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ABSTRACT
Bipedal robots with small and point feet find it difficult to

balance instantaneously due to underactuation, but can be rela-
tively easy to control over the time scale of a step. Thus, models
of step-to-step dynamics provide an effective means for the devel-
opment of step-to-step controllers. Such models are analytically
intractable because they are obtained from integrating nonlinear
equations of motion. Our hypothesis is that obtaining approxima-
tions of such models can be effective for real-time computations
of control inputs. We use partial feedback linearization to reduce
the system dimensions for the step-to-step map. We formulate
and solve an optimal control problem with the approximations to
compute control for tracking a reference velocity and walking on
stepping stones. These solutions demonstrate the need for bipedal
robots to achieve specific control objectives, such as walking
speed and foot placement, in order to navigate through restricted
environments such as the stepping stones. We provide simulations
on a 5-link biped to show the efficacy of the approach. A video link
is provided: https: //www.youtube.com/watch?v=p2TLU3Jzul8.
Keywords: Control, Partial Feedback Linearization, Gaus-
sian Process, Nonlinear Model, Poincaré Map

1. INTRODUCTION
Bipedal robots are well-suited for applications in homes and

warehouses. These applications would require a robust walking
gait that can be used in conjunction with task planning, path plan-
ning, motion planning, computer vision, and manipulation for use
in practical applications. However, the challenge of reliable walk-
ing in simple environments has still not been accomplished.

Bipedal systems generally have point or small feet which
leads to underactuation (i.e., the number of degrees of freedom
exceeds the number of actuators on the degrees of freedom).
Because of underactuation, such systems are nearly impossible to
control instantaneously (e.g., balancing over the upright position
when perturbed). However, it is possible to control these systems
over a finite time horizon, typically of the order of one step [2].
For example, one can correct a push given to a standing robot

with point feet by taking a step in the direction of the push, thus
achieving balance control over one step [3]. This type of control,
known as step-to-step control is the most accepted method of
controlling underactuated bipedal systems.

The step-to-step level control is typically solved offline
with hi-fidelity physics models and adapted for real-time con-
trol through a look-up table [4]. However, this approach fails
to generalize to novel situations. Another approach is to use an
online method where simple models are used for computing the
controller and then mapping to the hi-fidelity model during run-
time [5]. This approach is often conservative because the simple
models do not capture the complex dynamics. We present an
approach that can be generalized to novel scenarios, but captures
the hi-fidelity of the physics model while being computationally
modest. First, we use Partial Feedback Linearization (PFL) to
transform the complex model to low dimensions. Second, we
approximate the step-to-step dynamics of the hi-fidelity model
using a Gaussian Process Regression (GPR). Finally, we solve an
optimization problem with GPR-based step-to-step model during
run-time to compute the correct control signal.

2. BACKGROUND AND RELATED WORK

Origins of Step-to-Step Control: The step-to-step control was
first presented in the context of passive dynamic walking by
McGeer [6]. McGeer showed that a design that resembles a
human frame when designed properly can walk down a shallow
slope with no control. Then McGeer interpreted the resulting
periodic motion as a limit cycle (a repeating trajectory) and used
the eigenvalues of the linearization of the step-to-step map, also
known as the Poincaré map (i.e., the function that maps the initial
conditions from one step at a particular instant in the locomotion
cycle to the same instant at the next step), to analyze the stability
of the system [7]. Finally, McGeer showed that by using a lin-
ear controller based on the step-to-step map, it was possible to
increase the robustness of the passive limit cycle [8].
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FIGURE 1: OVERVIEW OF THE APPROACH: (A) PFL REDUCES THE STANCE PHASE DYNAMICS FROM Θ = [Θu ,Θc ] (10 DIMENSIONS)
TO Θ = Θu (2 DIMENSIONS). (B) A POINCARÉ SECTION IS CHOSEN AT MID-STANCE. WE GENERATE RANDOM INPUT STATE AT THE
POINCARÉ SECTION AND CONTROLS AT THE STEP AND SIMULATE TILL THE NEXT POINCARÉ SECTION TO GENERATE DATA FOR THE
POINCARÉ MAP GIVEN BY F, Θi+1

