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Abstract: Hip exoskeletons offer significant potential for enhancing human movement, espe-
cially for those with mobility impairments. However, optimizing their performance typically
involves lengthy discrete and continuous optimization methods. To address this, we propose a
novel approach using machine learning to predict controller parameter classes, aiming to improve
the tuning process. Our method relies on subject-specific anthropometric data to predict optimal
controller parameters for hip exoskeletons. Through a machine learning framework, we develop
predictive models to determine the most effective parameter settings tailored to individual users.
By employing feature engineering, data synthesis techniques, and model training, we enhance
the initialization of Bayesian Human-in-the-loop (HIL) optimization. Results indicate that our
machine learning models can predict control parameter classes with 75% accuracy, leading to a
9.98% improvement in optimized exoskeleton performance for users.
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1. INTRODUCTION

Assistive exoskeletons represent a promising avenue for
enhancing human locomotion performance and addressing
mobility impairments. However, despite over a century of
development efforts, exoskeleton devices are still hindered
by various challenges (Chen et al. 2020; Han et al. 2021;
Collins, Wiggin, and Sawicki 2015). Approaches to ex-
oskeleton design have often relied on intuition and spe-
cialized hardware, resulting in only modest improvements
compared to simulated expectations (Zhang et al. 2017).
Additionally, the diversity in physiological and neurolog-
ical responses among individuals poses a significant chal-
lenge to the widespread efficacy of these devices (Quesada,
Caputo, and Collins 2016; Ren et al. 2019).

To address these challenges, recent research has focused
on methods for automatically discovering and customizing
assistance strategies, aiming to optimize device control
systematically during use. One such approach, termed
human-in-the-loop optimization (HIL), involves iteratively
adjusting exoskeleton assistance patterns to minimize
physiological costs (Zhang et al. 2017; Kim et al. 2017).
This iterative process allows for real-time adaptation of
assistance parameters based on user feedback, thereby
potentially overcoming the limitations of traditional, fixed-
parameter approaches (Han et al. 2021). However, most
approaches still involve lengthy evaluation periods re-
quired by the current physiological metric: metabolic cost
(Makin, Vignemont, and Faisal 2017). Data measurements
for metabolic cost often adapt slowly (Handford and Srini-

vasan 2016), estimations require substantial historical data
(Selinger et al. 2015), and signal readings are influenced by
complex neurocognitive factors (Makin, Vignemont, and
Faisal 2017).

Efforts to shorten protocol duration while maintaining
optimization efficacy have prompted exploration into two
main routes: metabolic cost estimation strategies (Gordon
et al. 2022) or alternative objective functions (Zhang et al.
2017; Molinaro, Kang, and Young 2024; Ingraham et al.
2023). Moreover, advanced optimization techniques like
Bayesian optimization hold promise in swiftly identifying
optimal control parameters in a sample-efficient manner
(Kim et al. 2017). Despite notable accomplishments in the
realm of HIL optimization utilizing a combination of these
strategies, enhancing its application further can lead to the
development of better-performing controllers and greater
scalability to diverse user populations.

The key to improving HIL may lie in harnessing a data-
driven approach with machine learning techniques such as
reinforcement learning, deep neural networks, and meta-
learning (Fuentes-Alvarez et al. 2022; Li et al. 2022; Tu
et al. 2021; Zheng et al. 2023). These approaches leverage
extensive kinematic, force, or physiological datasets to gain
insights into enhancing control (Diaz et al. 2022). One
underutilized data source is anthropometric information.
Body measurements can provide valuable insights into
optimization techniques, yet such data is often scarce. Ex-
oskeleton experiments typically involve fewer than 13 sub-
jects (Diaz et al. 2022), resulting in limited observations



per subject that hinder the utilization of comprehensive
learning techniques.

Data synthesis is one way of mitigating data scarcity when
collecting more data is infeasible or expensive (Figueira
and Vaz 2022). This approach allows for the expansion of
datasets while preserving the inherent trends and patterns
of the original data. Enhancing these datasets can enable
us to utilize them in improving current HIL techniques
without the need for expensive additional data collection.

