
An Attention-aware Deep Reinforcement Learning Framework for
UAV-UGV Collaborative Route Planning

Md Safwan Mondal1,†, Subramanian Ramasamy1, James D. Humann2, James M. Dotterweich3,
Jean-Paul F. Reddinger3, Marshal A. Childers3, Pranav Bhounsule1

Abstract— Unmanned aerial vehicles (UAVs) possess the ca-
pability to survey vast areas, yet their operational range is
limited by their battery capacity. Deploying mobile recharging
stations via unmanned ground vehicles (UGVs) can significantly
enhance the endurance and effectiveness of UAVs. However,
optimizing the routes for both UAVs and UGVs, referred to as
the UAV-UGV cooperative routing problem, requires a sophis-
ticated planning framework to determine the vehicles’ routes
and their recharging points. To address this, in this paper, we
utilize a deep reinforcement learning (DRL) based framework
equipped with multi-head attention layers. The framework is
designed to sequentially select actions to construct routes for
the UAV and UGV and to establish their rendezvous points
for recharging. We evaluate our framework across various
problem instance sizes and distributions, comparing it against
recent heuristic-based methods and an existing learning-based
method as baselines. Our proposed algorithm surpasses these
baselines in terms of solution quality and runtime efficiency in
the test scenarios, thus proving its effectiveness. Additionally, we
investigate the application of our DRL policy in online mission
planning to accommodate dynamic changes within the mission
scenario.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have rapidly evolved as
an emerging technology, finding profound applications in
both military and civilian sectors [1]–[3]. They are critical
for real-time sensing in scenarios like traffic monitoring [3],
border security [4], disaster management [5] and forest fire
surveillance [6], all of which require continuous operation.
However, a major limitation of UAVs in such persistent ap-
plications is their restricted flight time due to limited battery
capacity. This challenge can be mitigated by leveraging the
synergies of multi-agent systems that combine UAVs with
unmanned ground vehicles (UGVs), which can act as mobile
stations to facilitate recharging for UAVs. This collaborative
approach can enhance the overall task efficiency and prolong
the UAVs’ operational longevity [7].

In this work, we address a cooperative routing problem
involving a team of a UAV and UGV, tasked with visiting

1Md Safwan Mondal, Subramanian Ramasamy and Pranav A. Bhounsule
are with the Department of Mechanical and Industrial Engineering,
University of Illinois Chicago, IL, 60607 USA. mmonda4@uic.edu,
sramas21@uic.edu, pranav@uic.edu 2James D. Humann
is with DEVCOM Army Research Laboratory, Los Angeles, CA, 90094
USA.james.d.humann.civ@army.mil 3James M. Dotterweich,
Jean-Paul F. Reddinger, Marshal A. Childers are with DEVCOM
Army Research Laboratory, Aberdeen Proving Grounds, Aberdeen,
MD 21005 USA. james.m.dotterweich.civ@army.mil,
jean-paul.f.reddinger.civ@army.mil,
marshal.a.childers.civ@army.mil
† Corresponding author, *This work was supported by ARO grant

W911NF-14-S-003.

Rendezvous point
UAV path
UGV path

UAV

UGV

Starting
depot

Fig. 1: Illustration of the fuel-constrained UAV-UGV cooper-
ative routing problem: The UAV visits a set of mission points
and lands on the UGV to recharge. The goal is to plan the
routes for both the UGV and UAV to minimize the time taken
to visit all the mission points while meeting the fuel and speed
constraints of the UAV and UGV.

a set of designated mission points in the shortest possible
time (see Fig. 1). The UAV operates under a limited battery
life and is supported by the UGV, which acts as a mobile
recharging depot. The UGV is also limited by its speed and
can only travel on the road network. Given the heterogeneity
of the vehicles, the challenge lies in strategizing their routes
to ensure that the UGV can effectively recharge the UAV to
execute the mission optimally. This necessitates a compre-
hensive cooperative routing framework that optimally plans
the routes for both the UAV and UGV while synchronizing
their rendezvous for recharging.

A. Related works

Extensive research has been conducted on different variants
of UAV-UGV cooperative routing problem [8]–[10] across
the fields of transportation and robotics. In transportation,
the Truck-Drone coordinated delivery problem, analogous to
the UAV-UGV cooperative routing problem, is modeled as a
variant of the Vehicle Routing Problem with Drones (VRP-
D) [11] or the Traveling Salesman Problem with Drones
(TSP-D) [12]. These routing problems are often modeled
using Mixed Integer Linear Programming (MILP) [13] and
addressed by employing a multi-echelon strategy [14]. While
MILP can theoretically yield an optimal solution, it suffers
from the curse of dimensionality, being an NP-Hard problem,
and thus becomes computationally infeasible for larger-
scale problems [15]. As a result, handcrafted heuristics and
metaheuristics are employed to produce suboptimal solu-
tions within an acceptable time. However, these heuristics
are mostly tailored to specific problem types, making the

2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 14-18, 2024. Abu Dhabi, UAE

979-8-3503-7769-9/24/$31.00 ©2024 IEEE 13687

process labor-intensive and limiting their generalizability and
effectiveness.