u = F(Θi
u ,Ui ). (C) THE POINCARÉ MAP IS CURVE FITTED Θi+1

u = F(Θi
u ,Ui ) WHERE F IS A GAUSSIAN

PROCESS REGRESSION MODEL AND GAUSSIAN PROCESS CLASSIFICATION IS USED TO IDENTIFY THE BOUNDARY OF THE MODEL. (D)
NONLINEAR PROGRAMMING IS USED TO SOLVE A SUITABLY FORMULATED QUADRATIC PROGRAM. FOR A VIDEO SEE [1].

Approximations to the Step-to-Step Map: McGeer’s ap-
proach to linearize the Poincaré map achieves stability in the
small neighborhood of the limit cycle (periodic gait). To achieve
a large range of stability, there have been attempts to compute the
nonlinear approximation to the step-to-step map.

This is a data-driven approach that relies on a simulator to
approximate the step-to-step map. The idea is to sample state
and control (or state-action) pairs at the Poincaré section and
integrate the equations to the next Poincaré section. This provides
data for the step-to-step map which can then be curve fitted to a
nonlinear function. The step-to-step map of a springy quadruped
has been fitted with a neural network and then a model-predictive
controller has been used for control [9]. Our past work considered
using polynomial, neural network, and GPR to fit the step-to-
step map of a spring-loaded inverted pendulum and the use of
trajectory optimization for control. The neural network and GPR
outperformed the polynomial regression [10]. One can also use
the step-to-step map approximation of simple models to control
more complex robots [11]. The step-to-step map may also use
data from hardware experiments to obtain a better approximation
[12].

Approximations to the Region of Validity of the Step-to-Step
Map: One issue with these approaches is that not all state-action
input pairs to the step-to-step map lead to a successful step; there
might be inputs that lead to failure. Hence, it is important to
model the boundary of the feasibility of the step-to-step map.
Our past work used support vector machines to model the region
of validity of the step-to-step map [13]. Another approach found
that neural networks can be used for modeling the step-to-step
map [14].

Model Reduction Over Step-to-Step Map: Although bipeds
are high-dimensional systems with underactuation, one can use
feedback control to reduce the dimensionality of the system.

The hybrid zero dynamics (HZD) approach is a dimension-
ality reduction technique [15, 16]. Here one defines continuous-
time outputs (also known as virtual constraints) that map the
actuated degrees of freedom to the unactuated degrees of free-
dom. One then designs a controller to drive these outputs to
zero. This method is attractive because it uses control to reduce
the dimensionality of the system to the unactuated degrees of
freedom and is scalable. As the system complexity increases,
it is not very easy to find these virtual constraints that lead to
acceptable performance [17]. Although one can create exponen-
tially stable continuous-time controllers, the orbital stability is
only asymptotically stable [18].

In this work, we capitalize on the use of partial feedback
linearization (PFL) to reduce the dimensionality of the system
to the uncontrolled degree of freedom at the Poincaré map [13].
The system considered here has 𝑁 actuators and 𝑁 + 1 degrees
of freedom. We use PFL to do continuous control of 𝑁 degrees
of freedom using the 𝑁 actuators. However, these 𝑁 actuator
commands have free parameters. These free parameters can then
be used to control the step-to-step map achieving control of the 1
unactuated degree of freedom at the time scale of a step.

The organization of the paper is as follows. In Sec. 3 we
provide details of the physics-based model for the 5-link biped.
In Sec. 4 we provide the methods for reducing the dimensionality
of the system, approximating the Poincaré map, and formulating
the non-linear constrained program. In Sec. 5 we present the
results of the models and optimizations. Sec. 6 is the Discussion
and Sec. 7 is the Conclusions and Future Work.