The focus of this work is to develop a comprehensive
machine-learning pipeline that utilizes data synthesis tech-
niques to enhance small anthropometric datasets to pro-
duce classification predictions for control parameters. We
hypothesize that utilizing these predictions to initialize
Bayesian search space will lead to an improved HIL op-
timization process. The novelty of this work lies in three
aspects: 1) Enhancing small anthropometric datasets to
be effectively utilized in machine learning models with
high cross-validation scores, 2) Harnessing anthropometric
data to make controller predictions, and 3) Improving
the efficacy of an Electromyography (EMG)-based HIL
optimization to tune controllers for leg swinging.

2. METHODS
2.1 Previous Fxperimental Data

In prior research (Echeveste and Bhounsule 2024), an ex-
periment was conducted to optimize controller parameters
for a hip exoskeleton designed to assist stationary leg
swinging (Fig. 1). The device consisted of a custom-built
hip exoskeleton device with a centric BLDC motor, with
control managed by a Raspberry Pi 4 running Python (Fig.
2).
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Fig. 1. Overview of EMG-HIL Bayesian Optimization
established in precursor work

The control strategy was defined by four parameters that
determined peak torques and angular positions throughout
the swing to shape the torque profile for assisting leg
swinging (Fig. 2). These parameters were optimized us-
ing Bayesian optimization, with electromyography (EMG)

signals serving as the cost function. The optimization
process involved constructing a probabilistic model of the
objective function using a Gaussian Process (GP) and
employing an acquisition function based on Expected Im-
provement (EI) to iteratively select parameter settings for
evaluation. The cost function used in the optimization
process, h¢, was defined as follows:

ht =" rms(M;) (1)
n=1

where M represents the EMG signals from different mus-
cles during the swing phases. This cost function aggregates
the root mean square (RMS) values of these signals to
quantitatively evaluate the efficiency of the leg-swinging
assistance.

The experimental protocol involved eight healthy partici-
pants (mean age: 26.3 years [0 = 3.2]; mean weight: 64.6
kg [0 = 3.47]; mean height: 165.33 cm [0 = 11.13]; male: 5,
female: 3). The protocol consisted of acclimation, param-
eter optimization, and validation phases. EMG data from
sensors placed on the rectus femoris and biceps femoris
muscles were processed to compute cost functions indi-
vidually for both forward and backward swinging phases
using Eq. 1.
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Fig. 2. Left) An illustration of the exoskeleton device used,
highlighting important features. Right) An illustra-
tion of the relationship between torque and angle.

During the tuning phase, the Bayesian optimization algo-
rithm iteratively identified optimal parameter sets for slow
and fast swing frequencies. The goal was to converge on
parameter sets that minimized cost functions derived from
EMG signals, indicating efficient leg-swinging assistance.
In the validation phase, the performance of the optimized
parameters was compared against baseline conditions, in-
cluding no device, zero torque, and generic control set-
tings. Statistical analysis, including non-parametric tests,
was conducted to assess differences between conditions.
Additionally, subjective ratings of perceived effort using
Borg’s scale were collected to correlate with physiological
responses.

The optimization process ensured data convergence and
maximized the signal-to-noise ratio of EMG signals through
rigorous data processing and analysis. The collected data
aimed to explore whether control parameters could be
predicted from subjects’ anthropometric data to enhance
device tuning for future users. Six anthropometric markers
were sampled from each participant: height, weight, body



fat percentage, leg girth, leg weight, and leg length. These
measurements were combined to derive six new meaningful
measurements: body mass index (BMI), lean mass, esti-
mated leg strength, estimated leg volume, lean mass index
(LMI), and lean leg density. These predictive features are
detailed in Table 1. The outputs of interest were the eight
parameters (four per controller, two controllers) targeting
the two tuned swing frequencies.

Table 1. Predictive Features

Predictor Symbol/Equation  Units
Height h cm
Weight w kg

Body fat b %

Leg circumference Lc cm
Leg weight Lw kg
Leg length Ln cm

k
Bl o Ly
Lean Mass w(l —b) kg
L kg
Leg Strength i oz
Leg Volume 4nLnLc? m3
w(1—b)2 kg
LA L ?1 b) ?

