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Abstract: The paper presents a robust control technique that combines the Control Lyapunov
function and Hamilton-Jacobi Reachability to compute a controller and its Region of Attraction
(ROA). The Control Lyapunov function uses a linear system model with an assumed additive
uncertainty to calculate a control gain and the level sets of the ROA as a function of the worst-
case uncertainty. Next, Hamilton-Jacobi reachability uses the nonlinear model with the modeled
uncertainty, which need not be additive, to compute the backward reachable set (BRS). Finally,
by juxtaposing the level sets of the ROA with BRS, we can calculate the worst-case additive
disturbance and the ROA of the nonlinear model. We illustrate our approach on a 2D quadcopter
tracking a trajectory in the presence of disturbances and a 2D quadruped achieving height and
velocity regulation in the presence of added mass.

Keywords: Control Lyapunov Function, Hamilton-Jacobi Reachability, Model Uncertainty,
Quadcopter, Quadruped

1. INTRODUCTION

Model predictive control (MPC), an online optimal control
technique, has received increased adaptation because of
its ability to quickly adapt to the situation in real-time
(Di Carlo et al., 2018; Merabti et al., 2015). However,
MPCmay perform poorly when there is model uncertainty.
Hence there is a need to investigate techniques to enable
robustification of MPC controllers.

Robust control offers the best possible control for the
worst-case uncertainty. The H infinity method is a robust
control approach for linear or linearized systems but re-
quires a reasonably accurate model (Babar et al., 2013).
On the other hand, adaptive control uses experimental
data to either update the model or the controller (Som-
bolestan and Nguyen, 2023). Learning approaches such
as Reinforcement learning can provide robustness using
dynamic randomization. Here the controller is a neural
network tuned by varying the model and environmental
parameters in the simulator, thus making the controller
robust to uncertainty (Tan et al., 2018). While robust
and adaptive control offers stability guarantees, learning
methods do not.

The safety of controllers is often guaranteed by comput-
ing the region of attraction (ROA). The sum-of-squares
method uses a polynomial approximation of the system
dynamics and convex optimization to estimate the ROA
(Tedrake et al., 2009). The control-Lyapunov and control-
barrier function (CLF-CBF) approaches do not compute
the ROA. Still, they guarantee the system would not
violate safety constraints through the barrier function
and ensure reachability to the goal using the Lyapunov
function (Ames et al., 2016). More recently, CLF-CBF has
been formulated as constraints in the MPC optimization to
⋆ The work was supported by NSF grant 2128568
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Fig. 1. (a) Control Lyapunov function (CLF) uses the lin-
ear dynamics to compute the controller and the level
set for the Region of Attraction (ROA) for a given
maximum disturbance wi (red ellipses); (b) Hamilton-
Jacobi (HJ) Reachability uses the nonlinear dynamics
with the disturbance w to compute the Backward
Reachable set (gray region); (c) Superimposing the
BRS with level sets enables computation of the worst
case disturbance (here w2 = wmax) and the safe set
(red ellipse)

enable optimal control under uncertainty. (Minniti et al.,
2021). The Hamilton-Jacobi (HJ) reachability analysis is
a tool to compute the target sets the system can reach
from a given state under constraints on the control and
disturbances. It has been used to calculate the safety
regions for quadcopter (Aswani et al., 2013) and path
planning of vehicles (Chen et al., 2018).

We introduce Robust Model Predictive Control as a plan-
ning method with safety guarantees for bounded model un-
certainty. We assume that a nominal MPC controller works
for the uncertainty-free nominal system. We linearize the
system, and use a Control Lyapunov Function approach
to compute the feedback control gain and the level sets for
the ROA for different values of the additive disturbances
(see Fig. 1 (a)). Note that the additive disturbance in the
linearized model is an assumption as the actual model



may not have an additive disturbance. We use the non-
linear model with the Hamilton Jacobi (HJ) reachability
to compute the safe set (see Fig. 1 (b)). Finally, by super-
imposing the level sets on the safe set, we can compute
the worst case additive disturbance for the linear model
as well as the ROA (see Fig. 1 (c)). Our CLF method is
similar to (Yu et al., 2010), but the novelty lies in using HJ
to estimate the ROA. The technique is demonstrated on
a 2D quadcopter tracking a trajectory under disturbance
and a 2D quadruped regulating the height in the presence
of added weight and tracking a horizontal speed while
pushing a box.