In recent years, learning-based methodologies have be-
come a promising alternative for solving the vehicle routing
problem, its variants, and other combinatorial optimization
problems. Kool et al. [16] introduced an encoder-decoder
Transformer architecture that outperformed several classical
heuristic methods across a variety of routing problems.
Similarly, Li et al. [17] employed a deep reinforcement
learning (DRL) method with attention mechanisms to ad-
dress the heterogeneous capacitated vehicle routing problem,
achieving superiority in both solution quality and computa-
tional efficiency over non-learning baselines. Furthermore,
Wu et al. [18] explored the truck and drone based last-
mile delivery problem using reinforcement learning (RL).
They decomposed the optimization problem into customer
clustering and routing components, applying an encoder-
decoder framework with RL to solve it effectively. On a
similar note, Fan et al. [19] utilized a multi-head attention
mechanism combined with a DRL policy to design routes for
an energy-constrained UAV, although their model assumed
a fixed set of recharging locations for the UAV. Despite
these numerous RL frameworks addressing various vehicle
routing problems, there remains an opportunity to explore the
UAV-UGV collaborative routing problem with its underlying
multi-agent aspect. In cooperative routing, it is crucial not
only to decide the sequence of mission point visits but
also to determine the recharging instances between agents,
ensuring their successful coordination. Ramasamy et al. [20]
demonstrated the impact of these recharging instances on
the overall efficiency of cooperative routing, underscoring
the need for effective synchronization between the vehicles.
Therefore, this paper proposes an RL framework based on an
encoder-decoder transformer architecture and policy gradient
method to determine coordinated routing between an energy-
constrained UAV and a UGV acting as a mobile recharging
station. The framework has been tested across different prob-
lem sizes and distributions, indicating its generalizability. To
this end, we present the following novel contributions:
1. We model the energy-constrained UAV-UGV cooperative
routing problem as a Markov Decision Process (MDP),
enabling its solution through RL, which utilizes an encoder-
decoder based transformer architecture with attention layers.
2. We evaluate the framework across various problem sizes
and distributions, showcasing its generalization capabilities.
3. We compare our method against recent heuristic methods
for cooperative routing and learning-based approaches. Our
approach demonstrates superior solution quality, highlighting
its effectiveness and reliability.
4. We also investigate the framework’s utility for online
route planning in response to dynamically appearing mission
points.

II. PROBLEM FORMULATION

A. Problem overview

To formally define the problem, let us consider a system
consisting of a fuel-constrained UAV, Ua and a UGV, Ug

tasked with visiting a set of n mission points, M =
{m0,m1, ...,mn} spread across a scenario. We have two
types of mission points: some mission points are located
within a road network G, can be surveyed either by UAV
flyover or by UGV based road visit (referred to as ground
points, Mg). Other mission points, situated outside the road
network, are accessible only to the UAV (referred to as
UAV points, Ma); hence, mission points M can be defined
as M = Mg ∪ Ma. The vehicles exhibit heterogeneous
characteristics: the UAV has a limited battery capacity F a

but can fly with a faster velocity va, whereas the UGV
moves at a slower pace vg , and operates exclusively on the
road network G. For recharging, the UAV meets the UGV
at any ground point, spends a fixed recharging service time
TR there, and then resumes its flight by taking off from the
UGV. The mission initiates as soon as the UAV or UGV
leaves the starting depot and concludes once every mission
point has been visited, finishing with the UAV completing
its final recharge on the UGV. The objective is to devise a
strategy for collaborative operation between the UAV and
the UGV to visit all mission points in the scenario at least
once in the shortest possible time. Therefore, the challenge
is multifaceted, requiring optimization of the UAV and UGV
route sorties and scheduling their recharging instances to
synchronize in time and location.

B. MDP formulation

State:
1. agent position

2. fuel level
3. mission status

RewardTransition

Encoder

Decoder

Action

embedding

Problem instance

context

embedding

Transformer

once

multiple
times

Fig. 2: MDP representation for the UAV-UGV cooperative
routing problem utilizing a Transformer network

The problem can be modeled as a sequential decision-
making system where the agents sequentially select the
mission points (see Fig. 2). This system can be formulated
as a Markov Decision Process (MDP), with its components
defined by the tuple < S,A,R, T >, as follows:
1) State Space (S): At any decision making step, the state
of the environment st ∈ S is defined as, st = (pt, ft, qt),
where, pt = {xt, yt} represents the current position of the
agent and its fuel level is indicated by ft. Additionally,
qt = {xi, yi, dit} highlights the coordinates and mission
visitation status of the task points mi ∈ M; dit will be 1
if the task point mi is already visited or 0 if not.
2) Action Space (A): The selection of a mission point
is defined as the action at ∈ A. The agents can perform
two types of actions: visiting (on both UAV points Ma and
ground points Mg) or recharging (only on ground points
Mg). Since Mg is used for both visiting and recharging,
the action space is defined as, A = {Mg(recharging) +
Mg(visiting) + Ma(visiting)}. We mask out (details in

13688

subsection III-A.2) infeasible actions from the action space
A based on the current state st at time t.
3) Reward (R): Aligning with the objective to minimize
total mission completion time, we define the reward R as
the negative of total mission time. The total mission time
is calculated by summing the step elapsed time rt at every
decision making step as R = −max

ua/ug

∑T
t=0 rt. Here, the

step elapsed time includes travel time between the nodes
and additional recharge service time in case of a recharging
action. It can be indicated as rt = r(st, at) = tij+TR, when
agent travels between node i and j at timestep t (TR = 0 for
visiting action). For effective reward shaping, we impose a
substantial penalty, P , in case of a mission failure. Thus, the
net reward rt can be written be as: R = −max

ua/ug

∑T
t=0 rt−P

(in the case of task failure, P = 1000, otherwise P = 0).
This reward structure is designed to promote successful task
completion and facilitate faster learning convergence.
4) Transition (T): The transition function updates the
current state st to the next state st+1 = (pt+1, ft+1, qt+1)
based on the taken action at. The new position of the agent
will be the chosen task location, pt+1 = ({xt+1, yt+1} ≡ at)
and the fuel level will be updated as ft+1 = ft − fij if
visiting task is performed or ft+1 = F a for recharging task.
The visitation status of the mission point is also updated as
dit+1 = 1, for mission point mi corresponds to at. Since
stochasticity is not assumed the transition is considered to
be deterministic.