. w —

Lean Leg Density ToqV olume -

2.2 Data Processing

The anthropometric data undergo a multi-step process
to synthesize a comprehensive dataset suitable for clas-
sification and prediction. The primary objective of the
data processing pipeline is to effectively utilize the 12
predictive features to predict each of the eight possible
outputs individually. The data processing steps include
normalization, regularization, principal component analy-
sis, outlier mitigation, data synthesis, and modeling (Fig.
3).

Normalization Normalization is employed to avoid mag-
nitude bias and ensure generalizability across different
data ranges. We integrated population data from online
repositories (McConville 1980) with our sampled data to
establish a comprehensive range of values. A Gaussian
Mixture Model (GMM) was used to capture the mean and
standard deviation of each anthropometric measurement
from both data sources. This approach modeled com-
plex, multimodal distributions, accurately reflecting the
variability within the combined dataset. To integrate the
data sources, we generated 1000 random samples from the
GMM for each anthropometric predictor. These samples
created robust distributions that informed our normaliza-
tion process. The minimum and maximum values derived
from these distributions ensured accurate and reliable nor-
malization. By incorporating diverse population data and
employing GMM, we minimized extrapolation errors and
ensured that the normalized data accurately reflected true
anthropometric variability.

Regularization  Post-normalization, the data undergo
regularization tailored for each output parameter. Reg-
ularization, particularly important in highly correlated
datasets prone to multicollinearity, stabilizes parameter
estimation and reduces model variance. We utilized the
elastic net method, which combines Lasso (L1) and Ridge

(L2) regularization. Elastic net strikes a balance between
sparsity and coefficient shrinkage, controlled by an alpha
parameter. In our experiments, we varied alpha to explore
different levels of sparsity and shrinkage, ultimately se-
lecting a balanced value of 0.5. The top four predictors,
identified based on their coefficients’ average magnitude
across varying alphas, were selected for further analysis.

Principal Component Analysis (PCA)  To reduce data
dimensionality while preserving essential information, we
applied Principal Component Analysis (PCA). PCA trans-
forms the dataset into orthogonal variables called principal
components, which capture the variance in the data. We
focused on the first two principal components, which col-
lectively explained a significant portion of the variance.
This reduction in dimensionality facilitated more efficient
subsequent analysis while retaining critical information.

Outlier Mitigation — Outliers in the dataset were identified
and mitigated using a robust linear model. By examining
the major trend between the principal components and the
output values, we detected deviations indicative of out-
liers. A threshold approach, analyzing residuals exceeding
3 standard deviations from the median, was employed to
identify these anomalies. Outliers were then replaced with
predicted model values, preserving dataset integrity and
ensuring accurate statistical analysis and modeling.

Data Synthesis  Synthetic data points were generated to
augment the dataset while preserving the intrinsic char-
acteristics of the original data. This augmentation was
achieved using a modified Akima cubic Hermite inter-
polation method (Akima 1970). Akima interpolation was
chosen for its ability to prevent overshoot, thus producing
smooth and realistic synthetic data points that integrate
well with the original dataset.

Synthetic data points were generated at a ratio of 1:4
relative to the real data. This ratio was selected to balance
the influence of the original dataset with the additional
synthetic data points, ensuring that the original data’s sta-
tistical properties were preserved. Excessive synthetic data
may overshadow the original data’s variability, leading to
potential overfitting.

Once the datasets for each output were enlarged, they were
encoded to allow integration into a single representative
dataset. Each output’s corresponding enlarged dataset was
assigned a dummy variable encoding information about
which output it belonged to. The encoding values used
to distinguish the outputs corresponded to parameters
such as peak torque value (P), location value of the peak
torque (L), forward aspect of the controller (f), backward
aspect of the controller (b), fast swing frequency controller
(F), and slow swing frequency controller (S). These binary
variables served as indicators for the model to determine
the output class for a subject given the experimental
variables.