2. METHODS

2.1 Model Predictive Control (MPC)

Model predictive control (MPC) is an online optimization
technique. It uses the current estimate of the state and a
model of the plant to estimate the state over a time horizon
and a projected cost. The minimization of the cost gives
the control over the time horizon. However, only the first
computed control is applied, and the process is repeated
for the next time step and so on.

The MPC problem at time t and with horizon length k
can be written as follows

min
x,u

k−1∑
i=0

∥x(t+ i)− xref (t)∥QMPC
+ ∥u(t+ i))∥RMPC

(1)

s.t. ẋt+i = f(xt+i, ut+i), (2)

xt+i+1 = xt+i + f(xt+i, ut+i)∆tMPC, (3)

ui ∈ U, xt+i ∈ X, i = 0, 1...k − 1 (4)

where x ∈ Rn is the system state, u ∈ Rm is the control
input,QMPC ∈ Rn×n and RMPC ∈ Rm×m are user-chosen
diagonal positive weight matrix, scalar ∆tMPC is the time
step, and U,X are feasible sets for the control and state.

2.2 Hamilton-Jacobi Reachability Analysis (HJ)

Hamilton-Jacobi Reachability Analysis (HJ) provides for-
mal guarantees for nonlinear control systems’ performance
and safety properties. Here HJ is used to compute the
backward reachable set (BRS). BRS R(t) is the set of
states x ∈ Rn from which the system can be driven into
the target set of states T in a predefined time.

Consider the dynamical system

ẋ(t) = f(x(t), u(t), w(t)) (5)

with state x ∈ Rn, time t, control u, disturbance w,
and dynamics f : Rn × U × W → Rn is assumed to
be continuous, bounded, and Lipschitz continuous with
respect to all inputs. The disturbance is bounded as given
below:

W = {w(t) ∈ Rp | ∥w(t)∥∞ ≤ wmax} (6)

Let the solution to the Eqn. 5 be χ(t;x, t0, u(·), w(·)) :
[t0, 0] → Rn. The initial condition is χ(t0;x, t0, u(·), w(·)) =
x0.

We define the target set of states as T . The BRS is the
set of states R(t) such that we can compute a control

u that will drive the R(t) to the T for the worst case
disturbance wmax exactly in time t0. The BRS is defined
mathematically as follows

R(t) = {x : ∀u(·) ∈ U,∃w(·) ∈ W,∃t ∈ [t0, 0], ...

χ(t;x, t0, u(·), w(·)) ∈ T } (7)

In the HJ formulation, the target set is a sublevel set of a
function l(x), where x ∈ T ⇔ l(x) ≤ 0. The BRS in HJ
reachability becomes the sublevel set of the value function
V (x, t) defined as follows

V (x, t) := min
w(·)

max
u(·)

l(χ(t0;x, t0, u(·), w(·))) (8)

The value function V (x, t) may be obtained by solving the
HJ partial differential equation:

∂V

∂t
+H∗(x,∇V (x(t), t), t) = 0

V (x, 0) = l(x), t ∈ [t0, 0]

H∗ = min
w(·)

max
u(·)

∇V (x, t)T f(x, u) (9)

2.3 Control Lyapunov Function (CLF)

The MPC control presented earlier assumes that there
is no external disturbance. By design, MPC control can
handle small disturbances but can fail in the presence of
large disturbances. Here we present a Control Lyapunov
Function to robustify the controller.

Consider the nominal system obtained by setting w(t) = 0
in Eqn. 5

˙̄x(t) = f(x̄(t), ū(t), 0) (10)

By defining the error e = x− x̄ between the nominal and
actual system, the error dynamics can be described as:

ė = f(x(t), u(t), w(t))− f(x̄(t), ū(t), 0) (11)

In order to achieve, |e| → 0, we propose a robust controller
of the form:

u = ūMPC +K(x− x̄) (12)

where ūMPC is the feed-forward control from the MPC
(see Sec. 2.1), x is the measured state, x̄ is the reference
trajectory, and K(·) := Rn → Rm is the ancillary feedback
control law derived from Lemma 2. It can guarantee all
solutions of (11) are decreasing towards zero and are inside
an invariant set defined by Lemma 1.