III. REINFORCEMENT LEARNING FRAMEWORK

In this section, we present the encoder-decoder based trans-
former network with RL algorithm to learn the routing policy
πθ, with a trainable parameter θ. Starting from the initial state
s0, the policy πθ takes action at to select a mission point for
visiting or recharging based on the current scenario state st
until the terminal state sT is reached. The final solution of the
policy network will be our cooperative route T , consisting
of a series of mission points chosen sequentially. It can be
represented by a joint probability distribution as follows:

P(T ; θ) =

T−1∏
t=0

πθ(at|st)P(st+1|st, at) (1)

Here, T is the timesteps till mission termination and
P(st+1|st, at) = 1, as we have chosen deterministic state
transition.

A. Encoder-Decoder Transformer architecture

To learn the routing policy πθ, we utilize an encoder-
decoder transformer architecture similar to Kool et al. [16].
However, the architecture is adapted to cooperative routing
problem settings, and a one-agent-per-decoding strategy [21]
is followed in the decoder to accommodate multi-agent
actions. The encoder translates the coordinates of the mission
points into a nuanced, high-dimensional embedding, enhanc-
ing feature extraction. Subsequently, the decoder exploits
these embeddings to take actions based on the contextual
information derived from the current state of the scenario. A
detailed description of the transformer architecture (see Fig.

3) is explained here:
1) Encoder
We have incorporated a multi-head attention (MHA)

mechanism [22] in the encoder to achieve a higher-
dimensional representation of the raw features of the problem
instance. The encoder accepts the 3D vector representation of
the mission points as input, X = (oi = {xi, yi, bi},∀ mi ∈
A), where (xi, yi) represents the normalized coordinates and
bi is a binary variable indicating if mission points are eligible
for recharging. Node inputs are linearly projected into node
embedding h0

i = W 0oi + b0 with dimension dh = 128. This
input embedding is subsequently transformed using L multi-
head attention layers into an advanced input embedding hL

i ,
allowing a more detailed understanding of the relationships
among the task points. Within each attention layer l ∈ L,
three vectors, Query, Key and Value are calculated from
previous layer’s node embedding hl−1

i , with the dimension of
Query/Key, Value set as, dq/dk = dv = dh

M , where M = 8 is
the number of attention heads. For each head j ∈ 1, 2, ...M ,
the attention scores Zl

j are calculated between Query and
Key, which are concatenated together to give attention output
MHA(hl−1

i) of that layer. The calculations are shown here:
qli,j = hl−1

i W l
q,j , kli,j = hl−1

i W l
k,j , vli,j = hl−1

i W l
v,j (2)

Zl
j = softmax

(
qli,jk

l
i,j

T

√
dk

)
vli,j (3)

MHA(hl−1
i) = Concat(Zl

1, Z
l
2, ..., Z

l
j) (4)

Here, qli,j , k
l
i,j and vli,j are the Query, Key and Value

respectively in head j and W l
q,j ∈ Rdh×dq ,W l

k,j ∈ Rdh×dk

and W l
v,j ∈ Rdh×dv are the trainable parameter matrices

in the attention layer l. The attention output MHA(hl−1
i) is

followed by a feed-forward layer (FF) with ReLU activation
function to give the node embedding of that layer. A residual
skip connection and Batch-Normalization (BN) are applied
in both MHA and FF sublayers as shown below:

ĥl
i = BN(hl−1

i + MHA(hl−1
i)) (5)

hl
i = BN(ĥl

i + FF (ReLU(ĥl
i))) (6)

After L attention layers, we obtain the final node em-
bedding as hL

i , which we send to the decoder for further
processing.

2) Decoder:
In general, during each decision-making step the decoder

determines the probability of selecting each available node
as an action based on the encoder’s node embedding hL

i and
a context vector, which provides insights into the current
scenario state. In our multi-agent problem setting, we refine
the one-agent-per-decoding-step strategy of the work [21] to
determine the active agent for taking action. Unlike their
method, which alternates agents at every decision point, our
approach permits one agent to conclude a full sortie before
switching. For instance, the UAV performs a series of actions,
visiting multiple mission points before concluding its sortie
by selecting a refueling node. Only then is the UGV chosen
as the agent to execute its tasks and coordinate with the
UAV at the chosen refueling point, after which the UAV is

13689

Input vectors:

Batch normalization

ReLU

Batch normalization

masked softmax
B × 1 × N

Feed forward layer

Encoder (×3) Decoder

Linear projection

action 0 0.1 . . . 0 0.5 0.2

B × N × 128

Multi-head self attention

8 × B ×
 N × 16

8 × B ×
 N × N

8 × B ×
 16 × N

8 × B ×
 N × 16

B × N × 128

B × N × 128

B × N × 512

B × N × 512

B × N × 128

B × N × 3
Encoder embedding

B × N × 128

State
1. agent position
2. fuel level
3. mission status

mean
embedding

B × 1 × 128
Linear propagation

B × 1 × 128
Linear propagation

B × 1 ×
 1 × 128

B × 1 ×
 128 × N

B × 1 × 128

8 × B ×
 1 × 16

8 × B ×
 1 × N

8 × B ×
 16 × N

8 × B ×
 N × 16

compatibility

glimpse

contextual information

Fig. 3: Architecture of the proposed Transformer network. The encoder comprises three attention layers that generate input
embeddings from raw data, while the decoder constructs a context vector based on the current state. It utilizes both the input
embedding and the context vector, passing them through a multi-head attention layer and a single-head attention layer to determine
the action.

selected again as the agent for its next sortie. This approach
is important because the UGV’s route sortie should depend
on the UAV’s sortie, requiring a complete view of the UAV’s
actions for effective planning. By allowing the UAV to finish
its sortie before the UGV begins, we ensure a coherent
sequence of actions and more efficient agent collaboration
throughout the mission. At every decision making step t,
we build the context vector hc

t , utilizing the agent’s current
position embedding hL

j,t, for j ∈ pt, the current state’s visit
status dit, the agent’s fuel level ft and the encoder node
embedding hL

i , as shown below:
h̄t =

1
n

∑n
i=0(Cat(hL

i , d
i
t)Wg) (7)

hc
t = h̄t + Cat(hL

j,t, ft)Wc (8)
Here, Wg,Wc are trainable parameters. Once the context
vector is constructed from the current state, the decoder
employs an MHA layer by taking the context vector as the
Query and encoder node embedding as the Key/Value to
calculate the glimpse hg

t as follows:
hg
t = MHA(hc

t , hL
i W

g
k , hL

i W
g
v) (9)

