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ABSTRACT
Assistive exoskeletons offer potential benefits for mobility

during dynamic activities such as squatting, yet tuning their con-
trollers poses a significant challenge. Conventional methods
based on manual adjustments or metabolic cost measurements
are slow. We propose an EMG-based human-in-the-loop (HIL)
optimization framework that integrates continuous EMG feed-
back into a Bayesian optimization algorithm to efficiently ad-
just the control parameters of a portable exoskeleton. In this
pilot study (n=4), our approach achieves a 21.3% reduction in
metabolic cost compared to a no-device condition and a 22.5%
reduction relative to an unpowered exoskeleton, with the tuning
process taking only 4 minutes and 40 seconds. Moreover, the
method reduces muscle activation by up to 21.4% and improves
perceived effort ratings. These results suggest that our strategy
provides an efficient means for tuning exoskeleton controllers,
with promising implications for mobility assistance and rehabil-
itation.

INTRODUCTION
Squatting is a fundamental movement used in daily life and

rehabilitation, requiring significant lower-limb strength and co-
ordination. Assistive exoskeletons provide substantial support
for load-bearing activities in rehabilitation. However, the effec-
tiveness of these devices heavily depends on how well the con-
trol strategy is tuned to match the dynamic movements of the
user. Improperly tuned controllers can lead to inefficient sup-
port, user discomfort, or even increased metabolic cost [1, 2].
Manual tuning of control parameters to suit individual users is
time-consuming and impractical for real-world applications, es-
pecially considering the variability in user physiology [3].

Human-in-the-loop (HIL) optimization provides an effective
solution to this challenge by automating the controller tuning
process using physiological feedback from the user [4, 5]. Tra-
ditional HIL methods often rely on metabolic cost as a feedback
signal for optimization, but this approach requires a particularly
lengthy acquisition time to reach a steady-state measure [6, 7].
Each condition can take several minutes of data collection, sig-
nificantly increasing the overall tuning duration.
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FIGURE 1. THIS FIGURE PRESENTS A COMPREHENSIVE DIAGRAM THAT DETAILS THE FLOW OF DATA WITHIN THE OPTIMIZA-
TION SYSTEM. IT ILLUSTRATES HOW RAW EMG SIGNALS ARE ACQUIRED, PROCESSED, AND INCORPORATED INTO THE BAYESIAN
OPTIMIZATION ALGORITHM, WHICH IN TURN ADJUSTS THE EXOSKELETON’S CONTROLLER PARAMETERS. KEY COMPONENTS
OF THE FRAMEWORK, INCLUDING DATA ACQUISITION, SIGNAL PROCESSING, COST FUNCTION CALCULATION, AND PARAMETER
TUNING, ARE CLEARLY DEPICTED.

To address this issue, we propose using surface electromyo-
graphy (EMG) as an efficient physiological metric for tuning
controllers in assistive exoskeletons. Unlike metabolic cost,
EMG provides real-time feedback on muscle activation, enabling
faster controller tuning and reducing the overall optimization
time [4, 8]. By integrating EMG data into a Bayesian optimiza-
tion framework, we demonstrate the ability to rapidly adjust con-
troller parameters to reduce muscle effort and metabolic cost,
achieving more efficient and personalized exoskeleton assis-
tance. Preliminary results show a 22.7% reduction in metabolic
cost compared to a no-device condition, with tuning completed
in just 4 minutes and 40 seconds. This rapid EMG-based ap-
proach offers a scalable solution for optimizing assistive devices
with various controller configurations for rehabilitation and daily
use.

RELATED WORKS
One of the main challenges in designing assistive exoskeletons

is the variability in physiological responses between users, mak-
ing it difficult to create universally optimal controllers [9, 10].
Manual tuning is often time-consuming and impractical, requir-
ing expert intervention [3, 11]. HIL optimization emerges as a
promising solution by automating the tuning process based on

user feedback [5, 12].
Traditionally, HIL methods rely on metabolic cost as a feed-

back signal, which reflects energy expenditure but requires ex-
tended data collection periods to reach steady-state measure-
ments [6, 13]. This results in long optimization times, often ex-
ceeding 20 minutes [4], and is further complicated by the influ-
ence of external factors on metabolic readings [5].

