its sortie.
This process continues until all UAVs have completed their
sorties.

Once all UAV sorties are completed, the UGVs are pri-
oritized as active agents. The UGV with the smallest time
dimension value is selected first to ensure efficient scheduling.
In scenarios with multiple UGVs, UAV assignment becomes
critical to determine which UAVs each UGV will service. A
greedy UAV assignment policy is employed, where UAVs are
assigned to UGVs based on proximity. Specifically, UAVs
whose landing locations are closest to a UGV’s current po-
sition are allocated to that UGV. Each UGV then executes
its sortie by visiting its assigned UAVs’ refueling points and
recharging the respective UAVs. The sequence in which refu-
eling points are visited within a UGV’s sortie is determined
by the action selection strategy. After all UGV sorties are
completed, the UAVs are selected again for their subsequent
round of sorties, maintaining the same time-based prioriti-
zation. This alternating process where UAVs complete their
sorties sequentially, followed by UGVs continues iteratively
until all task points are visited, completing the mission as
illustrated in Fig. 4.

We can understand this agent selection mechanism with an
example of a 3 UAVs–2 UGVs system. Suppose UAV0 has a
time dimension value of t = 105min, UAV1 has t = 100min,
UAV2 has t = 110min, UGV0 has t = 50min, and UGV1
has t = 60min. The agent selection sequence would prioritize
UAV1 first, followed by UAV0, and then UAV2. Once all UAV
sorties are completed, UGV0 is selected next, followed by

UGV1. If the greedy UAV assignment policy assigns UAV0
and UAV2 to UGV0 (based on proximity) and UAV1 to UGV1,
UGV0 will visit and recharge UAV0 and UAV2 (with the order
determined by the action selection strategy), while UGV1 will
recharge UAV1. This strategy ensures efficient synchronization
between UAVs and UGVs, reducing idle time and optimizing
overall mission performance.

Action Selection Strategy:
Once the active agent is selected, the decoder determines the

probability of selecting each available node as an action based
on the encoder’s node embedding hL

i and a context vector
hc
t , which encapsulates the current scenario state. Separate

strategies are employed for UAVs and UGVs to construct the
context vector based on their unique operational characteris-
tics.

For a UAV, the context vector hc
t is constructed using the

UAV’s current position embedding hL
j,t, where j ∈ pt denotes

the current position of the agent, the mission status dit, the
UAV’s fuel level ft, and the encoder’s node embeddings hL

i .
Initially, the node embedding hL

i is concatenated with the
mission status dit, and the resulting vector is linearly projected.
A mean graph embedding h̄t is then computed by averaging
these projections across all nodes. Additionally, the UAV’s
current position embedding hL

j,t is concatenated with its fuel
level ft, and this concatenated vector is linearly projected. The
final context vector hc

t is obtained by combining the mean
graph embedding and the projected UAV state, as follows:

h̄t =
1
n

∑n
i=0(Cat(hL

i , d
i
t)Wg) (18)

hc
t = h̄t + Cat(hL

j,t, ft)Wc (19)

Here, Wg and Wc are tunable weight matrices for linear
projection, and Cat denotes the concatenation operation. This
formulation ensures that the context vector captures both the
global state of the mission and the local status of the active
agent, thereby facilitating accurate decision-making.

Once the context vector hc
t is constructed, the decoder uses

a multi-head attention (MHA) mechanism to calculate the
glimpse vector hg

t . The context vector is treated as the Query,
while the encoder’s node embeddings serve as the Key and
Value, as expressed below:

hg
t = MHA(hc

t , hL
i W

g
k , hL

i W
g
v ) (20)

Here, W g
k and W g

v are tunable weight matrices for project-
ing the node embeddings. The resulting glimpse vector hg

t is
subsequently used as the Query qt, while the encoder’s node
embeddings hL

i serve as the Key kt in a single-head attention
mechanism. This mechanism computes the compatibility score
ht for each node, which determines the likelihood of select-
ing the corresponding node as action. Importantly, infeasible
actions are masked based on logical constraints derived from
the current scenario state. The masking criteria include: 1)
previously visited task points (for visiting actions), 2) task
points unreachable with the current fuel level of the UAV
and 3) task points that would prevent the UAV from reaching
a refuel stop after visiting. The compatibility scores ht are



computed as follows:
qt = hg

tWq, kt = hL
i Wk (21)

ht =

Cp · tanh
(

qtk
T
t√
dq

)
if feasible

−∞ otherwise.
(22)

Here, Wq and Wk are trainable weight matrices, and
Cp = 10 is a clipping parameter to encourage exploration
during training. Finally, the probabilities of selecting actions
are derived using the softmax function:

πθ(at|st) = softmax(ht) (23)

In the case of a UGV as the active agent, the decoder
constructs the context vector hc

t by integrating spatial and
temporal information about its assigned UAVs. The UAV
assignments are determined using a greedy UAV assignment
scheme, which assigns UAVs to UGVs based on proximity.
The decoder utilizes the landing locations of the assigned
UAVs, represented by their corresponding node embeddings
from the encoder hL

i , as well as the UAVs’ landing times and
the UGV’s current time.

The process begins by passing the UAVs’ landing time
information through a Leaky ReLU activation function to
generate the landing time embedding hlt

i . Concurrently, the
current time of the active UGV is linearly projected and
processed through a ReLU activation layer to produce the
UGV’s current time embedding ht

ugv . These two embeddings
are combined element-wise to form a unified time vector
htime. Subsequently, the landing location embeddings hloc

i of
the assigned UAVs are concatenated with htime, followed by
a linear projection and ReLU activation to generate the final
context vector hc

t . The computations are as follows:

hlt
i = LeakyReLU(LandingTimeiWlt), ∀i ∈ assigned UAVs,

(24)
ht
ugv = ReLU(CurrentTimeugvWt), (25)

htime = hlt
i + ht

ugv, (26)

hc
t = ReLU(Cat(hloc

i , htime)Wc), (27)

where Wlt, Wt, and Wc are trainable weight matrices, and
Cat represents the concatenation operation.

Once the context vector hc
t is constructed, it is cross-

multiplied with the encoder node embedding hL
i to compute

the vector ht. The resulting vector ht undergoes mean pool-
ing across its second dimension to calculate the probability
distribution over the action space. Similar to the UAV case,
infeasible actions are masked to ensure valid decision-making.
Specifically, only mission nodes where the active UGV’s as-
signed UAVs have landed are considered feasible action nodes.
The probability distribution is computed over this constrained
action space, and an action is selected to determine the task
point where the UGV will go to recharge the UAV at the
specified node.

Following the above process, the decoder selects the active
agent and sequentially determines actions to visit task points or
perform recharging until the mission is completed. We employ

two decoding strategies: a greedy strategy that consistently
selects the action with the highest probability at each decision-
making step, and a sampling strategy that chooses actions
based on their probabilities. During training, we adopt the
sampling strategy to encourage better exploration. In the
evaluation phase, we assess and compare the effectiveness of
both strategies.