3. MODEL
Figure 2 shows the 2D, 5-link model used in this study. This

model and ensuing write-up is from our past work [13]. We
define the stance leg as the one in contact with the ground and
the swing leg as the other. The foot in contact with the ground
has coordinates (𝑥, 𝑦) where the x-axis is horizontal and y-axis
is vertical. The torso angle 𝜃0 is the angle between the torso and
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FIGURE 2: HUMANOID MODEL: (A) CONFIGURATION VARI-
ABLES DESCRIBING THE DEGREES OF FREEDOM, (B) MASS,
CENTER OF MASS, INERTIA ABOUT CENTER OF MASS, AND
LENGTH PARAMETERS.

the vertical direction, 𝜃1 and 𝜃2 are the relative angles made by
the thigh links of the stance and swing leg (respectively with the
torso), and 𝜃3 and 𝜃4 are the angles made by the calf links of
the stance and swing leg with their respective thigh links. The
torso mass is 𝑚0 = 50 kg, center of mass is at 𝑐0 = 0.5 m, and
inertia about the center of mass is 𝐽0 = 10 kg-m2. The thigh links
have a mass of 𝑚1 = 7 kg, center of mass is at 𝑐1 = 0.25 m, and
inertia about the center of mass is 𝐽1 = 5 kg-m2. The calf links
have a mass of 𝑚2 = 5 kg, center of mass at 𝑐2 = 0.25 m, and
inertia about the center of mass is 𝐽2 = 2 kg-m2. Gravity points
downwards and is 𝑔 = 9.81 m/s2. The torso length ℓ0 = 1 m the
thigh link and calf link lengths are equal, ℓ1 = ℓ2 = 0.5.

There are two sets of equations: one for the single stance
phase where one foot is on the ground and the second for the
foot-strike where the legs exchange roles.

3.1 Single Stance Equations
The state variables for derivation are defined as q =[︁

𝑥 𝑦 𝜃0 𝜃1 𝜃2 𝜃3 𝜃4
]︁𝑇 . We include the floating co-

ordinates 𝑥 and 𝑦 to derive the equation, but the simplified equa-
tion has only five variables: 𝜃0, 𝜃1, ... 𝜃4. The Lagrangian

L = T− V = 0.5
∑︁ (︃

𝑚𝑖𝑣
𝑇
𝑖
𝑣𝑖 + 𝐽𝑖𝜔𝑇

𝑖
𝜔𝑖

)︃
− ∑︁ (︃

𝑚𝑖𝑔𝑦𝑖

)︃
where

𝑣𝑖 , 𝜔𝑖 , 𝑦𝑖 are the linear velocity, angular velocity, and y-position
center of mass of link 𝑖, respectively. We take the summation
over all the five links. Using the Euler-Lagrange equations gives
seven equations:

M(q)q̈ + N(q, q̇) = Bu + J𝐶1P𝐶1 (1)

where M, N, B are the mass matrix, accelerations due to Coriolis,
centrifugal acceleration and gravity, and torque selection matri-
ces, respectively. The control torques are u =

[︁
𝜏1 𝜏2 𝜏3 𝜏4

]︁𝑇
where 𝜏𝑖 is the torque for joint with stance calf link 𝜃𝑖 . The Jaco-
bian is J𝐶1 of the contact point 𝐶1 and P𝐶1 is the ground reaction
force on the stance leg.

Without loss of generality, we can assume 𝑥 = 𝑦 = 0. Also,
since 𝐶1 is at rest, �̇� = �̇� = 𝑥 = 𝑦 = 0. Using these conditions,
we use the first two equations in Eqn. 1 to find the ground re-
action forces P𝐶1 as a function of joint angles, velocities, and
acceleration. We may write the remaining five equations as:

M𝜃 (𝜃)𝜃 + N𝜃 (𝜃, �̇�) = B𝜃u (2)

where M𝜃 , N𝜃 , B𝜃 are versions of the matrices defined earlier.
We use this equation for simulating single stance phase and for
controller development later.