Here, W g
k ,W

g
v are trainable parameters. Finally, once

glimpse hg
t is obtained, it is fed as Query qt and hL

i as
the Key kt in a single head attention layer to compute
their compatibility ht. An important step here is to mask
out infeasible actions based on the current scenario state.
We consider 1) already visited mission points (for visiting
action) 2) unreachable mission points at current fuel level
(when UAV is the agent) 3) mission points that would fail
the agent to reach any refuel stop (when UAV is the agent)
4) unreachable mission points within UAV’s previous sortie
time period (when UGV is the agent) as logical constraints
to decide infeasible actions for masking. The compatibility
between the Query qt and Key kt is calculated as shown:

qt = hg
tWq, kt = hL

i Wk (10)

ht =

Cp · tanh
(

qtkt
T√

dq

)
if feasible

−∞ else.
(11)

Here, Wq,Wk are trainable matrices and Cp = 10 is a clip-
ping parameter for better exploration. Output probabilities
for the actions are calculated using the softmax function as:

πθ(at|st) = softmax(ht) (12)
Following the above process, the decoder sequentially takes
actions and alters the agents till the mission is terminated. We
apply sampling decoding strategy in the training procedure,
and both greedy and sampling strategies are incorporated
during the evaluation.

B. Training method

The training algorithm (see Algorithm 1) leverages the
REINFORCE policy gradient method [23]. It comprises
1) our policy network πθ that takes action by calculat-
ing probability distribution over the actions and 2) rollout
baseline network πϕ that has identical structure to πθ but
takes action greedily (action with maximum probability). At
every training iteration, we calculate the routes and their
reward for a batch of instances, and the expected baseline
rewards for those instances come from greedy rollout in the
baseline network (lines 4-11). We update the policy network
parameter θ following the policy gradient algorithm (lines
12-13). Moreover, after each epoch, the baseline network’s
parameters ϕ are updated with those of the policy network
if it underperforms in a paired t-test (line 15). Both the
policy and baseline networks are iteratively updated during
the training process to yield an optimal policy at the end
of training. REINFORCE is chosen for its ability to learn
directly from interactions, eliminating the need for explicit
modeling, which enhances scalability in large problem sizes.
Unlike some model-based methods with exponential time
complexity due to tree search, REINFORCE generally main-
tains a linear time complexity relative to the number of
epochs, steps, and gradient computations, making it a more
practical and scalable option.

13690

Algorithm 1: Policy network training using REIN-
FORCE algorithm

Input: Policy network πθ , Baseline network πϕ, epochs E,
Number of batches N , batch size B, episode length T

Output: Trained policy network π
θ
′

1 for epoch in 1 . . . E do
2 Sample N batches from dataset
3 for iteration in 1 . . . N do
4 for instance b in 1 . . . B do
5 Initialize s0,b at t = 0
6 while t < T do
7 Get action at,b ∼ πθ(at,b|st,b)
8 Obtain reward rt,b and st+1,b

9 t = t+ 1

10 Rb = − max
ua/ug

{
∑T

t=0 rt,b}

11 Baseline reward Rϕ
b from greedy rollout with πϕ

12 Compute gradient:

J ←
1

B

B∑
b=1

(Rb −Rϕ
b)∇θ log πθ

(
sT,b | s0,b

)
13 Update θ ← θ + α∇θJ

14 if OneSidedPairedTTest(πθ, πϕ) < 0.05 then
15 ϕ← θ

IV. RESULTS

A. Dataset details

The effectiveness of our proposed algorithm has been evalu-
ated through extensive computational experiments. We have
simulated the fuel-constrained UAV-UGV cooperative rout-
ing problem over an area of 20 km × 20 km, employing a
single UAV-UGV system as outlined in the problem state-
ment. The UAV and UGV move at speeds of va = 10 m/s
and vg = 4.5 m/s, respectively. The UAV has a fuel capacity
of F a = 287.7 kJ and follows a fuel consumption profile
defined as, Pa = 0.0461(va)3 − 0.5834(va)2 − 1.8761va +
229.6 (modeled after [24]). The starting depot and the UAV
mission points Ma are uniformly sampled around the road
network points Mg , considering the UAV’s fuel radius. For
computational efficiency, we have kept UGV road network
G fixed, but chosen random road network points Mg from
it that act as recharging stops (accessible to both UAV and
UGV). We train our model on three different problem sizes:
15 UAV points with 5 ground points (U15G5), 30 UAV
points with 10 ground points (U30G10), and 45 UAV points
with 15 ground points (U45G15). For each problem size,
training is conducted on a total of 5120000 instances, with
256 instances per batch across 200 batches over 100 epochs.
The instances are generated on-the-fly during training. We
employ the Adam optimizer with a learning rate of 10−4 and
a decay rate of 0.995, which is adjusted at the conclusion of
each epoch. The training is completed on a server equipped
with an RTX 2080 Ti GPU. The average training time per
epoch is approximately 3.00 minutes for U15G5, 5.00 min-
utes for U30G10, and 7.00 minutes for U45G15. Our model’s
effectiveness is evaluated on two different distributions of
mission points and the results are compared against recent
state-of-the-art heuristic methods. Additionally, we test the
model’s generalization capability on larger problem sizes and

extended road network. A simulated case study on an actual
task site is also conducted to explore the practical application
of our model in dynamic planning.