Lemma 1: Suppose there exists E(x(t)) > 0, λ > 0 and
µ > 0 such that

d

dt
E(x(t)) + λE(x(t))− µTw(t)w(t) < 0, (13)

and if Ω(x) is the invariant set, then the system trajectory
starting from x(t0) ∈ Ω(x) will remain in Ω(x), where

Ω(x) :=

{
x

∣∣∣∣E(x(t)) <
µw2

max

λ

}
(14)

Proof : See (Yu et al., 2010). □

Remark 1 : The size of the invariant set Ω(x) may be tuned
by adjusting λ and µ to guarantee Ω(x) ∈ X, that is, the
invariant set is inside the feasible set of states.

Remark 2 : It is usually hard to model the uncertainty and
find the disturbance bound (Cockburn and Morton, 1997).
In this paper, instead of directly modeling uncertainty, we
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Fig. 2. (a) 2D quadcopter (b) 2D quadruped

utilize the Hamilton-Jacobi analysis (HJ) to determine the
bound on the disturbance, ωwax.

Lemma 2: Suppose there exist parameter scalars λ > 0 ,
µ > 0 and matrix variables 0 < Y ∈ Rn×n, L ∈ Rm×n, the
cost function J =

∫∞
0

xTQx+uTRu can be minimized by
the following optimization:

max
Y,L

tr(Y ), (15)

s.t.

R11 Y T LT Bw

Y −Q−1 0 0
L 0 −R−1 0
BT

w 0 0 −µI

 ≺ 0, (16)

R11 = (AY +BL)T + (AY +BL) + λY, (17)

where Q ∈ Rn×n and R ∈ Rm×m are diagonal positive
weight matrix. Then with u = Kx,E(x) = xTPx, where
Y = P−1 and L = KY , Lemma 1 is satisfied for the
linearized form, ẋ = Ax + Bu + Bww, of the nonlinear
system ẋ = f(x, u, w).

Proof : Given in appendix. □

2.4 Example 1: 2D Quadcopter

Nonlinear Model: The 2D Quadcopter is shown in Fig. 2
(a), and the equations derived from using the Newton-
Euler method are given below

ẋ = f(x, u, w) =


ẏ
ż

ϕ̇
−m−1us sinϕ+ w1

m−1us cosϕ− g + w2

0.5I−1
xx lud

 (18)

where y, z, ϕ are horizontal, vertical position and orien-
tation, ẏ, ż, ϕ̇ are horizontal, vertical velocity and angular
velocity,m, l, Ixx, g are mass, length, the moment of inertia
and gravity, us = u1 +u2, ud = u1 −u2 are the sum of the
thrust forces and the difference in the thrust forces. We
assume there is an additive disturbance wi ∈ R, where
i = 1, 2, and is bounded ∥wi∥∞ ≤ wmax.

Linearized Model: The system may be linearized by
assuming sinϕ ≈ ϕ and cosϕ ≈ 1, us = mg + δus,
ud = δud, and note that δussinϕ = δusϕ ≈ 0

ẋ = Ax+Bu+Bww +G

˙̄x = Ax̄+Bū+G (19)

where A can be populated as follows (assuming index
starts from 1): A = zeros(6, 6), A(1, 4) = A(2, 5) =
A(3, 6) = 1, A(4, 3) = −g; B = zeros(6, 2), B(5, 1) = 1/m
and B(6, 2) = 0.5I−1

xx l; Bw = zeros(6, 2), B(4, 1) =
B(5, 2) = 1, and G = zeros(6, 1), G(5, 1) = −g, where

the actual state is x =
[
y z ϕ ẏ ż ϕ̇

]T
, control is u =

[δus δud]
T
, the nominal state and control x̄, ū are similar

to x, u respectively. The disturbance is w = [w1 w2]
T
.

Robust control: The proposed controller is of the form

u = ū+K(x− x̄) (20)

where the ancillary feedback control gain is K ∈ R2×6

for the given λ > 0 and µ > 0 and is computed from
Lemma 2. Furthermore, given the bound wmax, the region
of attraction can be computed using Lemma 1.