3.2 Foot-Strike Equations
When the swing foot 𝐶2 touches the ground, the sin-

gle stance phase ends and the robot transitions to an in-
stantaneous foot-strike phase. We assume that the trailing
leg applies an impulsive force along the stance leg, I𝐶1 =

𝐼
[︁
− sin(𝜃0 + 𝜃1 + 𝜃3), cos(𝜃0 + 𝜃1 + 𝜃3)

]︁𝑇 where 𝐼 is the scalar
impulse. This force comes from the ankle motor at 𝐶1 which is
passive during the stance phase, except during the foot-strike
phase. Our choice of impulsive push-off is to be able to achieve
energy-efficient walking compared to hip actuation (see [19]). In
this phase, angular momentum is conserved about new contact
point 𝐶2. We obtain the equations for this phase by integrating
Eqn. 1 and taking the limit as time goes to 0:[︃

M(q−) −J𝑇
𝐶2

J𝐶2 0

]︃ [︃
q̇+

I𝐶2

]︃
=

[︃
M(q−)q̇− + J𝑇

𝐶1
I𝐶1

0

]︃
(3)

where the superscript− and + denote the instance before and after
collision, respectively.

3.3 Simulating a Single Step
Figure 3 shows the general equation that describes a single

step, the repeating unit, that starts and ends at mid-stance. We
now explain the composition of a single step. We start the step
at mid-stance when stance leg thigh link is vertical, 𝜃0 + 𝜃1 = 0.
Next, we use the single stance Eqn. 2 to integrate the system till
foot-strike. The foot strike occurs when the swing foot𝐶2 touches
the ground, 𝑦𝐶2 = ℓ1 cos(𝜃0 + 𝜃1) − ℓ1 cos(𝜃0 + 𝜃2) + ℓ2 cos(𝜃0 +
𝜃1 + 𝜃3) − ℓ2 cos(𝜃0 + 𝜃2 + 𝜃4) = 0. Next, we apply the foot-strike
condition given by Eqn. 3. Then we swap the legs, 𝜃+0 = 𝜃−0 ,
𝜃+1 = 𝜃−2 , 𝜃+2 = 𝜃−1 , 𝜃+3 = 𝜃−4 , 𝜃+4 = 𝜃−3 . Similarly, for the angular
velocities we have �̇�+0 = �̇�−0 , �̇�+1 = �̇�−2 , �̇�+2 = �̇�−1 , �̇�+3 = �̇�−4 , �̇�+4 = �̇�−3 .
Finally, we integrate the equations in single stance given by Eqn. 2
till the next mid-stance given by 𝜃0 + 𝜃1 = 0.

4. METHODS
4.1 Partial Feedback Linearization

PFL is utilized to regulate the actuated degrees of freedom
during the stance phase. The mass matrix inversion of Eqn. 2
results in:

𝜃 = M−1
𝜃 (𝜃) (B𝜃u − N𝜃 (𝜃, �̇�)) (4)

The system is underactuacted as it only has four actuators to
control the five degrees of freedom. PFL is utilized to decouple
the following degrees of freedom: the torso 𝜃0, the swing leg
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FIGURE 3: A REPRESENTATION OF THE WALKING CYCLE.

joints 𝜃2 and 𝜃4, and the stance leg knee 𝜃3. The decoupled
degrees of freedom can be assigned as 𝜃𝑐 =

[︁
𝜃0 𝜃2 𝜃3 𝜃4

]︁
.

A matrix S𝑐 can be found with the relation 𝜃𝑐 = S𝑐𝜃, where
S𝑐 = 𝑑𝑖𝑎𝑔{1, 0, 1, 1, 1} and 𝜃 =

[︁
𝜃0 𝜃1 𝜃2 𝜃3 𝜃4

]︁
. Taking

this relation with Eqn. 4 results in:

𝜃𝑐 = S𝑐𝜃 = S𝑐M−1
𝜃 (𝜃) (B𝜃u − N𝜃 (𝜃, �̇�)) = v (5)

where v is the control input:

v = 𝜃
𝑟𝑒 𝑓
𝑐 + Kd (�̇�𝑟𝑒 𝑓𝑐 − �̇�𝑐) + Kp (𝜃𝑟𝑒 𝑓𝑐 − 𝜃𝑐) (6)