B. Training method

The training process, as illustrated in Algorithm 1, employs
the REINFORCE policy gradient method [39] for optimizing
the routing policy. This method uses two neural networks:
the policy network πθ, responsible for calculating the action
probability distribution and sampling actions, and the baseline
network πϕ, which has the same architecture as the policy
network but selects actions greedily, choosing the action with
the highest probability.

During each training iteration, the algorithm computes
routes and their associated rewards for a batch of problem
instances. For the same instances, expected baseline rewards
are determined using the greedy rollout generated by the
baseline network (lines 4-13). The parameters of the policy
network are then updated using the policy gradient method
(lines 14-16). To ensure consistency and improve baseline
accuracy, the parameters of the baseline network ϕ are updated
with those of the policy network after each epoch if the
baseline network performs worse than the policy network
based on a paired t-test (lines 17-19).

By iteratively updating both the policy and baseline net-
works, the training algorithm achieves an optimal routing
policy over time. This iterative process allows the policy
network to continually enhance its decision-making ability
through reinforcement learning, while the baseline network
serves as a comparative benchmark to refine the updates and
guide the learning process effectively.

V. RESULTS

To validate the effectiveness of our proposed Deep Rein-
forcement Learning (DRL) framework for solving the energy-
constrained UAV-UGV cooperative routing problem, we con-
duct extensive computational experiments. These evaluations
compare the framework against baseline methodologies, assess
its robustness through generalization studies, and demonstrate
its practical applicability through a case study involving dy-
namic task variations and dynamic changes in UAV-UGV team
configurations.

A. Dataset Details

The UAV-UGV cooperative routing problem is simulated over
a 20 km×20 km operational area with varying UAV-UGV team
configurations. UAVs operate at a constant speed of va =
10m/s, while UGVs traverse the road network at vg = 4.5m/s.
Each UAV is equipped with a fuel capacity of Fa = 287.7 kJ,
and its fuel consumption follows a profile modeled after [40]:

Pa = 0.0461(va)
3 − 0.5834(va)

2 − 1.8761va + 229.6.

This consumption model corresponds to a maximum flight
endurance of approximately 25 minutes when flying at va =



Algorithm 1: Policy network training using REIN-
FORCE algorithm

Input: Policy network πθ , Baseline network πϕ, epochs E, Number
of batches N , batch size B, episode length T , UAV-UGV
system A,G

Output: Trained policy network π
θ
′

1 for epoch in 1 . . . E do
2 Sample N batches from dataset
3 for iteration in 1 . . . N do
4 for instance b in 1 . . . B do
5 Initialize s0,b at t = 0
6 while t < T do
7 Get action at,b ∼ πθ(at,b|st,b)
8 Obtain reward rt,b and st+1,b

9 t = t+ 1

10 Calculate return Rb

11 Baseline return Rϕ
b from greedy rollout with πϕ

12 Compute gradient:

∇θJ ←
1

B

B∑
b=1

(Rb −Rϕ
b )∇θ log πθ

(
sT,b | s0,b

)
13 Update θ ← θ − α∇θJ

14 if OneSidedPairedTTest(πθ, πϕ) < 0.05 then
15 ϕ← θ

10m/s. The UAV-UGV team begins each mission from a
common depot. UAVs are tasked with visiting task points
located both outside the road network (Ma) and on the road
network (Mg), while UGVs, restricted to the road network,
provide logistical support by recharging UAVs at ground
points. This ensures continuous mission execution. The task
points Ma are uniformly sampled within a 7-kilometer radius
around road points Mg . Although the UGV road network G
remains fixed, the specific road points are randomly selected
for each instance to introduce variability across simulations.
The framework is evaluated on two problem sizes. The smaller
problem instance, denoted as U15G5, involves 15 UAV task
points and 5 ground points. The larger instance, U45G15,
includes 45 UAV task points and 15 ground points. For both
problem sizes, separate models are trained for four UAV-UGV
team configurations: 1 UAV and 1 UGV, 2 UAVs and 1 UGV,
2 UAVs and 2 UGVs, and 4 UAVs and 2 UGVs.

Each model is trained on a total of 5,120,000 instances,
processed in batches of 256 across 200 batches for 100
epochs. The training data is generated dynamically, ensuring a
diverse and robust set of scenarios for each epoch. The Adam
optimizer is used with an initial learning rate of 10−4, which
decays at the end of each epoch at a rate of α = 0.995. The
decayed learning rate is computed as:

lrdecayed = lr × αnepoch

where lr is the current learning rate, lrdecayed is the decayed
learning rate, and nepoch is the epoch number. Training is
performed on an NVIDIA RTX 4090 Ti GPU, with hyper-
parameters kept consistent across all problem sizes and team
configurations.
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Fig. 5: Training curves across two problem sizes and different
UAV-UGV team compositions. DRL(MF) is a baseline DRL
model with the agent selection strategy of Fan et al. [21]

B. Comparative analysis

Given the complexity and specificity of the UAV-UGV coop-
erative routing problem, standard benchmarks are unavailable,
and deriving exact solutions becomes increasingly impractical
as the number of task points and agents grows, making the
problem intractable. Over the years, multi-level or multi-
echelon optimization strategies have been widely employed
for cooperative routing involving heterogeneous agents. These
strategies decompose the problem into smaller subproblems,
which are then solved optimally using standard solvers. Fol-
lowing this approach, we adopt a bi-level optimization strategy
as the heuristic baseline for addressing our multi-agent coop-
erative task, as detailed in Section III. Within this framework,
we incorporate three metaheuristic methods: 1) Guided Local
Search (GLS), 2) Tabu Search (TS), and 3) Simulated
Annealing (SA) to solve the E-VRPTW subproblems. These
methods serve as heuristic baselines to compare against the
performance of our proposed deep reinforcement learning
(DRL) framework.

To further analyze the impact of our proposed one-agent-
per-sortie agent selection strategy within the decoder of the
DRL framework, we include an alternative agent selection
strategy, one-agent-per-decoding-step, as proposed in [21] as
another baseline. In Fan et al.’s approach [21], the decoder
selects the agent at each decision step t based on the index
t% |A|, where A is the set of UAVs and |A| represents the
number of agents. For a fair comparison, we retain the encoder
and the overall decoder architecture of our DRL framework
while substituting the agent selection routine with Fan et al.’s
method. The Fig. 5 shows the training curves across two
problem sizes with the four team compositions with these two
agent selection strategies.



TABLE I: Comparison evaluation of the DRL policy across problem sizes (all metric values represent averages over the test instances)

Model
Team configuration

1 UAV-1UGV 2 UAVs-1UGV 2 UAVs-2UGVs 4UAVs-2UGVs
Obj.

(min.)
Gap
(%)

Time
(sec)

Obj.
(min.)