Recent studies shift toward using faster physiological metrics
such as EMG, which provides real-time feedback on muscle ac-
tivation and allows for quicker controller adjustments [14, 15].
EMG-based HIL optimization shows promise in reducing tuning
time and enhancing performance, especially in upper-limb ex-
oskeletons [16, 17]. Its application in lower-limb exoskeletons
is growing, though challenges with signal noise and consistency
remain [18].

In walking exoskeletons, EMG integrated with HIL optimiza-
tion demonstrates improvements in muscle effort reduction and
gait mechanics [4]. Bayesian optimization techniques further re-
fine this approach, effectively managing noisy physiological data
and achieving faster tuning [8].

While EMG-based HIL optimization has been explored in
walking, its use in load-bearing activities like squatting is lim-
ited [19]. Squatting requires precise control of movement and
load distribution, presenting unique challenges. Our work ex-
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tends this research by applying EMG-based HIL optimization to
squatting, using Bayesian techniques to rapidly fine-tune stiff-
ness controllers and improve metabolic cost efficiency.

In this work, we extend the advances by applying EMG-based
HIL optimization to a hip exoskeleton designed specifically for
squatting. By integrating EMG data into a Bayesian optimiza-
tion framework, our method rapidly adjusts stiffness controllers
to reduce muscle effort and metabolic cost. The novelty of this
work lies in the efficiency of tuning with tuning completed in
just 4 minutes and 40 seconds. This approach offers a scal-
able, efficient, and personalized solution for optimizing assistive
exoskeletons in both rehabilitation and everyday settings. An
overview of the procedure is shown in Fig. 1.

METHODOLOGY
System Overview

The system provides real-time hip assistance during squatting
using an EMG-based HIL optimization framework. EMG signals
from the user’s leg muscles adjust the exoskeleton’s stiffness, of-
fering personalized support throughout the movement. The setup
integrates a hip exoskeleton, EMG sensors, and a control algo-
rithm based on Bayesian optimization. By assisting hip flexion
and extension during squats, the system adapts to the user’s mus-
cle activity, reducing effort and improving efficiency.
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FIGURE 2. A DETAILED IMAGE OF THE HIP EXOSKELETON
HIGHLIGHTING ITS PRINCIPAL FEATURES, INCLUDING THE
24V BLDC MOTOR FOR VARIABLE STIFFNESS CONTROL, AD-
JUSTABLE STRAPS FOR A SECURE FIT, AND RIGID PLASTIC
BRACES. THE DESIGN IS OPTIMIZED TO SUPPORT HIP FLEX-
ION AND EXTENSION DURING SQUATTING MOVEMENTS.

Hip Exoskeleton Device
The exoskeleton (Fig. 2) assists hip flexion and extension dur-

ing squatting via variable stiffness control that adapts resistance
during both descent and ascent. It features a 24V BLDC (AK70-
10 T) motor delivering 25 Nm peak and 8 Nm nominal torque,
and is secured with adjustable shoulder, leg, and belt straps. Min-
imal rigid components (plastic braces and aluminum links) allow
a range of motion from −30◦ extension to 90◦ flexion.

Actuation is provided by a quasi-direct drive system with an
open-loop torque controller that enables back-driveability for
natural movement. A built-in motor encoder, reading at 1 MHz,
captures hip angles at the joint center. Safety features include
hard stops, two emergency stop buttons (one for torque cut-off
and one for full shutdown), and continuous torque monitoring to
prevent exceeding 25 Nm.
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FIGURE 3. A SCHEMATIC REPRESENTATION OF THE EX-
OSKELETON’S CONTROL SYSTEM. THE HIGH-LEVEL CON-
TROLLER UTILIZES A FINITE STATE MACHINE (FSM) TO MAN-
AGE FORWARD, BACKWARD, AND RESTING STATES, WHILE
THE LOW-LEVEL CONTROLLER SENDS PRECISE TORQUE
COMMANDS TO THE MOTOR ACCORDING TO THE SPECIFIED
CONTROL LAW.