Reference position 𝜃𝑟𝑒 𝑓𝑐 , velocity �̇�𝑟𝑒 𝑓𝑐 , and acceleration 𝜃𝑟𝑒 𝑓𝑐 are
assigned. A fifth order polynomial is selected with initial and final
position, velocity, and acceleration specified with most set to 0.
Kp and Kd are diagonal matrices, with Kp = 𝐾𝑝 𝑑𝑖𝑎𝑔{1, 1, 1, 1}
and Kd = 2

√︁
𝐾𝑝 𝑑𝑖𝑎𝑔{1, 1, 1, 1}, chosen to achieve critical

damping. The motor torques are computed as follows:

u = (S𝑐M−1
𝜃 (𝜃)B𝜃 )−1 (v + S𝑐M−1

𝜃 (𝜃) (N𝜃 (𝜃, �̇�)) (7)

By defining the uncontrolled degree of freedom as 𝜃𝑢 = S𝑢𝜃,
where S𝑢 = 𝑑𝑖𝑎𝑔{0, 1, 0, 0, 0} and 𝜃𝑢 = 𝜃1, we can formulate an
equation for this degree of freedom, incorporating the appropriate
control input from the equation above:

𝜃𝑢 = S𝑢𝜃 = S𝑢M−1
𝜃 (𝜃) (B𝜃u − N𝜃 (𝜃, �̇�)) (8)

This equation is integrated in the single stance phase.

4.2 Step-to-Step Dynamics: Poincaré Map
The Poincaré section is a surface of 2𝑁 −1 dimensions (with

N being the total degrees of freedom of the system) that represents
a particular instance in the locomotion cycle, such as mid-stance
or foot-strike. A Poincaré section is depicted as blue dots in Fig. 1
(b). The Poincaré map is a function, denoted as F, mapping the
initial state at the Poincaré section Θ𝑖 and the controls during
the step U𝑖 to the state at the next Poincaré section Θ𝑖+1. This
map F describes the step-to-step dynamics and is determined by
integrating equations from successive Poincaré sections shown in
Fig. 3. Refer to [20] for more details on the Poincaré section and
map. The Poincaré section is written as:

Θ𝑖+1 = F(Θ𝑖 ,U𝑖) (9)

where 𝑖 represents the step number, the state is represented by
Θ =

[︁
𝜃 �̇�

]︁
, and 𝜃 is defined as

[︁
𝜃0 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5

]︁
.

The discrete controls are denoted by U, foot placement angle
and impulsive push-off, and are set once per step. The Poincaré
map, F, is chosen to map the successive mid-stance states. Gen-
erally, the Poincaré map is determined numerically as it is not

always feasible to obtain an analytical formula. To approximate
the Poincaré map, the equations of motion are integrated and/or
the algebraic conditions for instantaneous phases (such as foot-
strike) are applied. Mid-stance is defined as 𝜃0 + 𝜃1 = 0. The
Poincaré map is nine dimensional for this system with 10 degrees
of freedom.

If the PFL is assumed to function as intended, the step-to-
step dynamics rely solely on the uncontrolled degrees of freedom,
which can be represented as Θ =

[︁
𝜃𝑢 �̇�𝑢

]︁
. For the 5-link

biped, 𝜃𝑢 is equivalent to 𝜃1. However, there is only one degree
of freedom, �̇�1, since the Poincaré map occurs at mid-stance.
The controls are chosen as the step angle and push-off at foot-
strike, denoted as 𝜃2 = 𝛼 and 𝐼, respectively. The system can be
expressed as:

𝑚�̇�𝑖+1
1 = 𝐹 (𝑚�̇�𝑖1, 𝛼

𝑖 , 𝐼 𝑖) (10)

where 𝑚�̇�𝑖1 is the mid-stance speed of 𝜃1.