Gap
(%)

Time
(sec)

Obj.
(min.)

Gap
(%)

Time
(sec)

Obj.
(min.)

Gap
(%)

Time
(sec)

Pr
ob

le
m

si
ze

:
U

15
G

5 DRL (greedy) 238.2 ± 41.2 9.0 0.5 229.7 ± 59.5 15.0 0.5 180.5 ± 48.5 16.9 0.5 188.9 ± 38.7 18.1 0.4
DRL MF et al. ( greedy) 239.9 ± 42.0 9.7 0.4 242.7 ± 137.6 21.5 0.6 184.1 ± 30.8 19.3 0.5 199.7 ± 37.3 24.9 0.5

DRL (1024) 220.4 ± 37.9 0.8 1.0 203.1 ± 34.7 1.7 0.9 157.1 ± 24.3 1.8 1.3 163.5 ± 31.3 2.2 0.9
DRL MF et al. ( 1024) 221.4 ± 38.3 1.3 1.0 208.4 ± 38.4 4.4 0.8 158.2 ± 22.8 2.4 1.0 165.6 ± 25.4 3.4 0.9

DRL (10240) 218.6 ± 37.6 0.0 7.3 199.7 ± 33.9 0.0 8.3 154.4 ± 23.5 0.0 8.0 159.9 ± 30.8 0.0 11.4
DRL MF et al. ( 10240) 219.9 ± 37.9 0.6 8.9 202.7 ± 36.9 1.4 8.2 155.6 ± 22.7 0.9 8.1 163.0 ± 24.8 1.9 9.8

GLS 281.7 ± 43.0 28.9 54.5 232.8 ± 39.7 16.6 63.6 188.3 ± 31.3 22.0 46.5 219.7 ± 49.5 37.4 53.8
TS 276.6 ± 42.6 26.5 49.6 230.8 ± 40.9 15.6 56.3 185.6 ± 32.4 20.2 43.5 219.0 ± 47.9 36.9 53.2
SA 283.4 ± 42.2 29.6 54.8 242.8 ± 38.2 21.6 64.9 194.1 ± 29.3 25.8 48.1 220.3 ± 46.4 37.8 52.8

Pr
ob

le
m

si
ze

:
U

45
G

15

DRL (greedy) 401.0 ± 50.1 12.8 0.7 305.4 ± 33.2 11.5 0.8 277.4 ± 34.8 19.3 0.8 274.8 ± 105.0 25.3 1.8
DRL MF et al. (greedy) 399.4 ± 46.5 12.3 1.2 338.8 ± 40.7 23.7 0.8 284.6 ± 68.0 22.4 1.1 275.8 ± 58.6 25.7 2.0

DRL (1024) 360.8 ± 41.2 1.5 3.0 276.5 ± 24.9 0.9 3.7 236.6 ± 25.5 1.8 4.6 224.4 ± 23.7 2.3 4.3
DRL MF et al. (1024) 360.2 ± 38.7 1.3 2.7 285.5 ± 27.7 4.2 4.9 245.7 ± 24.3 5.7 3.3 227.4 ± 21.7 3.6 4.0

DRL (10240) 355.6 ± 40.7 0.0 23.0 273.9 ± 24.6 0.0 23.1 232.5 ± 24.8 0.0 26.0 219.3 ± 23.2 0.0 37.3
DRL MF et al. (10240) 355.8 ± 37.9 0.1 24.7 281.0 ± 27.6 2.6 28.3 240.9 ± 24.1 3.6 25.5 220.6 ± 21.9 0.6 34.9

GLS 503.6 ± 54.2 41.6 94.6 348.5 ± 38.9 27.2 101.8 284.8 ± 30.3 22.5 66.3 290.6 ± 43.8 32.5 82.0
TS 480.4 ± 51.6 35.1 85.4 354.3 ± 38.2 29.4 90.1 274.9 ± 33.3 18.2 56.6 290.4 ± 41.4 32.4 81.8
SA 507.1 ± 57.2 42.6 95.1 360.7 ± 41.2 31.7 104.2 292.3 ± 34.4 25.7 71.3 293.5 ± 41.8 33.8 82.9

During evaluation, the DRL-based frameworks employ two
decoding strategies: a) greedy decoding, where the action with
the highest probability is selected at each decision step, and b)
sampling decoding, where N trajectories are sampled to form
a solution pool, and the best solution is selected. We evaluate
the framework with two sampling configurations: N = 1024
(DRL(1024)) and N = 10240 (DRL(10240)). To ensure
fairness, we apply the same hyperparameters and decoding
strategies across our DRL framework and the modified DRL
model (DRL MF et al.) based on Fan et al.’s [21] agent
selection strategy. Given the longer mission durations and the
computational requirements of the heuristic approaches, we
evaluate on 100 test instances and the average objective value
across these instances is used as the primary performance
metric to evaluate all baseline methods and our proposed
framework for the four UAV-UGV team compositions. All
computations are implemented in Python on a Linux system.

Table I shows that the proposed DRL framework con-
sistently outperforms heuristic-based baselines (GLS, TS,
and SA), achieving the lowest average mission time across
all problem sizes and team configurations. Among the
DRL strategies, sampling-based methods (DRL(1024) and
DRL(10240)) demonstrate superior scalability and efficiency,
with DRL(10240) delivering the best performance in terms of
average objective values. For smaller problem sizes (U15G5),
DRL(10240) achieves up to a 9% reduction in mission time
compared to DRL(greedy) in the 1 UAV–1 UGV setup.
However, this improvement comes at the cost of significantly
higher computation time, making DRL(1024) a more practical
alternative. DRL(1024) offers a favorable trade-off, achiev-
ing average objective values within 2–3% of DRL(10240)
while requiring up to 7–8 times less computation time. For
instance, in the U15G5 configuration with 4 UAVs–2 UGVs,
DRL(1024) achieves an objective value only 2.2% higher than
DRL(10240), but requires 10 times less computation time.

Adding more agents generally reduces mission time but
exhibits diminishing returns due to recharging constraints
because the addition of UAVs increases waiting times for

recharging, as one UGV can recharge only one UAV at a
time. This effect is more pronounced in smaller problem sizes
with fewer task points. For larger problem sizes (U45G15), the
DRL framework continues to outperform baseline methods,
with DRL(10240) consistently achieving the best objective
values. In the U45G15 configuration with 4 UAVs-2 UGVs,
DRL(10240) achieves an average objective value of 219.3
minutes, outperforming GLS, TS and SA by 32.5%, 32.4% and
33.8%, respectively. DRL(1024) again provides an efficient
alternative, delivering solutions within 2-3% of DRL(10240)
while requiring significantly less computation time. For ex-
ample, in the U45G15 configuration with 2 UAVs-2 UGVs,
DRL(1024) achieves an objective value of 236.6 minutes, just
1.8% higher than DRL(10240), with less than a third of the
computation time.