The synthetic data alone cannot generate new predictions
without a model to interpret and learn from the data.
Therefore, we first use the enriched dataset to train a
machine learning model, which can then make predictions
based on new subject data. We employ a meta-model
to accomplish this. Base models, including a Gaussian
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Fig. 3. An overview of the machine learning pipeline and how it is used to influence the initialization of Bayesian HIL
optimization. Matrix dimensions are given in parenthesis and Pf/Pb/Lf/Lb refer to control parameters.

process (GP), support vector machine (SVM), and random
forest, are utilized within the meta-model. The model’s
performance is assessed using cross-validation to ensure
its generalizability.

The synthesized data enhances the training process by pro-
viding the model with a more diverse set of examples. By
training the model on this enriched dataset, we improve its
ability to generalize to new subjects, ultimately enhancing
the performance of the human-in-the-loop optimization
process. These predictions are then used to initialize the
Bayesian optimization process within a targeted region
of the parameter space, ensuring a more informed and
focused search space.

2.8 Classification Model

From the synthesized data model, 320 data points are
generated for use in ML classification techniques. Each
output value is categorized into a class based on whether
it falls above (high class) or below (low class) the midpoint
value. The dataset is split, with 70% utilized as train-
ing data and the remaining 30% reserved for algorithm
validation (testing data). We employ simple but powerful
classification models—Logistic Regression, Support Vector
Machine (SVM), and K-Nearest Neighbors (KNN)—to
capture the complex patterns of the data. Before applying
these models, we meticulously fine-tune their hyperpa-
rameters using the grid search cross-validation technique,
specifically employing k-fold cross-validation (CV) with k
set to 5. This approach not only optimizes the models’
performance by refining hyperparameters but also assesses
their ability to generalize to new data.

2.4 New Subject Data

Once the classification model is tuned and trained, we
supply data from new subjects to make predictions on
their output classes. This is done by taking the original

six measurements from each subject, even if some measure-
ments fall outside the bounds of the training data. We then
process this data through similar aspects of the pipeline as
the training data to ensure it is in the same format. These
aspects include normalization, regularization, and PCA.

Once we have the input data in the desired format, we
proceed to make classification predictions for either a
slow controller or a fast controller. Each subject receives
predictions about one swing frequency, and a controller for
that swing frequency is tuned using HIL testing.

2.5 FExperimental Procedure

Utilizing classification predictions from the machine learn-
ing algorithm, we enhance the initialization process for
Bayesian optimization within a specific region of the pa-
rameter space. Focusing on a quadrant, we select four
initial parameter sets using Latin hypercube sampling to
narrow down the search space for potential high perfor-
mance.

Compared to randomly selecting initial parameters from
the entire parameter space, our approach allows for a more
targeted exploration of promising configurations within
the designated quadrant. Each parameter set defines the
controller with two peak torque values and two peak
location values for two separate swing directions.

To assess effectiveness, we conduct optimization experi-
ments for both methods—assisted by classification predic-
tions and without assistance—across multiple iterations.
Parameters are iteratively selected until convergence or
reaching the maximum number of trials.

Following optimization, we validate the optimal parame-
ters obtained from each method against a no-exoskeleton
condition, calculating a performance metric using the

Hoptimal —Hbaseline

Hbaseline

equation %A = ( ) Conditions are tested

randomly to prevent bias, enabling an unbiased compar-
ison across all experimental settings. This approach eval-
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against a baseline of no device.

uates the performance and robustness of our proposed
initialization method in enhancing the efficiency and ef-
fectiveness of exoskeleton controller optimization.

3. RESULTS

The data synthesis meta-model demonstrates strong per-
formance on the test dataset, achieving a coefficient of
determination (R?) of 0.7853 and a mean squared error
(MSE) of 0.004. These metrics indicate the model’s robust-
ness in accurately synthesizing new data points that align
well with the underlying patterns in the original dataset.