Control Architecture
The control system operates on two levels: high-level control

within Python 3.9.2 on a Raspberry Pi 4 and low-level control at
the motor.

At the high level, the control system is structured around a fi-
nite state machine (FSM), which is chosen for its effectiveness
in managing complex sequential operations and state transitions.
The FSM comprises three principal states: forward leg move-
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ment, backward leg movement, and a resting state. These states
facilitate precise control of the leg swing dynamics by dividing
leg swing control into forward and backward directions, man-
aged separately by the FSM. Transitions between states are trig-
gered by changes in angular velocity, allowing for responsive ad-
justments to movement patterns. To maintain natural movement
dynamics, the controller aligns torque direction with velocity di-
rection, ensuring positive work assistance. The control band-
width is set at 350 Hz, a frequency selected to provide a balance
between responsiveness and computational efficiency.

At the low level, high-level commands are transmitted via the
CAN bus protocol to the integrated motor board, operating at
1M Hz. This quasi-direct open-loop architecture employs torque
control to actuate the system. The choice of CAN bus communi-
cation ensures reliable and high-speed data transmission, crucial
for real-time control.

Stiffness Control Formulation
Stiffness control regulates the exoskeleton’s resistance to

movement, which is crucial for providing the right support dur-
ing squatting. The goal is to provide enough resistance during
the descent to control the user’s motion, while allowing suffi-
cient flexibility during the ascent to aid in standing back up. The
control paradigm is illustrated in Fig. 3.

The control law for stiffness is based on a simplified linear
spring model:

τ = K(θe −θ) (1)

Where:

τ is the torque applied by the exoskeleton.
K is the stiffness coefficient, which is dynamically tuned.
θe is the equilibrium joint angle (set to 0).
θ is the normalized joint angle.

The stiffness coefficient K is different for ascending and de-
scending. These values are tuned using EMG signals as feed-
back. A low stiffness value is applied during the descent to sup-
port controlled lowering, while the stiffness increases during the
ascent to assist in standing up with minimal effort.

Figure 3 illustrates the controller design, what the torque pro-
file looks like across different parameters.

EMG Data
EMG sensors (Trigno, Delsys) are affixed to the rectus femoris

and bicep femoris of each leg. EMG data are acquired at
1778 Hz, while angle orientation data are recorded at 148 Hz.
Following sensor placement, the maximum voluntary contrac-
tion (MVC) of each muscle is determined and subsequently used
for normalization.
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FIGURE 4. AN OVERVIEW OF THE EMG DATA PROCESSING
WORKFLOW. RAW EMG SIGNALS ARE FILTERED, RECTIFIED,
AND SMOOTHED, THEN NORMALIZED USING MVC VALUES.
THESE PROCESSED SIGNALS ARE SUBSEQUENTLY USED TO
COMPUTE COST FUNCTIONS CORRESPONDING TO THE FOR-
WARD AND BACKWARD SWING PHASES DURING SQUATTING.

Each EMG signal is processed in MATLAB by applying a
bandpass filter (20–450 Hz) to remove noise. Outliers, defined
as values exceeding three standard deviations from the mean, are
replaced using modified Akima cubic Hermite interpolation [20].
The signals are then rectified (by taking the absolute value and
subtracting the DC offset) and smoothed using a moving max-
imum filter, a discretization filter, and a moving average filter.
The window sizes for these filters (approximately 50 points for
the maximum filter, bin sizes between 10 and 30 for the dis-
cretization filter, and up to 400 points for the moving average
filter) are tuned individually to maximize the signal-to-noise ra-
tio. Following smoothing, the signals are normalized by dividing
by their corresponding MVC values. The EMG signal process-
ing pipeline is summarized in Fig. 4, which details the filtering,
rectification, smoothing, and normalization steps.

Angle data are linearly interpolated to match the EMG fre-
quency and differentiated to obtain velocity, which is then used
to segment the EMG signals into forward and backward swing
datasets. These datasets are epoched and averaged to yield eight
swing representations (four per movement direction). Two cost
functions, one for forward (d = f ) and one for backward (d = b)
swings, are computed as:

hd =
4

∑
n=1

rms(Md
n ), (2)
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where Md
1 ,M

d
2 ,M

d
3 ,M

d
4 denote the EMG signals from the respec-

tive muscles.