The DRL framework with the one-agent-per-decoding-step
strategy (DRL MF et al.) demonstrates strong performance but
is consistently outperformed by the proposed DRL framework.
While DRL MF et al.(10240) achieves comparable results,
its objective values are slightly higher. For instance, in the
U45G15 configuration with 2 UAVs-2 UGVs, DRL MF et
al.(10240) achieves an objective value of 240.9 minutes com-
pared to 232.5 minutes for DRL(10240).

Task completion times are generally higher in larger prob-
lem sizes due to the increased number of task points and the
complexity of agent coordination. For example, in the U15G5
configuration with 1 UAV-1 UGV, DRL(10240) achieves an
objective value of 218.6 minutes, which increases to 355.6
minutes in the U45G15 configuration. Heuristic baselines
consistently perform worse, with higher objective values and
longer computation times. In the U45G15 configuration with 4
UAVs-2 UGVs, GLS delivers an objective value 32.5% higher
than DRL(10240) while requiring more computation time.

Since Table I presents only the average and standard devi-
ation of the mission time metric, we introduce an additional
metric win rate to better capture performance variability. Win
rate is defined as the percentage of test instances where a
method achieves the lowest objective value compared to oth-



ers. In both the U15G5 and U45G15 scenarios, DRL(10240)
attains the highest win rate across all methods. Detailed win
rate results, along with the distribution of objective values
across the test instances, are provided in the Appendix.

C. Generalization analysis

To evaluate the generalization capability of the proposed DRL
framework, we conduct a series of tests on modified problem
scenarios, examining its ability to handle variations without
retraining. These tests involve the following aspects: 1. Larger
Problem Size: We increase the problem size beyond the
original training size and evaluate the performance of the pre-
trained model on these larger scenarios to assess its scalability
and adaptability. 2. Varying Team Composition: On a given
problem scenario, we modify the number of UAVs and UGVs
in the team composition and implement the pre-trained model
to examine its robustness to changes in the agent configuration.
3. Different Task Point Distributions: To simulate diverse
operational environments, we create problem scenarios with
two different distributions of task points and evaluate the
model, which is originally trained on uniformly distributed
task points. These generalization experiments aim to test the
extrapolation capability of the trained models in handling
slightly altered problem scenarios. This analysis ensures that
the framework can adapt to conditional changes in real-
world applications without requiring retraining. The detailed
methodology for each generalization experiment is described
below:

1) Larger problem size
In the first experiment, we assess the model’s ability to

handle larger problem scenarios than its original training size
by creating 100 test instances of two larger sizes. Firstly, we
increase the number of task points to a) 60 UAV points and 20
ground points (U60G20) and b) 75 UAV points and 25 ground
points (U75G25). Secondly, we extend road network for more
available points for recharging. The model’s performance is
compared against the baselines on these U60G20 and U75G25
test instances, as listed in Table II.

The table illustrates that the DRL framework, particularly
DRL(10240), achieves competitive mission completion times
across all team configurations, demonstrating its generaliza-
tion capability. However, DRL MF et al.(10240) occasionally
outperforms DRL(10240), with an maximum optimality gap of
less than 2%. For example, in the U60G20 configuration with
4 UAVs-2 UGVs, DRL MF et al.(10240) achieves the lowest
average objective value of 268.0 minutes, slightly outperform-
ing DRL(10240). Despite this, DRL MF et al.(10240) typi-
cally requires more computation time. A similar performance
trend is observed in U75G25 scenarios, where DRL methods
outperform heuristic baselines. For instance, in the U75G25
configuration with 4 UAVs-2 UGVs, DRL(10240) achieves an
average objective value of 294.1 minutes, outperforming GLS,
TS, and SA, which record 389.3, 390.2, and 387.8 minutes,
respectively. The DRL(1024) variant provides near-optimal
results with significantly faster computation times, offering
an effective balance between solution quality and runtime

efficiency. In general, despite being trained on smaller problem
sizes, the DRL framework generalizes well to larger scenarios,
achieving competitive results without requiring retraining.
In contrast, heuristic baselines (GLS, TS, and SA) exhibit
significantly higher mission times and computation costs,
highlighting their limitations in handling complex scenarios.
Increasing the number of agents reduces mission times across
all methods, but the improvement diminishes due to task
coordination constraints, especially in scenarios with limited
UGVs. DRL models achieve higher win rate values compared
to heuristic methods. Detailed results and distributions of
objective values are provided in the Appendix.

2) Team configuration variation
In the second generalization experiment, we evaluate the

performance of a model, trained on a specific UAV-UGV team
composition (4 UAVs-2 UGVs), when applied to altered team
configurations. Specifically, we test the trained model on the
U75G25 problem size with two larger team compositions: 5
UAVs-3 UGVs and 6 UAVs-4 UGVs. Table III presents the
results, highlighting trends in solution quality and runtime
efficiency.

For the 5 UAVs-3 UGVs configuration, the proposed
DRL framework outperforms all baselines, with DRL(10240)
achieving the best solution quality. DRL(10240) records an
average mission time of 262.9 minutes, significantly lower
than heuristic baselines such as GLS, which achieves 345.6
minutes in 87.6 seconds. DRL(1024) provides near-optimal
performance with a mission time of 273.2 minutes in just 5.7
seconds, striking an excellent balance between solution quality
and computation time. In comparison, the greedy decoding
strategy (DRL(greedy)) offers the fastest runtime (2.0 seconds)
but sacrifices solution quality, with an optimality gap of 37.8%
compared to DRL(10240). Heuristic methods (GLS, TS, and
SA) have higher mission times and computation costs, with
optimality gaps of 6–8% relative to DRL(10240).

For the 6 UAVs-4 UGVs configuration, the DRL framework
outperforms heuristics while being significantly faster, up to
1.5–10 times faster than heuristic approaches. DRL(10240)
achieves an average mission time of 263.9 minutes in just
47.2 seconds. DRL(1024) continues to demonstrate efficiency,
achieving a mission time of 274.3 minutes in 5.5 seconds,
balancing computation time and solution quality effectively.
Across both configurations, the proposed DRL framework
outperforms the DRL MF et al. model in both solution quality
and runtime efficiency. For example, in the 5 UAVs-3 UGVs
configuration, DRL(10240) achieves a mission time of 262.9
minutes compared to 282.1 minutes by DRL MF et al.(10240),
while being faster computationally. These results highlight
the robustness of the proposed DRL framework in adapting
to altered team compositions without retraining. More details
about the distribution of the mission time values are in the
Appendix.