2.5 Example 2: 2D Quadruped

Nonlinear Model: The 2D quadruped is shown in Fig. 2
(b), and the equations are derived from the Newton-Euler
method. We have assumed that all mass is concentrated
at the torso, and the legs are massless.

ẋ = f(x, u, w) =


ẏ
ż

ϕ̇
m̄−1(Fi + Fj)−G

I−1
xx (ri × Fi + rj × Fj)

 (21)

where the positions of the center of mass in the global
frame are y and z, the angular position of the body with
respect to the horizontal direction is ϕ, the ground reaction
forces on the diagonal legs are Fi, Fj ∈ R2, where i and j
are diagonal legs, the position vectors from the respective
feet to the center of mass are ri, rj ∈,R2, the constant
vector is G = {µg, g} where gravity is g and coefficient of
static friction is µ, inertia is Ixx ∈ R, and the uncertainty
is in the mass, m̄ = (m + ∆m) ∈ R, where the actual
mass is m. The uncertainty in mass is ∆m. We assume
that the quadruped moves in a trot gait where diagonal
legs contact the ground. The step time is considered to be
constant.

Linearized Model: We assume that the linearized equa-
tion in the y- and z-direction (lines 1, 2, 4, 5 in Eqn. 21)
can be written as

ẋi = Aixi +Biui +Bwiwi +Gi

˙̄xi = Aix̄i +Biū+Gi (22)

where xi ∈ R2, i = 1, 2 such that x1 = [y, ẏ] and x2 =
[z, ż] u1 = {δFxf , δFxr} and u2 = {δFyf , δFyr} where
Fx, Fy are the control forces on the front and rear leg and
subscript f r refer to the diagonal front and rear feet which
are in contact with the groud, Ai, Bi, Bwi can be populated
as follows (assuming index starts from 1): Ai = zeros(2, 2),
Ai(1, 2) = 1; B = zeros(2, 2), Bi(2, 1) = Bi(2, 2) = 1/m;
Bwi = zeros(2, 1), Bwi(2, 1) = 1; Gi = zeros(2, 1),
G1(2, 1) = µ,G2(2, 1) = −g. We model the uncertainty in
mass (see ∆m in Eqn 22) as an additive disturbance, wi,
with a bound given by W = {wi ∈ R | ∥wi∥∞ ≤ wmax}.
Here wmax is unknown, but we will use HJ to estimate it
as shown in HJ section below.

Robust Control: The control is the same from (Bhoun-
sule and Yang, 2023), but the stance phase control is
modified for robustness as given below.

ui = ūi +K(xi − x̄i) (23)

where the ancillary feedback control gain is K ∈ R2×2 for
the given λ > 0 and µ > 0 and is computed from Lemma
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Fig. 3. Bicopter is tracking the figure 8 curve in the presence of bounded disturbance. (a) Figure 8 tracking in the y-z
plane. (b) Horizontal tracking errors with the invariant set or the Region of attraction (ROA). (c) Vertical tracking
errors with invariant set.

2. Furthermore, given the bound wmax, the region of
attraction may be computed using Lemma 1. However, the
bound wmax is unknown, and we will use HJ to estimate
it, as shown in the HJ section below.

Hamilton-Jacobi Reachability: The uncertainty in the
model arises due to an unknown mass ∆m placed on top
of the robot. Thus, the mass of the robot, m̄ = m +
∆m, is uncertain. From Eqn 21, we observe that this
is a multiplicative uncertainty that cannot be isolated
symbolically as an additive term, w, as we have assumed
in the linearized Eqn. 22. We use HJ to identify a bound
on w, wmax, as follows

(1) The HJ uses the nonlinear dynamics Eqn. 21 and the
uncertainty (here the added mass ∆m) to compute
the Backward Reachable Set (BRS) R for a given
target set T . The safe set, S, is the set of all states
that are guaranteed to be invariant and are given by
S = R∩ T .

(2) The CLF using Lemma 2 to compute the gain K and
then Lemma 1 to compute the region of attraction for
a given wmax.