4.3 Poincaré Map Approximation
An analytical solution for the step-to-step dynamics is not

feasible. A simple approximation 𝐹 must be obtained where
𝑚
𝐴
�̇�𝑖+1

1 is the estimated mid-stance velocity at step 𝑖 + 1:
𝑚
𝐴 �̇�

𝑖+1
1 = 𝐹 (𝑚�̇�𝑖1, 𝛼

𝑖 , 𝐼 𝑖) (11)

4.3.1 Data Generation. A simulator is designed as shown
in Fig. 3 where the mid-stance speed 𝑚�̇�𝑖1, the foot placement
angle 𝛼𝑖 , and the push-off impulse 𝐼 𝑖 are the inputs and the
mid-stance speed at the next step 𝑚

𝐴
�̇�𝑖+1

1 is the output. While
some input combinations can result in a feasible step, others may
cause the model to lose balance and fall before taking the next
step, rendering them infeasible. The data set consists of 1000
combinations of �̇�𝑖1, 𝛼

𝑖 , 𝐼 𝑖 , and has been divided into training and
testing sets with an 80-20 split. The entire training data set has
been used to fit a Gaussian Process Classification (GPC) model
to predict the feasibility of a step based on its state-action pair,
and the data that results in a feasible step is utilized to fit a GPR
model for the 2-BVP problem.

4.3.2 Predicting Feasibility of State-Action Pairs. A GPC
model is used to predict whether a state-action pair will result in
a feasible step. A GPR model is created with the MATLAB fitrgp
function, an automatic relevance determination (ARD) squared
exponential kernel, and expected improvement acquisition func-
tion. The hyper-parameters, inputs, and outputs are:

𝐿 =
[︁
𝜎(𝑚�̇�𝑖1) 𝜎(𝛼𝑖) 𝜎(𝐼 𝑖)

]︁
(12)

𝜎𝑛 = 𝜎(𝑦) (13)
𝑋 =

[︁
𝑚�̇�𝑖1 𝛼𝑖 𝐼 𝑖

]︁
(14)

𝑦𝐺𝑃𝐶 = 𝑓 𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ∈ [0, 1] (15)
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where all inputs 𝑋 and outputs 𝑦𝐺𝑃𝐶 pertain to the training data
set. The hyper-parameters 𝐿 and 𝜎𝑛 represent the length scales
of the ARD squared exponential (one for each input dimension)
and the signal standard deviation. The 𝜎 function is the standard
deviation of each of the inputs. The intermediary GPR function
is converted to a GPC by comparing the output with a threshold
value, 𝜖 , to split the data into two classes, feasible and infeasible.
The GPC model is given by:

𝑦𝐺𝑃𝐶 =

{︃
0 (infeasible) if 𝐺𝑃𝐶 (𝑋) < 𝜖
1 (feasible) if 𝐺𝑃𝐶 (𝑋) ≥ 𝜖 (16)

where 𝜖 = 0.3.

4.3.3 Gaussian Process Regression Model of the
Poincaré Map. After developing the classification model, the
feasible samples were used to fit a GPR model for the Poincaré
map. The GPR hyper-parameters and inputs were formulated
with Eqns. 12 - 14. The GPR model is:

𝑦𝐺𝑃𝑅 = 𝐺𝑃𝑅(𝑋) (17)

where 𝑦𝐺𝑃𝑅 =𝑚
𝐴
�̇�𝑖+1

1 .

4.4 Quadratic Program
An optimization problem was formulated to find the inputs

that approximate 𝑚
𝐴
�̇�𝑖+1

1 . The problem can be written as:

minimize
x

𝑓 (x) (18)

subject to: 𝑔(x) = 0 (19)
ℎ(x) < 0 (20)
LB ≤ x ≤ UB (21)

where x =
[︁
Θ𝑖+1 U𝑖

]︁𝑇 . The cost function is 𝑓 (𝑥) = (𝑚
𝐴
�̇�𝑖+1

1 −
𝑚 ¯̇𝜃𝑖+1

1 )2 + (𝛼𝑖 − �̄�𝑖)2 + (𝐼 𝑖 − 𝐼 𝑖)2 where 𝑚 ¯̇𝜃𝑖+1
1 , �̄�𝑖 and 𝐼 𝑖 have

the nominal values −0.97, 0.375, 0.18, respectively. The
nominal values pertain to walking at human speed and step
length [21]. The equality constraint, Eqn. 19, is given by
𝑔(𝑥) = 𝐺𝑃𝑅(𝑥) −𝑚