3) Task points distribution variation
In our third generalization experiment, we assess the adapt-

ability of the proposed DRL policy by testing it on 100
scenarios with two distinct distributions of UAV task points



TABLE III: Performance evaluation of the DRL policy across
scenarios with changed team compositions (all metric values
represent averages over the test instances)

Model
Team configuration

5 UAVs-3 UGVs 6 UAVs-4 UGVs
Obj.
(sec)

Gap
(%)

Time
(sec)

Obj.
(sec)

Gap
(%)

Time
(sec)

Pr
ob

le
m

si
ze

:
U

75
G

25

DRL (greedy) 362.2 ± 128.8 37.8 2.0 353.8 ± 101.0 34.1 2.0
DRL MF et al. (greedy) 418.9 ± 176.2 59.3 2.1 417.3 ± 147.3 58.1 2.0

DRL (1024) 273.2 ± 20.6 3.9 5.7 274.3 ± 21.7 3.9 5.5
DRL MF et al. (1024) 282.1 ± 24.8 7.3 6.4 288.5 ± 27.8 9.3 5.4

DRL (10240) 262.9 ± 20.1 0.0 51.8 263.9 ± 19.8 0.0 47.2
DRL MF et al. (10240) 268.1 ± 22.5 2.0 60.7 273.5 ± 23.7 3.7 52.5

GLS 345.6 ± 50.9 31.5 87.6 308.2 ± 47.0 16.8 74.2
TS 347.3 ± 49.2 32.1 88.1 313.0 ± 50.7 18.6 72.9
SA 352.8 ± 50.3 34.2 89.3 319.2 ± 51.6 21.0 76.7

around the road network: (a) Gaussian distribution and (b)
Rayleigh distribution. The DRL policy, initially trained on a
uniform distribution of task points, is evaluated to determine its
capacity to generalize to these alternative distributions. In the
Gaussian distribution, UAV task points are concentrated near
a central location, with the density decreasing symmetrically
as the distance from the center increases. This distribution is
particularly suited for surveillance tasks centered around criti-
cal areas, such as buildings or urban hubs, where activities are
most likely concentrated. In contrast, the Rayleigh distribution
features a sparse density of UAV task points near the center,
which increases up to a certain radial distance before taper-
ing off. This pattern reflects scenarios where the immediate
vicinity of a central location requires minimal surveillance,
while the surrounding buffer zone demands higher attention,
such as securing areas around critical infrastructure. Fig.
6 provides example scenarios for these distributions. These
diverse distributions are designed to evaluate the robustness of
the DRL policy to varying real-world mission requirements. To
test its performance, we use the U45G15 problem size with the
four UAV-UGV team configurations and compare the results
of the DRL policy against baseline methods. The outcomes of
this experiment are summarized in Table IV.
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Fig. 6: Scenario instances from different distributions of UAV
points around the road network

The results highlight the consistent superiority of the DRL
framework, particularly the DRL(10240) policy, across both
Gaussian and Rayleigh distributions. DRL(10240) achieves
the lowest mission completion times across most team con-
figurations, significantly outperforming heuristic baselines. For
example, in the 2 UAVs-2 UGVs configuration under the Gaus-
sian distribution, DRL(10240) records an average objective
value of 179.0 minutes, outperforming TS by 21.5%. The
Gaussian distribution generally results in shorter mission times
compared to the Rayleigh distribution due to the centralized
clustering of task points. In the 4 UAVs-2 UGVs configura-
tion under the Rayleigh distribution, DRL MF et al.(10240)
outperforms DRL(10240) with a 2.5% optimality gap but
requires slightly more computation time. Among the heuristic
baselines, GLS and TS provide closer performance to the DRL
methods but remain significantly slower and less efficient. SA
performs the worst, with higher objective values and longer
computation times. As observed in previous trends, within
the DRL framework, sampling-based methods (DRL(1024)
and DRL(10240)) consistently deliver superior solution quality
compared to DRL(greedy), though with increased computa-
tion times. DRL(greedy), while the fastest in computation,
produces suboptimal solutions, making it suitable for time-
critical scenarios where computational speed is prioritized over
solution quality. The distributions of the objective values are

TABLE II: Comparison evaluation of the DRL policy across larger problem sizes (all metric values represent averages over the test
instances)

Model
Team configuration

1 UAV-1UGV 2 UAVs-1UGV 2 UAVs-2UGVs 4UAVs-2UGVs
Obj.

(min.)
Gap
(%)

Time
(sec)

Obj.
(min.)

Gap
(%)

Time
(sec)

Obj.
(min.)

Gap
(%)

Time
(sec)

Obj.
(min.)

Gap
(%)

Time
(sec)

Pr
ob

le
m

si
ze

:
U

60
G

20

DRL (greedy) 591.7 ± 339.3 35.3 1.3 539.3 ± 260.0 65.4 1.4 389.8 ± 150.2 37.7 1.3 358.1 ± 96.0 33.6 1.3
DRL MF et al. ( greedy) 748.8 ± 495.4 71.2 1.4 651.5 ± 460.1 106.4 1.4 410.1 ± 220.5 44.9 1.4 382.4 ± 117.3 42.7 1.3

DRL (1024) 455.2 ± 45.8 4.1 4.0 371.3 ± 52.9 4.1 4.0 295.4 ± 27.2 4.4 4.1 280.2 ± 24.2 4.6 4.1
DRL MF et al. ( 1024) 446.6 ± 48.2 2.1 4.4 380.4 ± 39.3 7.4 4.3 289.7 ± 26.2 2.4 4.4 277.9 ± 26.8 3.7 4.1

DRL (10240) 445.5 ± 44.1 1.9 34.2 360.1 ± 48.3 0.0 36.3 286.6 ± 26.0 1.3 40.2 269.1 ± 22.4 0.4 116.2
DRL MF et al. ( 10240) 437.3 ± 45.6 0.0 37.7 367.1 ± 39.6 2.5 40.5 283.0 ± 25.0 0.0 40.5 268.0 ± 25.2 0.0 116.0

GLS 592.0 ± 58.6 35.4 108.2 420.6 ± 52.3 22.1 122.9 336.5 ± 39.2 18.9 79.8 357.5 ± 59.5 33.4 97.1
TS 573.6 ± 61.1 31.2 99.4 429.9 ± 44.9 25.4 106.9 331.6 ± 37.5 17.2 71.8 357.3 ± 60.1 33.3 97.1
SA 602.8 ± 57.6 37.8 110.0 436.3 ± 53.0 27.8 127.4 344.1 ± 38.5 21.6 82.1 359.6 ± 61.4 34.2 97.8