(3) Finally, we combine HJ and CLF as follows. We
compute the value of the worst-case uncertainty,
wmax, using a line search method such that the region
of attraction computed using the CLF lies within the
safe set computed using HJ.

3. RESULTS AND DISCUSSION

Overview: We present results on a quadcopter tracking
a lemniscate curve with disturbances, and a quadruped
maintaining a set height while carrying an unknown mass
and following a reference velocity as it pushes an unknown
mass. We compare the results of model predictive control
and robust model predictive control that combines Control
Lyapunov Function and Hamilton-Jacobi Reachability.

For CLF, we used YALMIP (Lofberg, 2004), a toolbox
for solving Linear Matrix Inequality and other features in
MATLAB, to compute the feedback gain K and positive
definite matrix, P . For HJ, we used helperOC (Bansal
et al., 2017), optimal control toolbox for Hamilton-Jacobi
Reachability Analysis, to compute the maximum distur-
bance wmax for the quadruped. We used a custom simu-

lation written in Python for 2D quadcopter and MuJoCo
(Todorov et al., 2012) for the 2D quadruped. All compu-
tations are on Ubuntu 20.04 on Intel Core i7.

2D quadcopter: The model parameters are m = 1 kg,
l = 0.2 m, Ixx = 0.1 kg·m2, g = 9.81 m/s2, and the
additive uniformly distributed disturbance wi ∈ W, where
W = {wi ∈ R | ∥wi∥∞ ≤ 3.5} where i = 1, 2. For
the quadcopter we track the figure 8 which is given by
x = 0.5 sin(2τ) and y = 0.5 cos(τ) where τ is assumed to
be a fifth order polynomial and the constants are solved
such that τ(t = 0) = τ̇(t = 0) = τ̈(t = 0) = τ̇(t = T ) =
τ̈(t = T ) = 0 and τ(t = T ) = T where the end time is
T = 5.

For the nominal MPC, the time step discretization
is dt = 0.05 s, and the prediction horizon is two
time steps. The cost function matrices are QMPC =
diag([100, 10, 1e9, 1e5, 1e14, 1e4]) and RMPC = diag([1e6,
1e6]).

For the Robust MPC we used R = diag([1e − 2, 1e − 4]),
Q = diag([1e − 1, 1, 1, 1, 1, 1e − 2]), µ = 0.1, and λ = 0.5.
Using Lemma 1 and Lemma2, we computed the gain K
and the positive definite matrix P .

Figure 3 (a) shows the quadcopter’s ability to track figure
8 using nominal MPC and robust MPC. It can be seen
that the nominal MPC fails to track about halfway while
the robust MPC can track successfully. Figure 3 (b) and
(c) shows the tracking error in the y- and z-direction.

2D quadruped: The model parameters m = 12.454 kg,
Ixx = 0.0565 kg·m2, and g = 9.81 m/s2, where the length
of the thigh and shank are ℓ = 0.2 m, considering an
additional mass disturbance ∆m = 5 kg loaded on the
robot’s torso and in front of the robot to be the uncer-
tainty, interfering with height and velocity regulation. The
nominal robot height is 0.32 m, and the forward velocity
is 0.45 m/s.

For the nominal MPC, the time step discretization is dt =
0.05 s, and the MPC horizon is 2 time steps. The cost func-
tion matrices are QMPC = diag([1e5, 1e3, 1e7, 1e2, 1e1,
1e2]) and RMPC = 0.

For the control in the horizontal direction (y-direction)
R = diag([1]), Q = diag([500, 10]), µ = 200, and λ = 0.3.
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Fig. 4. For the 2D quadruped, two separate experiments are conducted. (a) simulation snapshot of quadruped while
loading an unknown 5 kg object, along with the vertical height tracking result. (b) vertical height tracking errors
with invariant set (c) simulation snapshot of quadruped while pushing an unknown 5 kg object along with the
forward velocity tracking result (d) forward velocity tracking errors with invariant set

Using Lemma 1 and Lemma 2 we computed the gain
K and the positive definite matrix P For the control
in the vertical direction (z-direction), R = diag([0.01]),
Q = diag([1000, 1]), µ = 90, and λ = 0.8. Using Lemma 1
and Lemma 2 we computed the gain K and the positive
definite matrix P

Figure 4 (a) and (b) shows reference height tracking in
a trot gait with added weight. The reference height is
the dashed gray line. The robust MPC (black line) shows
substantially lower tracking error than the nominal MPC
(gray line). Figure 4 (c) and (d) show reference velocity
tracking when the robot is pushing a weight. The reference
velocity is shown as the dashed gray line. The robust MPC
(black line) shows a substantially lower tracking error than
the nominal MPC (gray line). The latter eventually goes
beyond the safe region while the robust MPC stays within
the Invariant set.