𝐴
�̇�𝑖+1

1 . The inequality constraint, Eqn. 20, is
given by ℎ(𝑥) = 𝐺𝑃𝐶 (𝑥) + 𝜖 . LB and UB are the lower and up-
per bound limits set to [−2.5, 0.087, 0.1] and [−0.5, 0.873, 0.4],
respectively. The bounds were chosen to contain the training
data range and extend beyond. This allows for some flexibility in
selecting the control parameters and applying them for different
activities such as walking in a constrained environment.

5. RESULTS
5.1 Gaussian Process Classification

Figure 4 shows the feature space of the test set where the red
and blue dots are the infeasible and feasible samples, respectively.
The confusion matrix of the GPC model is shown in Fig. 5.
Overall, the model has an accuracy of 99.5%.The model predicts
infeasible data (0) and feasible data (1) with 100% and 98.2%
acurracy, respectively.

FIGURE 4: FEATURE SPACE OF THE TEST SET.

FIGURE 5: CONFUSION MATRIX FOR THE TEST SET.

FIGURE 6: GPR PERFORMANCE FOR THE TEST SET.
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FIGURE 7: SINUSOIDAL VELOCITY TRACKING PERFORMANCE.

5.2 Gaussian Process Regression
Figure 7 shows that the GPR model was incorrect by at

most 7% or 93% accurate. Taking into consideration the nominal
value of -0.97 rad/s, the GPR model predicted 67.7% of the data
with a 99% accuracy and predicted 96.9% of the data with a 95%
accuracy. The average accuracy of the model was 98.96%.

5.3 Optimization: Velocity Tracking
The model and optimization framework were tested by track-

ing a sinusoidal velocity profile (�̇�𝑟𝑒 𝑓1 ) for 35 steps. The reference
profile had an offset equivalent to the nominal velocity and an am-
plitude of 0.25 rad/sec. The cost function was modified to account
for the reference profile by changing 𝑚 ¯̇𝜃𝑖+1

1 to �̇�𝑟𝑒 𝑓1 . The perfor-
mance of the optimization solution with respect to the reference
velocity is shown in Fig. 7. The percent error in tracking the
reference velocity is shown in Fig. 8. The average percent error
is 0.21% and shown in red. The number of function evaluations
ranged from 12 to 34.

5.4 Optimization: Stepping Stones
The model and optimization framework were tested by plan-

ning several steps through a terrain with five ditches. At every
step, the framework was designed to solve two optimization prob-
lems, one for stepping before and one for stepping after each ditch.
A nonlinear constraint was imposed on the solver to account for
this decision. After solving both optimization problems, the so-
lution with the lowest cost is chosen. The optimization 𝑚

𝐴
�̇�𝑖+1

1
(Eqn. 11) and simulation 𝑚�̇�𝑖+1

1 (Eqn. 10) velocities are shown in
Fig. 9. The velocities are informed by the control actions in the
previous step which in turn are influenced by the terrain. The
percent deviation from the nominal control is shown in Fig. 10.
The planar biped took eight steps to traverse five ditches. The
biped varied its step length to achieve clearance and proper foot
placement in avoiding all the ditches, shown in [1]. The number
of function evaluations ranged from 30 to 155.

FIGURE 8: VELOCITY TRACKING PERCENTAGE ERROR.

6. DISCUSSION

A 5-link planar biped was reduced via PFL from a 10D to
2D state space. The system was reduced to 1D by taking the
Poincaré sections at mid-stance. Previous approaches for orbital
stabilization of legged robots were built around the limit cycle for
control, but this control strategy was limited to small deviations
from the fixed point. In contrast, data-driven approaches enable
robust control capable of stabilizing a wider range of initial con-
ditions. The system was simulated for various initial conditions
to fit a GPC model capable of predicting whether a state-action
pair would result in a feasible or infeasible step. The feasible data
set was used to fit a GPR model capable of predicting the velocity
at the next mid-stance step as a function of the current state-action
pair, an approximation for the Poincaré map. The GPC and GPR
models were set as constraints for a quadratic optimization.