Bayesian Optimization
Bayesian optimization is employed to identify the optimal pa-

rameter vector x ∈ Rd that maximizes an unknown objective
f : Rd → R, using a Gaussian process (GP) surrogate model. The
GP is defined by its mean function m(x) and covariance (kernel)
k(x,x′), and for convenience we set m(x) ≡ 0. Given a set of
n evaluated inputs X = [x1, . . . ,xn]

⊤ and corresponding observa-
tions f = [ f (x1), . . . , f (xn)]

⊤, the GP prior over f is

p(f | X) = N (f | 0,K), (3)

where K ∈ Rn×n has entries Ki j = k(xi,x j). For any set of n∗
candidate test points X∗ = [x∗1, . . . ,x

∗
n∗ ]

⊤, the joint prior over ob-
served outputs f and latent values f∗ = [ f (x∗1), . . . , f (x∗n∗)]

⊤ is

(
f
f∗

)
∼ N

(
0,

(
K K∗

K⊤
∗ K∗∗

))
, (4)

where K∗ ∈Rn×n∗ with (K∗)i j = k(xi,x∗j), and K∗∗ ∈Rn∗×n∗ with
(K∗∗)i j = k(x∗i ,x∗j).

Conditioning on f, the posterior predictive distribution for f∗
at X∗ is Gaussian:

p(f∗ | X∗,X, f) = N (f∗ | µ∗,Σ∗), (5)

with

µ∗ = K⊤
∗ K−1f, (6)

Σ∗ = K∗∗−K⊤
∗ K−1K∗, (7)

where µ∗ ∈ Rn∗ is the vector of posterior means and Σ∗ ∈ Rn∗×n∗

the posterior covariance. For a single test point x, we write µ(x)
for its predictive mean and σ2(x) for the corresponding variance
(i.e. the diagonal entry of Σ∗).

We employ the ARD Matérn 5/2 kernel:

k(x,x′) = σ
2
f

(
1+

√
5r+ 5

3 r2
)

exp
(
−
√

5r
)
, (8)

where the scaled distance r is defined as

r =

√√√√ d

∑
i=1

(xi − x′i)2

ℓ2
i

. (9)

Here d is the input dimension, σ2
f the signal variance, and ℓi

the length-scale for the ith input.
To select the next evaluation, we maximize the Expected Im-

provement (EI) acquisition function. Let fbest = max1≤i≤n f (xi)
be the best observed value and ξ ≥ 0 an exploration parameter.
For a candidate x,

EI(x) =
(
µ(x)− fbest −ξ

)
Φ(Z)+σ(x)φ(Z), (10)

Z =
µ(x)− fbest −ξ

σ(x)
, (11)

where Φ(·) and φ(·) are the standard normal CDF and PDF, re-
spectively. The next query is

xn+1 = arg max
x∈X

EI(x), (12)

with X ⊆ Rd the feasible domain.

Experimental Protocol
The study is approved by the University of Illinois at Chicago

Institutional Review Board (STUDY 1022-2022). A one-day
protocol is conducted with four healthy participants (age: 24.75
± .83 years; weight: 60.9 ± 5.9 kg; height: 172.5 ± 10.6 cm,
male: 4, female: 0). Subjects perform squats while the exoskele-
ton assists with hip flexion and extension. The protocol consists
of three phases: acclimation, tuning, and validation. During ac-
climation, participants perform squats under all three conditions
to familiarize themselves with the device. During tuning, the
stiffness of the exoskeleton is adjusted using EMG-based HIL
optimization. Finally, in the validation phase, optimal stiffness
settings are used to evaluate performance over a sustained pe-
riod. The participants perform squats under three conditions: no
exoskeleton, unpowered exoskeleton, and powered exoskeleton.
To validate the optimal controller, metabolic cost measurements
are collected for 2 minutes for each condition using a COSMED
K5. The data is then used to estimate energy expenditure using
instantaneous cost mapping [21].