This paper shows that CLF can be combined with HJ
reachability to create a robust controller with safety guar-
antees for an existing nominal controller (here MPC).

The method capitalizes on convex optimization with a
quadratic cost and a linear model to compute the ROAs
as a function of the additive disturbances. Then HJ is used
to calculate the correct approximation for the additive
disturbance to select the correct ROA. The results are
demonstrated on a 2D quadcopter and 2D quadruped in
simulation.

The method has its limitations. The process is conservative
and requires extensive trial and error to compute the gains
and invariant set for the CLF. The technique is strictly
offline and relies on understanding the nonlinear model
and the model uncertainty. The method works well for
fully actuated or under-actuated systems without strong
coupling (e.g., for 2D quadruped, we assumed the coupling
between pitching motion and translation was minimal).
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Appendix A. PROOF OF LEMMA 2

We prove that Lemma 2 holds for the system as follow:

ẋ = Ax+Bu+Bωω (A.1)

u = Kx (A.2)

Firstly, to achieve equilibrium point tracking, an optimiza-
tion problem is formulated. This involves using a standard
infinite horizon quadratic cost as the performance mea-
sure.

min

∫ ∞

0

xTQx+ uTRu (A.3)

A controller which minimizes the proposed cost is given by
solving the following semidefinite programming problem:

P : min
P,K

tr(P ) (A.4)

s.t. (A+BK)TP +P (A+BK) ≺ −Q−KTRK (A.5)

where positive definite matrix P is defined by the propose
CLF E(x) = xTPx and Q,R are diagonal weight matrices.
Assuming the existence of positive scalars µ and λ, the
original constraint can be rewritten to include additional
negative terms −PBω(µ)

−1(PBω)
T , −λP . This modifica-

tion preserves the validity of (A.5) the original constraint,
leading to the new formulation as follows:

(A+BK)TP + P (A+BK) ≺
−Q−KTRK − PBω(µ)

−1(PBω)
T − λP (A.6)

Using Schur complement, the constraint (A.6) can be
rewritten as:

• := (A+BK)TP + P (A+BK) + λP (A.7) • I KT PBω

I (−Q)−1 0 0
K 0 (−R1)

−1 0
BT

ωP 0 0 −µ

 ≺ 0 (A.8)

Performing a congruence transformation on (A.8) with
the matrix diag(x,Ξ,Φ, ω), the following inequality is
obtained:

xT [(A+BK)TP + P (A+BK) + λP ]x+

ΞT Ix+ΦTKx+ ωT (PBω)
Tx+ xT IΞ− ΞTQ−1Ξ+

xTKTΦ− ΦTR−1Φ+ xTPBωω − µωTω < 0 (A.9)

Assuming Ξ,Φ = 0, and considering the CLF E(x) =
xTPx along with its derivative d

dtE(x) = ẋTPx+ xTPẋ ,
(A.9) can be reformulated as follows:

d

dt
E(x) + λE(x)− µωTω < 0 (A.10)

Thus, according to Lemma 1, by solving semidefinite
programming problem P1 subject to constraint (A.5), it
can be guaranteed that system remains robustly invariant

within the set Ω(x) :=
{
x
∣∣∣E(x) <

µw2
max

λ

}
.

By using the standard method in control, performing a
congruence transformation with Y = P−1, introducing
L = KY , and applying a Schur complement, nonconvex
problem P can be formulated as a convex problem as
follow:

max
Y,L

tr(Y ) (A.11)

∗ := (AY +BL)T + (AY +BL) + λY (A.12)

s.t.

 ∗ Y T LT Bω

Y −Q−1 0 0
L 0 −R−1 0
BT

ω 0 0 −µ

 ≺ 0 (A.13)

□