We evaluated the optimization framework and model robust-
ness through two trials, where the primary objectives were to
track a reference velocity and step over obstacles. The velocity
tracking was nearly flawless, with an average percent error of
0.21%. This performance demonstrated a simple scenario where
the optimization strategy could be effective and efficient, with
less than 34 function evaluations. To showcase the efficacy of our
data-driven approach in solving a more complex task, we con-
ducted the stepping stones optimization. Despite its increased
complexity, we successfully identified optimal control inputs us-
ing few function evaluations. Our results, presented in Fig. 10,
illustrate how the system modulates the control states away from
nominal to step over the obstacles. In step number five, the biped
required drastic deviation from the nominal controls to clear the
large ditch. The optimization velocity, shown in blue in Fig. 9,
decreased in step number six due to the control action taken in
the previous step. Overall, the optimization velocity deviated less
from the nominal than the simulation velocity possibly due to the
optimization constraints, Eqns. 19 and 20. This could be reme-
died by refining the sampling region for the training data to obtain
more feasible data to train the GPR. The lack of deviation from
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FIGURE 9: OPTIMIZATION AND SIMULATION VELOCITY AT EVERY
STEP IN THE STEPPING STONES SIMULATION.

the nominal could cause issues in more complicated scenarios
where more flexibility is required. For example, if the simulation
contained sensor or process noise the optimization values would
be impacted and deviate significantly. This could be corrected by
training another GPR model to encompass the stochasticity in the
system. An alternative is to use the Poincaré map model from the
simulation and augment the model with a GPR noise model. The
learned control policy with an augmented GPR model improved
trajectory prediction. Despite the shortcomings, the optimization
strategy proved capable of achieving high accuracy within a low
number of function evaluations, 12 to 34 for velocity tracking
and 30 to 155 for stepping stones. A similar optimization prob-
lem would be formulated on hardware; the expectation would
be that a low number of function evaluations would equate to
computational efficiency that would allow for real time control.

This method improves upon [13] which utilizes the same
biped model, although it should be noted that there are differences
in the simulations which do not make the comparisons one-to-
one. The previous work approximated the region of validity
with a support vector machine classifier and predicted feasibility
(86.2%), infeasibility (95.8%), and mean accuracy (93.6%) com-
pared to the GPC with feasibility (98.2%), infeasibility (100%),
and mean accuracy (99.5%). The GPC accurately captures the
region of the validity for this system. This work utilized GPR
to approximate the Poincaré map and had a mean accuracy of
98.96% compared to a quadratic polynomial regression approx-
imation with a mean accuracy of 95.61%. The GPR is able to
capture the Poincaré map’s higher order terms, resulting in low
error. Although a different velocity profile was tracked, this ap-
proach yielded low error, 0.21% compared to 10.6%, and resulted
in a similar number of function evaluations, 12 to 34 compared to
15 to 40. The stepping stones simulation is difficult to compare as
this approach was undertaken in a different environment with one
more ditch. Despite this difference, both optimization methods
remained close to the nominal velocity, except when taking longer
steps. The max number of function evaluations was higher, 155

FIGURE 10: NOMINAL CONTROL PERCENT DEVIATION AT EVERY
STEP IN THE STEPPING STONES OPTIMIZATION SIMULATION.

compared to 130.

7. CONCLUSIONS AND FUTURE WORK
We conclude that GPR and GPC are effective methods to

model the Poincaré map and region of validity for bipedal walk-
ing. The implemented strategy can achieve computationally ef-
ficient and precise control in bipedal walking, thus proving a
promising method to implement on hardware.

The optimization strategy can be further improved by aug-
menting the simulation with a GPR model to account for any
model inaccuracies or stochasticity. This would further enhance
the robustness and would facilitate the sim-to-real transfer. Even-
tually, this model will be evaluated on a humanoid with the goal
of augmenting the model with hardware generated data, similar
to the sim-to-real transfer method explored in [22].
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