B. Comparison evaluation

Given the complexity and specificity of the problem, there
are no standard benchmarks available, nor can an exact solu-
tion be easily discerned, as the problem becomes intractable
with an increasing number of mission points. In cooperative
routing problems for heterogeneous vehicles, a prevalent
strategy is to employ a multi-level optimization or multi-
echelon approach (e.g.,‘UGV first, UAV second’, ‘UAV first,
UGV second’,‘Truck first, drone second’ etc.) [25]–[28].
This methodology simplifies the problem by dividing it
into more manageable subproblems and solving them using
heuristics. We adopt this approach to design our baseline
methods. Initially, we determine the UGV route by solving
the minimum set cover problem to identify refuel stop loca-
tions and by solving the traveling salesman problem to con-
nect these refueling stops, thus establishing the UGV path.
Based on this UGV path, the UAV route is derived by model-
ing it as an energy-constrained vehicle routing problem with
time window constraints (EVRPTW) and solving it using
constraint programming with the following metaheuristics: 1)
Guided Local Search (GLS), 2) Tabu Search (TS), and 3)
Simulated Annealing (SA) in the Google OR-Tools™ CP-
SAT solver [29]. The details about the implementation of this
methodology and its effectiveness are discussed in our pre-
vious works [30], [31]. In the evaluation problem instances,
ground points are uniformly sampled from the road network.
However, instead of uniformly sampling the UAV mission
points, we opt for two distributions: a) Gaussian distribution
and b) Rayleigh distribution, both centered around the road
network points. Following Kool et al. [16], we incorporate
two types of decoding strategies in our deep reinforcement
learning framework: namely, greedy decoding, where actions
with the maximum probability are chosen at every decision-
making step, and sampling decoding, where N trajectories
are sampled and the best solution is selected from them.
We set N to 1024 (DRL(1024)) and 10240 (DRL(10240))
in our evaluation instances. For a learning-based baseline,
we adapt the Attention Model (AM) [16] for our problem
settings with same decoding strategies. For the evaluation
process, we utilize an Nvidia Quadro P2200 GPU. Given that
the heuristic approach demands more computational time,
we evaluate 100 test instances, and all computations are
implemented in Python.

Table I lists the average objective values and runtimes for
problem instances across three problem sizes, comparing all
methodologies. Ideally, a lower objective value achieved in a
shorter runtime signifies superior solution quality. The table
also shows the optimality gap for each method, calculated
as the difference between their objective values and the best
objective function value found, as shown here:

optimality gap =
Obj. − Obj.best

Obj.best
× 100% (13)

The table reveals that the proposed DRL policy achieves

13691

TABLE I: Comparison evaluation of the DRL policy across
problem sizes and distributions.

Method
U15G5 U30G10 U45G15

Obj. Gap Time Obj. Gap Time Obj. Gap Time
(min.) (%) (sec) (min.) (%) (sec) (min.) (%) (sec)

G
au

ss
ia

n
D

is
tr

ib
ut

io
n GLS 247 30.0 154.0 329 28.5 168.0 405 28.6 191.0

TS 247 30.0 155.0 331 29.3 169.0 406 28.9 191.0
SA 250 31.6 155.0 335 30.9 169.0 412 30.8 192.0

AM(greedy) 224 17.9 0.5 297 16.0 1.0 371 17.8 1.3
AM(1024) 196 3.2 1.8 266 3.9 3.2 328 4.1 4.8
AM(10240) 191 0.5 19.1 261 2.0 33.1 323 2.5 48.9

DRL(greedy) 220 15.8 0.7 294 14.8 1.2 360 14.3 1.4
DRL(1024) 192 1.1 2.0 261 2.0 3.8 322 2.2 4.9
DRL(10240) 190 0.0 20.6 256 0.0 37.6 315 0.0 49.6

R
ay

le
ig

h
D

is
tr

ib
ut

io
n GLS 281 26.0 155.0 382 26.5 169.0 444 22.0 190.0

TS 281 26.0 156.0 382 26.5 169.0 445 22.3 191.0
SA 282 26.5 155.0 384 27.2 169.0 454 24.7 192.0

AM(greedy) 249 11.7 0.6 354 17.2 1.1 424 16.5 3.7
AM(1024) 227 1.8 2.1 313 3.6 3.9 379 4.1 6.8
AM(10240) 223 0.0 21.0 308 2.0 38.5 373 2.5 60.7

DRL(greedy) 251 12.6 0.8 345 14.2 1.0 423 16.2 1.7
DRL(1024) 227 1.8 2.2 307 1.7 3.8 368 1.1 5.0
DRL(10240) 223 0.0 21.6 302 0.0 37.0 364 0.0 50.3

the minimum mission time across all problem sizes and
distributions compared to the baselines. While the AM
baseline generates solutions comparable to those of the DRL
method, the optimality gap between AM and DRL algorithms
widens as problem sizes increase; for AM(10240) versus
DRL(10240), the gap ranges from 0-0.5% in smaller problem
sizes (U15G5) to 2% in medium sizes (U30G10), and
2.5% in larger problem sizes (U45G15). This underscores
the DRL policy’s efficiency in managing larger scenarios.
Within the DRL framework, the sampling decoding methods
outperform the greedy approach, exhibiting an optimality
gap of 14-16%, at the cost of higher computational time
as DRL(10240) is 30 times, and DRL(1024) is 3 times
slower than the DRL(greedy) method. Generally, solution
time increases with growing problem sizes, with the greedy
decoding strategy providing the quickest runtime for both
AM and DRL methods. Notably, DRL(1024) emerges as
the optimal choice, securing an optimality gap of less than
∼2.2% compared to DRL(10240), but with a computation
time tenfold faster, representing a favorable trade-off be-
tween solution quality and runtime efficiency. Typically,
the Rayleigh distribution results in 15-17% longer mission
periods than the Gaussian distribution, yet the comparative
performance of the methodologies remains consistent across
both distributions. The animations of the routes obtained
from different methods across various scenarios can be
viewed at http://tiny.cc/hmnjxz.