Pr
ob

le
m

si
ze

:
U

75
G

25

DRL (greedy) 673.7 ± 304.6 35.3 1.5 562.3 ± 200.9 40.2 4.0 443.1 ± 144.9 37.2 1.4 388.7 ± 86.3 32.2 1.4
DRL MF et al. (greedy) 816.5 ± 443.1 64.0 1.4 692.2 ± 434.2 72.6 3.8 425.5 ± 168.5 31.7 1.4 420.9 ± 112.4 43.1 1.4

DRL (1024) 517.8 ± 42.4 4.0 5.8 415.9 ± 46.5 3.7 4.9 333.7 ± 25.9 3.3 5.0 307.1 ± 26.6 4.4 4.8
DRL MF et al. (1024) 510.3 ± 42.5 2.5 5.1 425.1 ± 42.1 6.0 5.1 330.0 ± 24.1 2.2 5.0 312.0 ± 28.6 5.7 4.8

DRL (10240) 503.6 ± 42.8 1.2 51.4 401.1 ± 43.5 0.0 49.1 324.2 ± 26.0 0.4 124.3 294.1 ± 23.7 0.0 47.5
DRL MF et al. (10240) 497.8 ± 39.5 0.0 42.9 411.9 ± 40.2 2.7 44.8 323.0 ± 22.5 0.0 123.2 296.6 ± 26.7 0.9 43.9

GLS 678.2 ± 60.6 36.2 120.9 462.5 ± 45.2 15.3 135.4 367.2 ± 40.9 13.7 84.9 389.3 ± 48.7 32.4 105.3
TS 654.8 ± 62.8 31.5 112.2 475.0 ± 47.1 18.4 119.5 363.3 ± 38.6 12.5 79.8 390.2 ± 50.8 32.7 105.8
SA 683.5 ± 60.1 37.3 122.5 474.9 ± 45.9 18.4 138.3 385.9 ± 39.0 19.5 92.3 387.8 ± 51.7 31.9 105.6



TABLE IV: Comparison evaluation of the proposed DRL policy across variation of UAV task points distribution (all metric values
represent averages over the test instances)

Model
Team configuration

1 UAV-1UGV 2 UAVs-1UGV 2 UAVs-2UGVs 4UAVs-2UGVs
Obj.
(sec)

Gap
(%)

Time
(sec)

Obj.
(sec)

Gap
(%)

Time
(sec)

Obj.
(sec)

Gap
(%)

Time
(sec)

Obj.
(sec)

Gap
(%)

Time
(sec)

G
au

ss
ia

n
di

st
ri

bu
tio

n

DRL (greedy) 300.7 ± 31.3 12.3 0.7 252.4 ± 22.0 14.8 0.8 213.8 ± 25.3 19.4 0.8 212.9 ± 22.8 19.6 0.8
DRL MF et al. ( greedy) 301.4 ± 32.7 12.6 0.7 271.1 ± 30.4 23.3 0.8 222.8 ± 25.0 24.5 0.8 225.5 ± 57.2 26.6 1.2

DRL (1024) 271.7 ± 26.4 1.5 2.5 224.2 ± 20.7 2.0 2.6 182.8 ± 17.9 2.1 2.4 184.4 ± 20.4 3.5 2.7
DRL MF et al. ( 1024) 273.0 ± 25.9 2.0 2.4 226.3 ± 18.6 2.9 2.5 191.9 ± 17.9 7.2 2.5 184.1 ± 20.1 3.4 2.5

DRL (10240) 267.8 ± 27.0 0.0 25.0 219.9 ± 21.9 0.0 29.3 179.0 ± 17.4 0.0 23.0 178.4 ± 21.6 0.2 27.1
DRL MF et al. ( 10240) 269.8 ± 25.1 0.8 20.5 220.7 ± 18.5 0.4 24.1 187.9 ± 17.1 5.0 25.5 178.1 ± 20.8 0.0 24.2

GLS 391.4 ± 48.1 46.2 73.7 268.1 ± 36.1 21.9 80.3 221.8 ± 29.9 23.9 52.0 228.2 ± 42.4 28.1 66.1
TS 376.6 ± 47.8 40.6 65.2 272.0 ± 38.1 23.7 70.0 217.5 ± 28.1 21.5 49.4 227.7 ± 37.9 27.8 65.4
SA 395.4 ± 48.2 47.6 75.0 276.1 ± 39.0 25.6 82.6 225.3 ± 29.9 25.9 53.1 230.3 ± 37.9 29.3 65.5

R
ay

le
ig

h
di

st
ri

bu
tio

n

DRL (greedy) 328.9 ± 35.5 12.8 0.8 268.1 ± 67.7 13.0 1.2 233.2 ± 26.9 19.4 0.8 231.5 ± 30.2 22.0 0.8
DRL MF et al. (greedy) 325.1 ± 31.0 11.5 0.8 289.8 ± 32.6 22.2 0.8 246.2 ± 68.3 26.1 1.2 247.3 ± 90.6 30.4 1.2

DRL (1024) 296.3 ± 28.9 1.6 2.5 241.3 ± 18.6 1.7 2.4 199.3 ± 20.5 2.0 2.5 200.0 ± 16.3 5.5 3.0
DRL MF et al. (1024) 298.6 ± 28.7 2.4 2.5 243.7 ± 22.2 2.7 2.5 208.6 ± 20.5 6.8 2.6 194.9 ± 17.3 2.8 2.7

DRL (10240) 291.7 ± 28.4 0.0 23.6 237.2 ± 19.4 0.0 22.2 195.3 ± 19.3 0.0 21.8 194.4 ± 18.1 2.5 27.7
DRL MF et al. (10240) 295.1 ± 27.7 1.2 24.1 239.1 ± 21.7 0.8 24.9 204.6 ± 19.2 4.8 24.7 189.7 ± 16.8 0.0 33.2

GLS 424.0 ± 54.0 45.4 81.0 292.8 ± 34.7 23.4 87.1 240.0 ± 34.5 22.9 56.8 253.7 ± 37.6 33.7 71.9
TS 408.3 ± 53.2 40.0 72.1 298.6 ± 36.5 25.9 76.6 242.4 ± 29.0 24.1 53.7 252.6 ± 36.6 33.2 71.4
SA 429.8 ± 57.4 47.3 82.2 306.4 ± 36.1 29.2 90.4 244.7 ± 32.4 25.3 58.2 257.1 ± 36.1 35.5 72.7

in the Appendix.

D. Case study

To evaluate the utility of our proposed framework as an
online planner, we conduct a case study using a simulated
scenario involving 45 UAV task points distributed across a
road network. This scenario demonstrates the framework’s
capability to manage dynamic changes in task environments
and team configurations. The study focuses on two key aspects
of dynamic route planning: the addition of new task points
during the mission and changes in the UAV-UGV team com-
position. Based on earlier evaluations, DRL(1024) is selected
for this case study as it offers the best balance between
solution quality and runtime among DRL-based strategies. The
replanning process in both scenarios assumes computations are
performed during UAV-UGV recharging operations, ensuring
efficient planning with minimal mission interruptions.