The experiment lasts approximately three hours, with frequent
rest breaks to prevent fatigue. A summary of the experimental
protocol is shown in Table 1.

RESULTS
We evaluate the impact of EMG-based HIL optimization on

metabolic cost during squatting. The optimized exoskeleton re-
duces metabolic cost by 21.3% compared to no device and by
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FIGURE 5. A BAR GRAPH COMPARING KEY PERFORMANCE METRICS—METABOLIC COST, MUSCLE EMG ACTIVITY, AND SUB-
JECTIVE BORG SCALE RATINGS—ACROSS THREE CONDITIONS: NO EXOSKELETON, UNPOWERED EXOSKELETON, AND OPTI-
MIZED CONTROLLER. PERCENTAGE REDUCTIONS ACHIEVED WITH THE OPTIMIZED CONTROLLER ARE SHOWN, WITH ERROR
BARS REPRESENTING STANDARD DEVIATIONS.

TABLE 1. EXPERIMENTAL PROTOCOL SUMMARY
Phase Segment Conditions/Trials Duration Rest Time

Acclimation No Device Activity 3 Conditions 20s 45s

Unpowered Device 3 Conditions 20s 45s

Powered Device 3-6 Conditions 20s 45s

Tuning Phase Initialization 4 Trials 20s 45s

Tuning 10 Trials 20s 45s

Validation No Device 1 Condition 2 min 5 min

Unpowered Device 1 Condition 2 min 5 min

Optimal Assistance 1 Condition 2 min 5 min

22.5% compared to an unpowered exoskeleton (Fig. 5). These
improvements underscore the benefits of real time controller tun-
ing on energy efficiency and user performance.

Figure 6 shows a heat map of control parameters and their as-
sociated cost function values for all subjects. The map clearly
delineates regions where the cost function is minimized, with

stars marking the optimal settings. This visualization confirms
the convergence of the Bayesian optimization process and illus-
trates that controller performance is highly sensitive to parame-
ter variations. Although individual physiology varies, the frame-
work reliably identifies efficient parameter sets across subjects.

Figure 7 plots the best normalized cost function value at each
trial for every subject. The consistent downward trend observed
in the plots indicates that the Bayesian optimization algorithm
quickly converges to effective control parameters. This rapid
convergence is critical for practical applications where tuning
must occur in real time.

Figure 8 presents detailed kinematic profiles of simulated
squat motions. The subplots display joint angles, angular veloc-
ity, control torque, and power output as functions of the normal-
ized squat phase. These profiles reveal that the exoskeleton dy-
namically synchronizes its assistance with the user’s movement
during both the descent and ascent phases, thereby improving
movement efficiency.

Subjective feedback on perceived effort is also collected us-
ing a Borg scale (ranging from 1 for very poor to 10 for excel-
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FIGURE 6. A HEAT MAP DEPICTING THE RELATIONSHIP
BETWEEN VARIOUS CONTROL PARAMETER COMBINATIONS
AND THEIR CORRESPONDING COST FUNCTION VALUES
ACROSS ALL SUBJECTS. OPTIMAL PARAMETER SETS ARE
HIGHLIGHTED WITH STARS, EMPHASIZING THE SETTINGS
THAT ACHIEVED THE MINIMUM COST FUNCTION VALUE
DURING THE BAYESIAN OPTIMIZATION PROCESS.
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FIGURE 7. CONVERGENCE PLOTS FOR EACH SUBJECT
SHOWING THE NORMALIZED BEST COST FUNCTION VALUE
FOUND AT EVERY TRIAL. THE GRAPHS DEMONSTRATE THE
RAPID CONVERGENCE OF THE OPTIMIZATION ALGORITHM
TOWARD EFFECTIVE CONTROL PARAMETERS FOR ALL SUB-
JECTS.

lent). Participants rate the optimized exoskeleton with an aver-
age score of 4.25, which is notably lower than the scores for the
unpowered device (6.5) and no device (5.36). This reduction in
perceived effort complements the objective metabolic improve-
ments observed.