C. Generalization

To assess the generalization capability of the proposed DRL
framework, we examine different testing instances by modi-
fying two aspects of the problem scenarios: 1) increasing the
number of mission points and 2) extending the road network.
We generate 20 test instances each for configurations with
60 UAV points and 20 ground points (U60G20), 75 UAV
points, and 25 ground points (U75G25), employing Gaussian
and Rayleigh distributions. We apply the learned policy
from the U45G15 model to these new testing instances
to evaluate its effectiveness. Additionally, we compare the
model’s performance against the baseline methods, as listed
in Table II.

According to Table II, within the Gaussian distribution,

TABLE II: Performance across larger scenarios

Method
U60G20 U75G25

Obj. Gap Time Obj. Gap Time
(min.) (%) (sec) (min.) (%) (sec)

G
au

ss
ia

n
D

is
tr

ib
ut

io
n GLS 438 16.8 245.0 530 19.1 248.0

TS 442 17.9 243.0 527 18.4 249.0
SA 459 22.4 245.0 535 20.2 249.0

AM(greedy) 449 19.7 4.2 520 16.9 2.5
AM(1024) 391 4.3 11.9 464 4.3 12.5
AM(10240) 384 2.4 110.8 457 2.7 137.7

DRL(greedy) 428 14.1 3.8 509 14.4 2.1
DRL(1024) 382 1.9 9.3 455 2.2 10.6
DRL(10240) 375 0.0 116.0 445 0.0 132.6

R
ay

le
ig

h
D

is
tr

ib
ut

io
n GLS 522 21.1 245.0 609 21.8 250.0

TS 524 21.6 243.0 613 22.6 248.0
SA 537 24.6 243.0 621 24.2 250.0

AM(greedy) 524 21.6 3.6 597 19.4 2.4
AM(1024) 452 4.9 14.9 519 3.8 10.1
AM(10240) 439 1.9 120.5 512 2.4 139.2

DRL(greedy) 523 21.3 3.3 581 16.2 2.5
DRL(1024) 440 2.1 13.7 514 2.8 14.5
DRL(10240) 431 0.0 130.0 500 0.0 141.0

learning-based methods with sampling decoding strategy,
outperform heuristic methods for both the U60G20 and
U75G25 problem sizes, as they produce lower objective
values. The DRL policy generalizes better compared to the
AM policy, producing better solution quality (with a 2.4-
2.7% gap) in shorter runtime. Within the DRL algorithm,
DRL(10240) yields the lowest objective values at a higher
runtime. Meanwhile, DRL(1024) achieves an optimality gap
of less than ∼2% but is approximately ten times faster
than DRL(10240). In the Rayleigh distribution scenarios,
the objective value increases compared to Gaussian distri-
bution across all methods, and the optimality gap between
heuristic methods and RL policies further widens. While
DRL(10240) delivers the best solutions, DRL(1024) offers
highly desirable results with a less than ∼3% optimality
gap in a faster solution runtime. In all instances, the greedy
decoding approach underperforms, although it takes only
a fraction of the runtime compared to other methods. In
summary, despite the addition of extended road networks and
an increased number of mission points, DRL produces better
results (with the exception of DRL(greedy)) in significantly
faster computation time (2-20 times faster than heuristics,
depending on the decoding strategy) while solving larger
neighboring problem sizes. Therefore, it can be concluded
that the DRL algorithm demonstrates effective generalization
across unknown scenarios.

D. Case study evaluation

As a case study, we apply our trained model in a simple
simulation over a real-world task site consisting of 45
mission points located along a road network. Unlike the
training instances, all the mission points in this scenario
are situated on the road network, making them accessible to
both the UAV and UGV and serving as potential rendezvous
locations for UAV-UGV recharging. Given that DRL(10240)
has demonstrated the best performance in terms of solution
quality among DRL strategies, and GLS has emerged as
the top performer among heuristic methods in previous
analyses, we select these two methods to perform routing
in this scenario. Fig. 4 illustrates the cooperative routes
between UAV and UGV for the given scenario as obtained
from the two methods. Recharging plays a crucial role in

13692

optimizing coordination between UAV and UGV to achieve
an optimal cooperative route. Hence, in Table III, we analyze
the cooperative routes from both methods to understand their
underlying UAV-UGV coordination aspects and recharge
planning.

Rendezvous point
Mission point

UGV path
UAV path

 depotStarting

D
is

ta
nc

e
(i

n
km

)

Distance (in km)

R1, R2

R3, R4, R5

1

3
4

a
b

2

5(i) GLS route

Distance (in km)
0 5 10 15 20

R1

R2
R3

1

2

3

a

b

c(ii) DRL route

Rendezvous point
Mission point

UGV path
UAV path

 depotStarting

0 5 10 15 20

20

15

10

 5

 0

Fig. 4: Cooperative Routes of UAV and UGV in the case study
scenario. The numerical and alphabetical sequences indicate
the movement directions of the UAV and UGV, respectively.
R1, R2, ..., RN denote the recharging instances between the
UAV and UGV. The route animation can be found at http:
//tiny.cc/hmnjxz.

TABLE III: Comparison of cooperative routes in the case
study scenario

Metrics DRL(10240) GLS

Mission time (min.) 148 200
No. of recharge stops 3 5
Recharge time (min.) 45 75
Waiting time (min.) 49.7 30.5
Idle time (min.) 94.7 105.5

It can be observed that the DRL policy optimizes the
rendezvous between the UAV and UGV, requiring the UAV to
recharge from the UGV only 3 times to complete the mission.
In contrast, the GLS method results in 5 recharging instances.
Frequent recharging forces the UAV to undertake frequent
detours and endure longer recharging service periods, con-
sequently extending the mission duration. Under the DRL
policy, the UAV waits for an extended period (waiting time
= 49.7 minutes) to minimize the need for frequent recharging
and its associated longer service times (recharge service time

= 45 minutes). Conversely, with the GLS method, UAV
spends less waiting time of 30.5 minutes for the UGV, due
to its frequent recharging. However, this approach results in
longer service periods (75 minutes) and, ultimately, a longer
mission period. The idle time, which represents the total
waiting and recharging time, is 10.8 minutes longer with the
GLS method. In addition to recharging, the routing pattern
also contributes to the mission duration in this scenario. The
suboptimal performance of the heuristic-based method can be
attributed to its multi-level nature (‘UGV first, UAV second’),
as optimizing at an individual level does not necessarily
result in an overall optimized route.