1) Dynamic change in task scenario
In the first experiment, new task points are introduced

randomly during mission execution. The system triggers a
replanning process to integrate these additional points into the
existing mission plan. Fig. 7 illustrates the temporal adaptation
of UAV route sorties in a 2 UAVs–1 UGV system as new
task points are added. The UAVs dynamically adjust their
paths, seamlessly incorporating the additional task points into
their sorties. This highlights the framework’s ability to adapt
to evolving task environments without compromising mission
efficiency or continuity.

2) Dynamic change in team configuration
In the second experiment, the system adapts to changes in

team composition during task execution. The mission begins
with a 2 UAVs–1 UGV configuration, which is subsequently
modified to both a reduced team of 1 UAV–1 UGV and an
expanded team of 4 UAVs–2 UGVs at different stages of the
mission. Fig. 8 illustrates the temporal adaptation of route
sorties under these varying team configurations. When team
size is reduced, the system effectively reassigns task points

to the remaining UAVs and UGVs, ensuring mission com-
pletion despite fewer resources. Conversely, when additional
vehicles are introduced, the framework efficiently scales to
accommodate the increased resources, redistributing the task
load to optimize coverage and minimize mission time. This
adaptability demonstrates the robustness of the framework in
dynamic operational scenarios.

E. Discussion & limitations

The experimental results demonstrate the scalability, robust-
ness, and generalizability of the proposed DRL framework
for UAV-UGV cooperative routing. The framework effectively
scales across different team compositions, from a 1 UAV–1
UGV system to a 6 UAV–4 UGV system, maintaining strong
performance as problem complexity increases. Across all
configurations, it consistently outperforms baseline methods
in both solution quality (minimum task completion time) and
runtime efficiency. The framework’s generalization capabil-
ity is validated by extending problem scenarios beyond the
original training conditions, including increasing the number
of task points, expanding the road network, altering task
point distributions, and scaling up team sizes. In all cases, it
outperforms baseline approaches, demonstrating its robustness.
Furthermore, the case study highlights the framework’s ability
to handle online planning, showcasing its adaptability to
dynamic changes such as new task points or modified team
configurations.

In comparative analyses, the DRL framework with a sam-
pling decoding strategy, particularly the DRL(10240) and
DRL(1024) policies, consistently outperforms heuristic base-
lines such as GLS, TS, and SA in terms of mission completion
times across various problem sizes, task distributions, and team
configurations. The agent selection strategy in the proposed
DRL model proves impactful, as it outperforms the DRL MF
et al. model in most instances. While DRL(10240) delivers the
best solution quality, DRL(1024) provides a practical trade-
off, balancing solution quality with computational efficiency,
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making it suitable for time-sensitive applications.

The DRL framework surpasses bilevel optimization ap-
proaches due to its problem formulation and solution method-
ology. In bilevel optimization, the problem is addressed hier-
archically, where the UGV route is planned first, followed by
UAV route sorties. Although this two-stage approach simplifies
the problem, it introduces coupling between the stages. Even if
both stages produce optimal solutions, the overall mission may
not be optimal. For instance, solving E-VRPTW may yield op-
timal UAV route sorties for individual subproblems but fails to
ensure an optimal overall mission route. In contrast, the DRL
framework mitigates these limitations by jointly evaluating the
entire cooperative route at the end of the mission. Its reward-
based feedback mechanism enhances performance by aligning
the planning process with global mission objectives rather
than isolated subproblem solutions. This unified evaluation
ensures a more coherent and effective approach to UAV-UGV
collaborative routing, achieving superior mission performance
overall.

Despite its promising results, the proposed framework has
several limitations. A key limitation is the assumption of a
fixed road network for UGV operations. While the gener-
alization tests included extended road layouts, incorporating

randomized road networks in future work could improve
the model’s robustness. Additionally, the current study is
constrained to a maximum of six UAVs and four UGVs due to
computational limitations. Scaling to larger team sizes remains
a direction for future research. To address this, we propose
using curriculum learning by fine-tuning pre-trained models
on progressively more complex instances. Another limitation
is the use of a greedy strategy for assigning UAVs to UGVs
for recharging. Future work will focus on integrating this
assignment process directly into the DRL framework to enable
more efficient and coordinated decision-making.

VI. CONCLUSION

This paper introduces a novel Deep Reinforcement Learning
(DRL)-based framework for addressing the energy-constrained
multi UAV-UGV cooperative routing problem. By utilizing
an encoder-decoder transformer architecture with attention
mechanisms, the framework achieves efficient coordination
between UAVs and UGVs, ensuring all task points are visited
within minimal mission time while adhering to operational
constraints. The proposed DRL framework demonstrates sig-
nificant advantages over heuristic-based bilevel optimization
methods, such as Guided Local Search (GLS), Tabu Search
(TS), and Simulated Annealing (SA), by delivering superior



solution quality and reduced runtime across all problem sizes.
Additionally, it exhibits strong generalization capabilities, pro-
ducing robust solutions in larger scenarios and across diverse
task point distributions. The framework’s adaptability is further
highlighted through its performance in dynamic environments,
such as scenarios with evolving task points or changing UAV-
UGV configurations. The case study underscores the practical
applicability of the approach, making it a promising tool
for real-world applications, including disaster response and
environmental monitoring, where dynamic and efficient multi-
agent coordination is critical.
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APPENDIX

A. Minimum Set Cover (MSC) Formulation and Subproblem
Division for UGV Route Planning

Maini et al. [17] demonstrated that in order to establish a
viable cooperative route, it is necessary to ensure that at least
one refueling stop is located within the UAV fuel coverage
radius for each task point. Thus to determine the minimum
number of refueling stops required to cover the entire mission
scenario, we can adopt the minimum set cover algorithm
(MSC). To determine the minimum number of refueling stops
Re required to cover the entire task scenario M, we employ
a linear integer programming formulation solved using a Con-

https://developers.google.com/optimization
https://developers.google.com/optimization
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Fig. A.1: Refuel stops obtained from MSC, with circles indicating the fuel coverage radius of the UAV. (a) Subproblem 1: starting
depot (Refuel Stop 1) with allocated UAV points. (b) Subproblem 2: Refuel Stop 1 as the origin and Refuel Stop 2 as the destination
with allocated UAV points. (c) Subproblem 3: Refuel Stop 2 as the origin and Refuel Stop 3 as the destination with allocated UAV
points. (d) Subproblem 4: Refuel Stop 3 as the origin and Refuel Stop 4 as the destination with allocated UAV points.
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Fig. A.2: UAV route sorties as obtained after solving E-VRPTW. (a) UAV route sorties for Subproblem 1. (b) UAV and UGV route
sorties for Subproblem 2. (c) UAV and UGV route sorties for Subproblem 3. (d) UAV and UGV route sorties for Subproblem 4.