Finally, the optimized controller reduces average EMG activ-
ity across four muscles by 16.6% relative to no device and by
21.4% compared to the unpowered condition. This decrease in

muscular activity further supports the effectiveness of the tuning
approach in reducing the physical effort required during squat-
ting.
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FIGURE 8. DETAILED KINEMATIC PROFILES FOR FOUR
SUBJECTS DURING SQUATTING, PRESENTED AS FOLLOWS:
(A) JOINT ANGLE (DEGREES) VERSUS NORMALIZED SQUAT
PHASE (B) ANGULAR VELOCITY (DEG/S) VERSUS SQUAT
PHASE, (C) CONTROL TORQUE (N·M/KG) VERSUS SQUAT
PHASE, AND (D) POWER (W/KG) VERSUS SQUAT PHASE.
THESE PROFILES ILLUSTRATE HOW THE EXOSKELETON’S
ASSISTANCE SYNCHRONIZES WITH THE USER’S MOVEMENT
THROUGHOUT THE SQUAT CYCLE.

DISCUSSION
This study demonstrates that EMG-based HIL optimization

improves exoskeleton stiffness control during squatting. The op-
timized controller achieves significant metabolic cost reductions
(21.3% relative to no device and 22.5% relative to an unpow-
ered exoskeleton) while completing the tuning process in just 4
minutes and 40 seconds. This efficiency makes the method a
strong alternative to conventional metabolic cost based tuning
approaches.

In addition to metabolic improvements, the controller tuning
also decreases EMG activity (by 16.6% compared to no device
and 21.4% compared to the unpowered condition) and lowers
perceived effort (with an average rating of 4.25 compared to
higher ratings for the other conditions). These findings indicate
that the optimized exoskeleton not only reduces energy expendi-
ture but also improves muscle coordination and user comfort.
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A noteworthy advantage of our approach is its rapid conver-
gence. The EMG-based Bayesian optimization reaches optimal
control parameters in a fraction of the time (4 minutes and 40
seconds) compared to the 15.8 minutes required by traditional
metabolic cost based methods [19]. This acceleration minimizes
the tuning duration and reduces participant fatigue, thereby en-
hancing the practical applicability of the method for real time,
personalized tuning.

The heat map in Figure 6 offers valuable insight into the con-
trol parameter space. It clearly identifies regions where the cost
function is minimized, indicating that the optimization process
effectively navigates parameter variations even in the presence of
individual differences. The convergence plots in Figure 7 further
confirm the reliability and stability of the tuning process across
subjects.

Kinematic profiles in Figure 8 reveal that the controller tun-
ing aligns the exoskeleton’s assistance with the natural motion
phases of squatting. The correspondence between control torque,
power output, and the squat phase demonstrates that the tuning
process enhances movement efficiency while reducing metabolic
cost.

While these results are promising, the study has limitations.
The small sample size and potential variability in EMG sensor
placement and signal processing may affect generalizability. Fu-
ture work will focus on refining sensor calibration, incorporating
additional physiological metrics, and validating the approach on
a larger and more diverse population.

Overall, the findings support that EMG-based HIL optimiza-
tion enhances exoskeleton performance by reducing metabolic
cost, lowering muscle activation, and improving user comfort.
The rapid convergence and personalized tuning capabilities un-
derscore the potential of this method for assistive and rehabilita-
tive applications.

CONCLUSION
This study demonstrates that EMG-based Bayesian optimiza-

tion is a rapid and effective method for tuning exoskeleton con-
trollers during squatting. The optimized tuning significantly re-
duces metabolic cost, improves user comfort, and lowers per-
ceived effort. With the entire process completing in just 4 min-
utes and 40 seconds, this approach supports real time, personal-
ized adjustments for both rehabilitation and daily use.

By integrating EMG data into a Bayesian framework, the
method provides physiological feedback that facilitates adaptive
control. This efficient approach offers a clear advantage over tra-
ditional metabolic cost based tuning methods and improves the
interaction between the user and the exoskeleton. Future work
will focus on enhancing the optimization process by incorporat-
ing additional physiological signals, refining sensor calibration,
and testing the method on a larger scale. Overall, EMG-based
Bayesian optimization presents a promising advance in assistive

technology, with the potential to significantly improve exoskele-
ton performance and user satisfaction.
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