E. Dynamic Planning

We can leverage the trained DRL policy to address dy-
namic changes in the scenario by implementing it for on-
line planning. In our case study, we explore the potential
for dynamic planning when new mission points appear at
random places during the routing process. These randomly
appearing mission points are assumed to appear outside the
road network and, hence, can only be visited by the UAV. A
key assumption is that the UAV and UGV can share infor-
mation only during their rendezvous process, simulating an
operational and communication constraint. Therefore, after
initial planning to establish the primary route, the trained
policy updates its encoder space during each rendezvous,
to include the new mission point and adjusts its actions in
response to it. We opt for the DRL(greedy) method due to
its rapid execution time, which makes it ideal for online
planning. Fig. 5 illustrates the time-visuals of the UAV-UGV
route from the DRL policy as they adapt their initial plan to
incorporate the new mission points.

V. CONCLUSION & FUTURE WORK

In this study, we utilize a deep reinforcement learning-
based planning framework that incorporates a transformer
network with attention layers to address a fuel-constrained
UAV-UGV cooperative routing problem. The problem in-
volves both the UAV and UGV visiting a set of predefined
mission points, with the UAV being periodically recharged
by the UGV. Within the proposed transformer network, the

Distance (in km)

 (d)

d

5

Time: 202-278 min

R6

0 5 10 15 20
Distance (in km)

Time: 142-202 min
 (c)

4

d

R4

R5

0 5 10 15 20

c

R3

 (b)

3

Time: 90-142 min

Distance (in km)
0 5 10 15 20

D
is

ta
nc

e
(i

n
km

)

Rendezvous point
Mission point

UGV path
UAV path

 depotStarting

New point

2

1

R2

R1
a b

Distance (in km)

Time: 0-90 min
 (a)

20

15

10

 5

 0
0 5 10 15 20

Rendezvous point
Mission point

UGV path
UAV path

 depotStarting

New point

Rendezvous point
Mission point

UGV path
UAV path

 depotStarting

New point

Rendezvous point
Mission point

UGV path
UAV path

 depotStarting

New point

Fig. 5: Dynamic route planning for randomly appearing mission points. (a) Route replanned after the first recharging instance to visit
the first random point. (b) UAV visits the second random point after the second recharging instance. (c) UAV visits the third random
point after the fourth recharging instance. (d) UAV visits the fourth random point to conclude its mission. The route animation can
be found at http://tiny.cc/hmnjxz.

13693

encoder generates input embeddings from the input data,
while the decoder determines actions for visiting mission
points by leveraging these embeddings and the contextual
state. The decoder also adopts a sortie-wise, one-agent-per-
decoding strategy to accommodate the multi-agent aspect
of the problem. Upon evaluation of test instances, our
proposed framework: 1) Outperforms conventional multi-
staged heuristic-based methods and existing learning baseline
(AM) in solution quality for the tested problem instances.
2) Constructs UAV-UGV cooperative routes in a shorter
runtime compared to the baseline methods. 3) Demonstrates
its generalizability by producing better solutions in unknown
scenarios of varying sizes and distributions. 4) Explores the
potential of implementation as online planning to accom-
modate dynamic changes, as tested in a case study. In the
future, we plan to extend the framework to solve long-
duration, persistent mission planning and evaluate it using
a real, physics-based simulator to account for stochasticities.
We also aim to include multi-UAV-UGV scenarios, along
with other learning-based baselines, for broader comparison
and comprehensive analysis.

REFERENCES

[1] Yao Liu, Zhihao Luo, Zhong Liu, Jianmai Shi, and Guangquan Cheng.
Cooperative routing problem for ground vehicle and unmanned aerial
vehicle: The application on intelligence, surveillance, and reconnais-
sance missions. IEEE Access, 7:63504–63518, 2019.

[2] Daniel H Stolfi, Matthias R Brust, Grégoire Danoy, and Pascal Bouvry.
Uav-ugv-umv multi-swarms for cooperative surveillance. Frontiers in
Robotics and AI, 8:616950, 2021.

[3] Anuj Puri, KP Valavanis, and M Kontitsis. Statistical profile generation
for traffic monitoring using real-time uav based video data. In 2007
Mediterranean Conference on Control & Automation, pages 1–6.
IEEE, 2007.

[4] Omer Ozkan and Muhammed Kaya. Uav routing with genetic
algorithm based matheuristic for border security missions. An Interna-
tional Journal of Optimization and Control: Theories & Applications
(IJOCTA), 11(2):128–138, 2021.

[5] Md Safwan Mondal, Subramanian Ramasamy, James D Humann,
James M Dotterweich, Jean-Paul F Reddinger, Marshal A Childers,
and Pranav Bhounsule. A robust uav-ugv collaborative framework for
persistent surveillance in disaster management applications. In 2024
International Conference on Unmanned Aircraft Systems (ICUAS),
pages 1239–1246. IEEE, 2024.

[6] Chi Yuan, Youmin Zhang, and Zhixiang Liu. A survey on technologies
for automatic forest fire monitoring, detection, and fighting using
unmanned aerial vehicles and remote sensing techniques. Canadian
journal of forest research, 45(7):783–792, 2015.

[7] Mingjia Zhang, Huawei Liang, and PengFei Zhou. Cooperative route
planning for fuel-constrained ugv-uav exploration. In 2022 IEEE
International Conference on Unmanned Systems (ICUS), pages 1047–
1052. IEEE, 2022.