The classification model exhibits a high accuracy of 75%
in predicting controller classes, correctly identifying 3 out
of 4 classes for each subject (Table 2). This high accu-
racy demonstrates the model’s effectiveness in categorizing
controllers based on their performance characteristics and
its reliability in discerning subtle differences in controller
behavior.

Table 2. Class Predictions vs Actual

S1 Predicted: 1 2 2 1
S1 Actual: 1 2 2 2
S2 Predicted: 1 1 1 1
S2 Actual: 1 1 2 1

Comparing the optimization results obtained with and
without prediction assistance, we found that the prediction-
assisted optimization produces controllers that outper-
form those found without prediction assistance. For sub-
ject one, the optimization without prediction assist yields
a percent reduction of 12.3% (p = 0.0023), while the
prediction-assisted optimization achieves a greater reduc-
tion of 27.5% (p = 0.0008), indicating substantial improve-
ment. Similarly, subject two experiences a benefit from the
prediction-assisted optimization, with a percent reduction
of 12.5% (p = 0.0001) compared to 10.0% (p = 0.0022)
with no prediction assist, underscoring the consistent ad-
vantage of prediction assistance across different subjects.

These results highlight the effectiveness of utilizing pre-
diction assistance in the optimization process, leading
to significant improvements in controller performance for
both subjects. This underscores the potential of leveraging
machine learning techniques to enhance the efficiency and
effectiveness of exoskeleton controller optimization.

4. DISCUSSION

This study introduces a novel approach to enhance the
tuning process of hip exoskeletons by leveraging machine
learning techniques to predict controller parameter classes
based on subject-specific anthropometric data. Our results
demonstrate the efficacy of this approach in improving the
efficiency and effectiveness of exoskeleton customization.

One of the key outcomes of our study is the accuracy
achieved by the classification model in predicting con-
troller classes. This level of accuracy is a strong indica-
tion that anthropometric data significantly enhances the
tuning process, for several reasons:

e Baseline Comparison: Without the incorporation
of anthropometric data, baseline predictions typically
achieve around 50% accuracy due to the binary na-
ture of the classification task. Thus, achieving 75%
accuracy represents a substantial improvement.

e Complexity of the Task: Predicting optimal con-
trol parameters for exoskeletons is inherently com-
plex due to high variability in human physiology and
biomechanics. The achieved accuracy demonstrates
the model’s ability to capture and leverage underlying
patterns in the anthropometric data.

e Limited Data: Despite the small dataset size, this
level of accuracy indicates strong model performance.
This suggests that the data synthesis and processing
steps effectively enhanced the dataset, allowing the
model to generalize well.

e Practical Impact: This accuracy means that three
out of four predictions are correct, leading to more
efficient Bayesian optimization. This reduces the time
and effort required to find optimal control parameters
and enhances the user experience with the exoskele-
ton.

By harnessing subject-specific anthropometric data and
employing classification models, we refine the sampling
space of exoskeleton control parameters. This data-driven
approach streamlines the optimization process, improv-
ing precision and customization of exoskeleton assistance
strategies. These findings underscore the importance of
leveraging data-driven techniques to enhance the efficiency
of exoskeleton customization and optimization. Addition-
ally, our study highlights the potential of small-dataset
machine-learning techniques to enhance the performance
and robustness of exoskeleton controllers.

Some limitations of our approach include the limited
number of subjects and the number of classes that can
be predicted. Currently, our pipeline predicts whether
a parameter might be above average or below average.
While this demonstrates an improved initialization for
optimization, it does not possess the ability to predict
control directly. In addition, a binary classification tends
to lose important information and nuances of the control.

5. CONCLUSION

In conclusion, integrating machine learning with exoskele-
ton optimization holds promise for enhancing assistive
robotics technology. This integration could transform the
lives of individuals with mobility impairments.



Future research will delve into advanced machine learning
algorithms like deep learning and reinforcement learning
to boost prediction accuracy. In addition, these methods
will accommodate finer grain classification to improve the
accuracy. Incorporating real-time feedback mechanisms
could enhance adaptability and responsiveness. Exploring
the generalizability of this approach to other exoskeletons
and assistive devices could broaden its impact.
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