straint Programming (CP) method. The problem is modeled
with binary decision variables: xj , which indicates whether a
task point mj is chosen as a refueling stop, and yij , which
indicates whether a task point mi is assigned to a refueling
stop rj . The objective function minimizes the total number of
refueling stops:

Minimize:
∑
j

xj

Subject to: ∑
j

yij ≥ 1, ∀mi ∈ M, (1)

yij ≤ xj , ∀mi ∈ M, rj ∈ Re, (2)

yij = 0, if dij > 0.5Fa, ∀mi ∈ M, rj ∈ Re, (3)

xj , yij ∈ {0, 1}, ∀mi ∈ M, rj ∈ Re. (4)

Here, Equation 1 ensures that each task point mi is assigned
to at least one refueling stop rj . Equation 2 ensures that a
task point mi can only be assigned to a refueling stop rj if
that stop is selected. Equation 3 excludes task points mi from
being assigned to refueling stops rj that lie beyond the UAV’s
coverage radius 0.5Fa. Equation 4 enforces binary decision
variables. We use Google’s OR-Tools CP-SAT solver [34] to
solve this integer programming problem efficiently. The MSC

solution identifies the essential refueling stops Re, which are
connected by solving traveling salesman problem (TSP) to get
the optimal direction of UGVs’ traversal.

Fig. A.1 illustrates the process of subproblem division and
task allocation strategy on the case study scenario. Refueling
stops, derived from the MSC solution, are shown in Fig.
A.1 and serve as key nodes for structuring UGV routes and
partitioning the task space into distinct subproblems. In the
first subproblem (Fig. A.1(a)), the starting depot, which also
functions as Refuel Stop 1, acts as both the origin and destina-
tion node. UAV task points within the coverage radius of this
refueling stop are allocated to it. The subsequent subproblems
follow a similar pattern. In Subproblem 2 (Fig. A.1(b)), the
starting depot (Refuel Stop 1) becomes the origin node, and
Refuel Stop 2 is designated as the destination node. Task points
assigned to Refuel Stop 2, based on their proximity, define
the task set for this subproblem. This process is repeated for
additional subproblems. For instance, in Subproblem 3 (Fig.
A.1(c)), Refuel Stop 2 serves as the origin node, and Refuel
Stop 3 is the destination node. Similarly, in Subproblem 4 (Fig.
A.1(d)), Refuel Stop 3 becomes the origin node, and Refuel
Stop 4 is the destination. The UGV travels between these
refueling stops in each subproblem, establishing time windows
at the destination stops for UAVs to land and recharge.



Fig. A.3: Distribution of mission completion times across test instances for the U15G5, U45G15, U60G20 and U75G25 scenarios.
Results are shown for four team configurations and all compared methodologies.

B. UAV Route Sorties from E-VRPTW

Considering a 2 UAVs-1 UGV system, The UAV sorties are
generated by solving the E-VRPTW model, as described in
the problem formulation section. Figure A.2 illustrates the
UAV routes obtained after solving the E-VRPTW for each
subproblem. In each subproblem, UAVs visit their assigned
task points while adhering to fuel constraints. The UAVs
recharge at the destination refuel stop before continuing their
missions, ensuring energy sustainability throughout the oper-
ation. The figure A.2 highlights the coordinated routing of
UAVs and UGVs, where the UGVs establish refueling points

while the UAVs efficiently cover task points within the defined
subproblem regions.

C. Distribution of Objective Values

To better capture the performance variability of different
methods, we compute the win rate metric. Win rate is defined
as the percentage of test instances in which a method achieves
the lowest objective value compared to all others. It is formally
defined as:

win rate =
# instances where method has the lowest objective

total instances
×100

(28)
Overall, DRL-based methods consistently achieve the high-



Fig. A.4: Distribution of mission completion times across test instances for the gaussian and rayleigh distribution scenarios. Results
are shown for four team configurations and all compared methodologies.

est win rates across all problem sizes and team configurations,
demonstrating strong robustness and generalization capability.

In the U15G5 scenarios, DRL(10240) achieves win rates of
68%, 47%, 43%, and 43% for the 1 UAV–1 UGV, 2 UAVs–1
UGV, 2 UAVs–2 UGVs, and 4 UAVs–2 UGVs configurations,
respectively. This is followed by DRL MF et al. (10240), with
corresponding win rates of 25%, 42%, 29%, and 30%. Other
methods’ win rates are comparatively less. For the U45G15
scenarios, DRL(10240) obtains win rates of 40%, 50%, 47%,
and 43%, while DRL MF et al. (10240) achieves 48%, 39%,
19%, and 42% across the same configurations.

In the U60G20 scenarios, DRL(10240) records win rates
of 30%, 56%, 42%, and 35%, whereas DRL MF et al.
(10240) attains 62%, 33%, 26%, and 33%, respectively. For the
U75G25 scenarios, DRL(10240) achieves win rates of 55%,
55%, 30%, and 32% for the 1 UAV-1 UGV, 2 UAVs–1 UGV,
2 UAVs–2 UGVs, and 4 UAVs–2 UGVs configurations. In
comparison, DRL MF et al. (10240) achieves 39%, 32%, 25%,
and 37%, respectively.

In the Gaussian distribution scenarios, DRL(10240)
achieves win rates of 49%, 47%, 51%, and 28% across the
1 UAV–1 UGV, 2 UAVs–1 UGV, 2 UAVs–2 UGVs, and 4
UAVs–2 UGVs configurations, respectively. Meanwhile, DRL
MF et al. (10240) achieves 42%, 46%, 14%, and 37%, re-
spectively. In the Rayleigh distribution scenarios, DRL(10240)
obtains win rates of 49%, 41%, 31%, and 31%, while DRL MF
et al. (10240) records 41%, 51%, 13%, and 46%, respectively.

Finally, for larger team configurations with 5 UAVs–3
UGVs and 6 UAVs–4 UGVs, DRL(10240 achieves win rates
of 44% and 42%, respectively. In comparison, DRL MF et al.
(10240) achieves 36% and 20% in these setups.

Figures A.3, A.4, and A.5 show the distribution of objective
values (mission completion times) across all test scenarios.
Heuristic methods (GLS, TS, SA) display a wider spread, indi-

Fig. A.5: Distribution of mission completion times across test
instances for extended team configurations (5 UAVs–3 UGVs
and 6 UAVs–4 UGVs) in the U75G25 scenarios.

cating higher variability, while DRL-based approaches exhibit
narrower distributions, reflecting greater consistency. Among
DRL methods, the greedy strategy shows more variability than
sampling-based methods (DRL(1024), DRL(10240)). More-
over, as the number of agents increases, the distribution width
decreases, suggesting improved reliability with larger teams.
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