[8] Jianqiang Li, Genqiang Deng, Chengwen Luo, Qiuzhen Lin, Qiao
Yan, and Zhong Ming. A hybrid path planning method in unmanned
air/ground vehicle (uav/ugv) cooperative systems. IEEE Transactions
on Vehicular Technology, 65(12):9585–9596, 2016.

[9] Satyanarayana G Manyam, Kaarthik Sundar, and David W Casbeer.
Cooperative routing for an air–ground vehicle team—exact algorithm,
transformation method, and heuristics. IEEE Transactions on Automa-
tion Science and Engineering, 17(1):537–547, 2019.

[10] Subramanian Ramasamy, Jean-Paul F Reddinger, James M Dotter-
weich, Marshal A Childers, and Pranav A Bhounsule. Coordinated
route planning of multiple fuel-constrained unmanned aerial systems
with recharging on an unmanned ground vehicle for mission coverage.
Journal of Intelligent & Robotic Systems, 106(1):30, 2022.

[11] Zheng Wang and Jiuh-Biing Sheu. Vehicle routing problem with
drones. Transportation research part B: methodological, 122:350–
364, 2019.

[12] Ziye Tang, Willem-Jan van Hoeve, and Paul Shaw. A study on the
traveling salesman problem with a drone. In Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 16th
International Conference, CPAIOR 2019, Thessaloniki, Greece, June
4–7, 2019, Proceedings 16, pages 557–564. Springer, 2019.

[13] Kaarthik Sundar, Saravanan Venkatachalam, and Sivakumar Rathinam.
Formulations and algorithms for the multiple depot, fuel-constrained,
multiple vehicle routing problem. In 2016 American Control Confer-
ence (ACC), pages 6489–6494. IEEE, 2016.

[14] Yao Liu, Zhong Liu, Jianmai Shi, Guohua Wu, and Witold Pedrycz.
Two-echelon routing problem for parcel delivery by cooperated truck
and drone. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 51(12):7450–7465, 2020.

[15] Diego Cattaruzza, Nabil Absi, and Dominique Feillet. Vehicle routing
problems with multiple trips. 4or, 14:223–259, 2016.

[16] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to
solve routing problems! arXiv preprint arXiv:1803.08475, 2018.

[17] Jingwen Li, Yining Ma, Ruize Gao, Zhiguang Cao, Andrew Lim, Wen
Song, and Jie Zhang. Deep reinforcement learning for solving the
heterogeneous capacitated vehicle routing problem. IEEE Transactions
on Cybernetics, 52(12):13572–13585, 2021.

[18] Guohua Wu, Mingfeng Fan, Jianmai Shi, and Yanghe Feng. Rein-
forcement learning based truck-and-drone coordinated delivery. IEEE
Transactions on Artificial Intelligence, 2021.

[19] Mingfeng Fan, Yaoxin Wu, Tianjun Liao, Zhiguang Cao, Hongliang
Guo, Guillaume Sartoretti, and Guohua Wu. Deep reinforcement
learning for uav routing in the presence of multiple charging stations.
IEEE Transactions on Vehicular Technology, 2022.

[20] Subramanian Ramasamy, Md Safwan Mondal, Jean-Paul F Reddinger,
James M Dotterweich, James D Humann, Marshal A Childers, and
Pranav A Bhounsule. Heterogenous vehicle routing: comparing param-
eter tuning using genetic algorithm and bayesian optimization. In 2022
International Conference on Unmanned Aircraft Systems (ICUAS),
pages 104–113. IEEE, 2022.

[21] Prashant Sankaran, Katie McConky, Moises Sudit, and Hector Ortiz-
Pena. Gamma: graph attention model for multiple agents to solve
team orienteering problem with multiple depots. IEEE Transactions
on Neural Networks and Learning Systems, 2022.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems,
30, 2017.

[23] Ronald J Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8:229–256,
1992.

[24] Arnon M Hurwitz, James M Dotterweich, and Trevor A Rocks. Mobile
robot battery life estimation: battery energy use of an unmanned
ground vehicle. In Energy Harvesting and Storage: Materials, Devices,
and Applications XI, volume 11722, pages 24–40. SPIE, 2021.

[25] Parikshit Maini and PB Sujit. On cooperation between a fuel
constrained uav and a refueling ugv for large scale mapping applica-
tions. In 2015 international conference on unmanned aircraft systems
(ICUAS), pages 1370–1377. IEEE, 2015.

[26] Fernando Ropero, Pablo Muñoz, and Marı́a D R-Moreno. Terra: A
path planning algorithm for cooperative ugv–uav exploration. Engi-
neering Applications of Artificial Intelligence, 78:260–272, 2019.

[27] Parikshit Maini, Kaarthik Sundar, Mandeep Singh, Sivakumar Rathi-
nam, and PB Sujit. Cooperative aerial–ground vehicle route planning
with fuel constraints for coverage applications. IEEE Transactions on
Aerospace and Electronic Systems, 55(6):3016–3028, 2019.

[28] Yu Wu, Shaobo Wu, and Xinting Hu. Cooperative path planning of
uavs & ugvs for a persistent surveillance task in urban environments.
IEEE Internet of Things Journal, 8(6):4906–4919, 2020.

[29] Google. Google OR-tools. https://developers.google.
com/optimization, 2021. Online; accessed Feb 2, 2021.

[30] Md Safwan Mondal, Subramanian Ramasamy, and Pranav Bhounsule.
A bilevel optimization framework for fuel-constrained uav-ugv coop-
erative routing: Planning and experimental validation. arXiv preprint
arXiv:2303.02315, 2023.

[31] Md Safwan Mondal, Subramanian Ramasamy, James D. Humann,
Jean-Paul F. Reddinger, James M. Dotterweich, Marshal A. Childers,
and Pranav A. Bhounsule. Cooperative multi-agent planning frame-
work for fuel constrained uav-ugv routing problem, 2023.

13694

